
IEEE TRANSACTIONS ON COMPUTERS, VOL. 27, NO. 9, MAY 2024 1

Effective Huge Page Strategies for TLB Miss
Reduction in Nested Virtualization

Weiwei Jia*, Jiyuan Zhang*, Jianchen Shan, and Xiaoning Ding

Abstract—Huge page strategies, such as Linux Transparent Huge Page (THP), have become a prevalent solution to mitigate the
performance bottleneck caused by increasingly high memory address translation overhead. However, in cloud environments,
virtualization presents a two-fold challenge, exacerbating address translation overhead and undermining the effectiveness of huge
page strategies. To effectively reduce address translation overhead, huge page strategies in the host and guest virtual machines (VMs)
must work in concert for “proper huge page alignment”, i.e., huge pages in guest VMs being backed by host huge pages. This requires
a cross-layer coordinating mechanism, which has been designed targeting non-nested virtualization settings.
The paper introduces XGEMINI as an efficient solution targeting nested virtualization settings, where addressing these issues is
particularly challenging, given the additional obstacles in creating synergy between host and guest VMs, due to an extra layer of page
mappings by guest hypervisors. XGEMINI addresses these challenges by improving the shadow paging mechanism. Evaluation based
on the KVM/Linux prototype implementation and diverse real-world applications shows XGEMINI greatly reduces TLB misses and
enhances application performance in nested virtualization.

Index Terms—TLB, Nested Virtualization, Huge Pages, Memory Management

✦

1 Introduction

In modern computer systems, translation lookaside buffer (TLB)
capacity cannot scale at the same rate as memory capacity [1].
Many workloads, particularly big memory workloads, suffer fre-
quent TLB misses, making virtual-to-physical address translations
a serious performance bottleneck [2]. This bottleneck becomes
even more pronounced on virtualized platforms, such as clouds,
because address translations take much longer time than those
on bare-metal platforms. The use of hardware-assisted address
translation for memory virtualization (i.e., nested paging) requires
a two-dimensional page walk performed upon each TLB miss on
virtualized systems, which can be up to 6 times more costly than
the one-dimensional page walks in bare-metal systems [3].

To reduce TLB misses, a practical and widely adopted solution
is huge page strategies, with Linux Transparent Huge Page (THP)
being one of them. They use multiple page sizes simultaneously
in the same system and store large data chunks in huge pages [1].
Correspondingly, the virtual-to-physical page mappings utilized
in address translations also have multiple granularities, one for
each page size. For the two typical page sizes in mainstream
systems, i.e., 4KB base pages and 2MB huge pages, two types
of page mappings are used in address translations: huge page
mappings between virtual and physical pages of 2MB, and base
page mappings between virtual and physical pages of 4KB. For
the data saved in a huge page, one huge page mapping is used

• W. Jia is with Electrical, Computer, and Biomedical Engineering Depart-
ment, The University of Rhode Island, Kingston, RI 02881.
E-mail: weiwei.jia@uri.edu

• J. Zhang is with the Department of Computer Science, University of Illinois
Urbana-Champaign, Urbana, IL 61801.
E-mail: jiyuanz3@illinois.edu

• J. Shan is with Computer Science Department, Hofstra University, Hemp-
stead, NY 11549.
E-mail: Jianchen.Shan@hofstra.edu

• X. Ding is with Computer Science Department, New Jersey Institute of
Technology, Newark, NJ 07102.
E-mail: xiaoning.ding@njit.edu

Manuscript received May 03, 2024.
*. equal contribution

to translate all the addresses within this huge page. When this
mapping is cached in the TLB, visiting any addresses within this
huge page does not incur TLB misses.

The effectiveness of huge page strategies relies on 1) estab-
lishing huge page mappings in page tables and 2) installing and
caching huge page mappings in the TLB. Existing huge page
strategies focus only on the former, assuming that the latter
will be achieved automatically with the former. This assumption
only holds on bare-metal systems, where huge page mappings
maintained in page tables are loaded directly to the TLB when the
corresponding pages are accessed.

However, the assumption does not hold on virtualized systems,
where the page mappings used in the TLB are synthesized during
the aforementioned two-dimensional page walks. For brevity, we
call them direct page mappings, since they can be directly used
to translate virtual addresses used by applications into physical
addresses used by hardware to locate data in the memory. Each
is synthesized from two component page mappings, one from
the Guest Page Table (GPT) on the guest (i.e., VM), and the
other from the extended page table (EPT) on the host, allowing
the direct mapping from a guest virtual page (GVP) to a host
physical page (GPP). If one of these component page mappings is
a base page mapping and the other is a huge page mapping, the
synthesis cannot generate a TLB cache-able page mapping. The
reason is straightforward: a mapping can only map a virtual page
to a physical page of the same size; hardware does not handle
complex mappings that map multiple virtual pages to the same
physical page or a virtual page to multiple physical pages.

We name this issue Huge Page Misalignment (HPM) Prob-
lem, since a huge page is not backing or is not being backed
by another huge page, i.e., misalignment of huge pages at two
layers. Misaligned huge pages do not contribute to reducing TLB
misses; instead, they increase TLB misses since they prevent
the generation of TLB cache-able page mappings. Existing huge
page strategies independently create huge pages (i.e., huge page
mappings) within individual layers. Some huge pages are aligned
and help reduce TLB misses, and some others are mis-aligned

2 IEEE TRANSACTIONS ON COMPUTERS, VOL. 27, NO. 9, MAY 2024

Guest hypervisor
EPT

0 1 511

0’ 1’ 511’

0’’ 1’’ 511’’

…

…

Guest
(Nested VM)

GPT

Host hypervisor
EPT

Shadow EPT
(Conventional)

virtual page (huge)

physical page (huge)

physical page
(base)

virtual page
(base)

physical page (base)

virtual page
(base)

pseudo huge page

0 1 511

0’’ 1’’ 511’’…

…

…

Shadow EPT
(xGemini)

Fig. 1: The concept of pseudo huge page.

Guest
Guest

Hypervisor
Host

Guest Guest
Hypervisor

Host

Gemini guest components

xGemini host components via enhanced shadow EPT

xGemini host components
 via host EPT

Guest Host
Gemini guest components

Gemini host components
(a) Gemini Design Architecture

(c) xGemini Design Architecture

Gemini Gemini

(b) Naïve Design Architecture with Dual Gemini Sets

system layer

met.
Inter-layer
cooperation &
methodology

Fig. 2: Cross-layer cooperation in Gemini, a Naive
solution, and xGemini.

and increase TLB misses. Because there is not a cross-layer
mechanism to reduce the number of mis-aligned huge pages, their
overall effectiveness in reducing TLB misses is low.

Our previous work designs GEMINI as a solution to coordinate
the huge page strategies in the host and guests, and make them
mutually cooperative to “properly align” huge pages (i.e., the huge
pages within a guest being backed by huge pages on the host).
With GEMINI, the guest has the information about which memory
regions are being backed by the host with huge pages, and with
the information, it preferentially allocates or promotes huge pages
in these regions; meanwhile, the host has the information about
which memory regions in the guest are huge pages, and tries to use
huge pages (via allocation or promotion) to back these memory
regions.

GEMINI has proven to be effective in non-nested virtualiza-
tion environments, where guest VMs run directly on the host
hypervisor (host for brevity). This paper introduces and evaluates
XGEMINI as a solution designed specifically for nested virtualiza-
tion contexts, where guest VMs run on guest hypervisors and guest
hypervisors run on the host. Nested virtualization has become
an indispensable configuration and is now offered in most public
clouds, including Azure, Google Cloud, and Amazon AWS. It is
used to support some important scenarios, such as micro-services
in cloud-native environments [4], organizing and migrating mul-
tiple VMs together [5], using special purpose hypervisors, e.g.,
Hyper-V for running legacy applications in Microsoft Windows
11 [6], as well as formally-verified hypervisors for improved VM
security [7].

Given the essential role of nested virtualization, it is imperative
to address the issues associated with the huge page strategies in
these environments, so as to reduce TLB misses and consequently
enhance application performance. GEMINI creates synergy only
between the guest and the host in synthesizing direct huge page
mappings. It is not effective under the nested virtualization set-
tings, where the synergy of all three system layers is required,
because a direct page mapping has to be the combination of three
component page mappings, one from each layer, i.e., guest page
table (GPT), guest hypervisor EPT, and host hypervisor EPT, as
shown in Figure 1 (left part). Base page mappings at any of these
layers can prevent the synthesis of direct huge page mappings.

Creating the synergy of three layers (XGEMINI) is significantly
more complex than creating the synergy between two layers
(GEMINI), as the number of interactions, conflicting objectives,
and constraints all grow. To reduce the complexity, rather than

ensuring that all three layers are mutually cooperative, XGEMINI
minimizes cross-layer cooperation and only maintains the follow-
ing cooperation (shown in Figure 2).
• The mutual cooperation between the guest and the host: direct
huge page mappings map huge guest virtual pages to huge host
physical pages, requiring huge pages formed and aligned in both
the guest and the host. Thus, the mutual cooperation between these
two layers is indispensable.
• The cooperation of the host towards the guest hypervisor: This
is to ensure the synergy of all three layers. Even if the guest
hypervisor uses base pages to back a huge page in a guest, the
host can intervene and rectify the situation by remapping these
base pages in the guest hypervisor to the huge page on the host,
such that the huge page in the guest is essentially backed by the
host page on the host, as shown in Figure 1.

This design is partially motivated by two system designs for
nested virtualization. One is the Direct Virtual Hardware (DVH)
architecture [8], where the host directly provides virtual hardware
to guest VMs bypassing guest hypervisors. The other is xPlace [9],
where the host cooperates towards both guest hypervisors and
guests in page placement mechanisms.

In addition to reduced complexity and overhead, this design
brings multi-folds of other benefits. First, this design avoids the
changes to guest hypervisor, which might not be feasible for
closed-source or formally-verified hypervisors, or are intrusive
even if they are feasible. Second, the guest components GEMINI
can be reused in XGEMINI. These components are to achieve
cooperation towards the host (shown on the top of Figure 2(c)).
This not only simplifies the design but also allows the same
guest to run on both GEMINI and XGEMINI platforms. Third,
this design mirrors the de facto memory virtualization solution,
simplifying its implementation on mainstream systems. To support
multi-dimensional paging (i.e., EPT-on-EPT [5]), because only
one EPT can be used in mainstream hardware at a time, a shadow
EPT [10] is created to compress the EPTs in the guest hypervisor
and the host hypervisor to allow direct mapping from GPA to HPA
in the nested virtualization environments, as shown in Figure 1
(middle part). XGEMINI can leverage and enhance the shadow
ETP mechanism to achieve the cooperation of the host towards
guests in synthesizing direct huge page mappings (shown at the
bottom of Figure 2(c)).

The above XGEMINI design does need to address a major chal-
lenge: some inherent flaws in the existing shadow EPT concept
and designs impede the host from being cooperative with the

JIA et al.: EFFECTIVE HUGE PAGE STRATEGIES FOR TLB MISS REDUCTION IN NESTED VIRTUALIZATION 3

guests in forming huge page mappings. First, the existing shadow
EPT mechanisms are huge-page unfriendly. They either do not
support huge pages (i.e., synthesizing only base page mappings,
e.g., that in Xen) or cannot effectively synthesize huge page
mappings (e.g., that in KVM). With these designs, the host cannot
effectively generate huge page mappings to cooperate towards
guests. More importantly, in existing system designs, shadow
EPTs are created and utilized as the synthesis of the EPTs in
guest hypervisors and the EPTs in the host hypervisors. With
this concept, the sizes of the mappings (base vs. huge) in a
shadow EPT are dependent on the page allocations in the guest
hypervisor. As shown in Figure 1 (left and middle parts), if the
guest hypervisor allocates base pages, the mappings in the shadow
EPT have to be base page mappings.

To remedy these flaws, XGEMINI first substantially renovates
the shadow EPT concept. In XGEMINI, the shadow EPT is built
as a special data structure that book-keep the address mappings
between the guest physical pages and the corresponding host
physical pages by introducing a concept of “pseudo huge pages”.
A pseudo huge page is a huge-page-sized region in the host’s
physical memory space that can be used to back a huge page in
the guest. As shown in Figure 1 (right part), although this region
may consist of base pages and cannot be combined into a real huge
page from the perspective of a host EPT (because virtual pages are
not contiguous), the shadow EPT can treat this region as a huge
page to create a huge page mapping, which is then used by the
MMU to form a huge page mapping from GVAs to HPAs.

To maintain pseudo huge pages, XGEMINI host components
need to detect and respond to the changes in guest hypervisor
EPTs. When a guest hypervisor attempts to change a page map-
ping that may affect a pseudo huge page (e.g., the dotted arrow
shown in the guest hypervisor EPT in Figure 1), the host needs to
change the host EPT accordingly (e.g., the dotted arrow shown in
the host EPT in Figure 1). This design is shown in Figure 2 as the
cooperation of the host towards the guest hypervisor.

With the above renovations, the granularities of the mappings
in shadow EPTs can be completely controlled by the guests and
the host. Thus, the huge page misalignment problem can be
solved using a similar approach as GEMINI. However, different
from the host components in GEMINI, the host components in
XGEMINI need to use both shadow EPTs and host EPTs as primary
data structures when allocating or promoting pseudo huge pages.
Specifically, to form well-aligned huge pages, XGEMINI periodi-
cally scans the guest page table and the shadow EPT to identify
and rebuild the overlooked huge page mappings by updating the
host EPT and shadow EPT. This is shown in Figure 2(c) as the
cooperation of the host towards the guest. Note that both XGEMINI
and GEMINI aim to form more direct huge page mappings that are
cache-able in TLB without requiring any changes to how multiple
page granularities are implemented in TLB hardware.

The paper makes the following contributions. First, it analyzes
and identifies the unique challenges in addressing the huge page
misalignment problem in the nested virtualization environments.
Second, it proposes XGEMINI as an effective solution that can
efficiently reduce TLB misses and the address translation cost
for nested virtualization; XGEMINI addresses a few technical
challenges in implementing XGEMINI in nested virtualization
environments. Finally, we have implemented XGEMINI based on
KVM in Linux kernel 4.19 and tested it with diverse applica-
tions in the nested virtualization environments. Our tests show
XGEMINI can significantly reduce TLB misses and effectively
improve application performance and system efficiency.

2 Background
2.1 Address Translation in Native Environment

Most modern architectures use radix tree data structures known as
page tables, to perform address translation. On native x86 systems,
as shown in Figure 3, a standard page table has four levels and
can map a 48-bit virtual address space. Each virtual address is 48
bits in size, with the lower 12 bits (bit 0∼bit 11) being the page
offset and the upper 36 bits (bit 12∼bit 47) being the virtual page
number. These 36 bits are further divided into four 9-bit fields.

CR3

Virtual Address (VA)

Physical Address (PA)

Page Table

VA

PGD
PUD PMD

PTE

47:39 38:30 29:21 20:12 11:0

Fig. 3: Address translation in the native environment.

To translate a virtual address, the page walker navigates from
the radix tree’s root node to a leaf node. This process is known as
a page walk. Each node is a memory page that includes an index
table with 512 (i.e., 29) entries. The CR3 register stores the root
node’s location, while the locations of intermediate or leaf nodes
are determined by selecting an entry from the index table of an
upper-level node, using the respective 9-bit field from the virtual
address, as shown with the blue squares in Figure 3. In the last
step of the page walk, the physical page number is obtained as the
result of the page walk from the leaf node using the lowest 9-bit
field. The complete physical address is then formed by appending
the page offset (bits 11:0 of the VA) to the physical page number.

With a 4-level page table, a page walk may incur 4 memory
accesses. To support emerging applications with terabytes of mem-
ory, architectures including x86 have started to support 5-level
page tables, where a page walk may incur 5 memory accesses.

2.2 Address Translation in Non-Nested Virtualization

GPT

EPT

Guest Virtual Address (GVA)

Host Physical Address (HPA)

GVA 47:39 38:30 29:21 20:12 11:0

GCR3

G
PA

H
C

R
3

G
PA

H
C

R
3

G
PA

H
C

R
3

G
PA

H
C

R
3

G
PA

H
C

R
3

GPGD
GPUD

GPMD
GPTE

23
22

21

19
18

17
16

14
13
12

11

09

08
07

06

04
03

02
01

05

15
10

20

HPA

 GPA
EPT walk
GPT walk

24

Fig. 4: Address translation in the non-nested virtualization en-
vironment. Each blue square represents one possible memory
access. Host EPT is rotated by 90 degrees.

4 IEEE TRANSACTIONS ON COMPUTERS, VOL. 27, NO. 9, MAY 2024

With hardware supports (e.g., Intel EPT [3] and AMD
NPT [11]), nested paging is used for address translation on
virtualized platforms. It allows guests and the host to each manage
and map memory independently using their own page tables.
A guest OS maintains guest page tables (GPTs) mapping guest
virtual addresses (GVAs) to guest physical addresses (GPAs), and
the host manages extended page tables (EPTs) mapping GPAs to
host physical addresses (HPAs).

On virtualized systems, the address translation is to obtain the
HPA for a given GVA. This involves the use of two mappings
maintained in a GPT and an EPT in a two-dimensional (2D) page
walk, as illustrated in Figure 4. We use circular boxes to denote the
steps in EPT (01 – 04 , 06 – 09 , 11–14 , 16 – 19 , and 21–24), and
rectangle boxes to denote the steps in GPT (05 , 10 , 15 , and 20).
First, to obtain the GPA from GVA, the hardware needs to walk
over each level of the GPT, from the guest page global directory
(GPGD) to guest page table entry (GPTE), i.e., the rectangle boxes
(Steps 5, 10, 15, and 20). However, each of these steps needs to
use the corresponding HPA, to obtain which a conventional page
walk is incurred in EPT from host page global directory (HPGD)
to host page table entry (HPTE), i.e., the circular boxes (Steps 1–4,
6–9, 11–14, or 16–19). Second, to obtain the final HPA from GPA,
the hardware needs to walk over the EPT for one more time (Steps
21–24) to locate the PTE and obtain the physical page number.

For 4-level radix page tables, the 2D page table walk requires
up to 24 sequential memory accesses [12] , as shown in Figure 4.
With 5-level page table enabled on both guest and host, it takes up
to 35 sequential memory accesses.

2.3 Address Translation in Nested Virtualization

In nested virtualization, guest hypervisors run in VMs to host
guest VMs inside VMs [5]. Nested virtualization has been of-
fered by major cloud vendors to enable important use cases for
higher cost-effectiveness, compatibility [5], [6], or security [13].
For instance, Microsoft Windows 11 provides virtualization-
based kernel integrity protection [14] and operating system in-
teroperability [15]; Linux also has a similar implementation in
progress [16]. Nested virtualization must be enabled to run these
systems in guest VMs [6].

Guest (L2) Virtual Address

Guest (L2) Physical Address

Guest Hypervisor (L1)
Physical Address

Host (L0) Physical Address

Shadow
EPT

GPT

L1 EPT

L0 EPT

Fig. 5: Address translation in nested virtualization.

Nested virtualization requires multi-dimensional paging. A pop-
ular solution is EPT-on-EPT [5], as shown in Figure 5. L2, L1, and
L0 refer to the guest, guest hypervisor, and host hypervisor layers
throughout the paper, respectively. At L1, to run a guest VM (L2),
a L1 EPT is emulated to translate GPA to the guest hypervisor
physical address (GHPA). At L0, to run a guest hypervisor (L1),
a L0 EPT is emulated to translate GHPA to HPA. The address
translation requires a three-dimensional page walk across 3 layers
of page tables (i.e., GPT, L1 EPT, and L0 EPT).

Currently, hardware cannot support such page walks, which
are untenable due to excessive memory accesses for each
address translation. Existing solutions use a combination of
hardware-assisted nested paging and software-assisted shadow
paging [17], [18]. They map three layers of page tables onto
two layers and leverage 2D-page walks for address translation
(described in §2.2). Specifically, the page table in the guest
hypervisor (i.e., L1 EPT) and the page table in the host hypervisor
(i.e., L0 EPT) are squashed into one shadow EPT, Then, a 2D
page walk can translate a GVA to HPA using the GPT and the
shadow EPT. To keep consistency between the emulated EPTs
and shadow EPTs, the host needs to monitor any changes to the
emulated EPTs.

2.4 Translation Lookaside Buffer (TLB)

To minimize page walks, modern processors use translation looka-
side buffers (TLBs) to cache and reuse the results of earlier page
walks, i.e., the mappings between the virtual page numbers and
the physical page numbers, the virtual page numbers being the
keys/tags for TLB look-ups and physical page numbers being the
values returned by the look-ups and used to assemble physical
memory addresses. Upon a memory access, when the mapping
required for the address translation is already cached in the TLB
(i.e., a TLB hit), no page walk is needed. Otherwise (i.e., a TLB
miss), a page walk must be conducted to locate the PTE and load
the virtual-to-physical page mapping to the TLB.

TLBs usually have small sizes to keep the address translation
latencies low. TLB misses are a serious performance bottleneck on
many systems. To reduce this overhead, various techniques have
been integrated, such as page walk cache (PWC) for caching the
intermediate results of page walks, host TLB for caching guest
physical to host physical mapping, and caching page table entries
in L2 and L3 caches. But TLB misses still can take up to 50% of
application execution time under nested paging [19].

2.5 Huge Page Strategies

Huge pages (e.g., 2MB pages on x86 platforms), sometimes also
called superpages, can reduce address translation overhead in two
ways. First, huge page mappings can reduce TLB misses in TLB
lookups. A TLB entry for a huge page mapping can be used to
translate addresses for an increased amount of data (e.g., 2MB
with a huge page PTE vs. 4KB with a base page PTE). This
significantly increases TLB coverage and reduces TLB misses.
Second, huge page mappings can reduce the steps in a page walk
and the corresponding memory references. In this paper, unless
specified otherwise, the huge page refers to a 2MB page. Thus,
for an address in a huge page, its lower 21 bits are the page offset,
and the rest 27 bits are 3 fields, 9-bit each. Thus, a page walk
needs only 3 steps (i.e., at most 3 memory accesses), one for each
field.

To leverage huge pages to reduce address translation overhead,
huge page mappings must be established. This can be achieved by
directly allocating huge pages upon page faults or “assembling”
base page mappings into a huge page mapping through a process
called huge page promotion. Huge page allocation starts by having
a huge virtual page, which is then mapped to a huge physical page.
Huge page promotion starts by having 512 base virtual pages that
are sequentially organized in memory, with the starting address
aligned to 2MB. If these pages are directly mapped to physical
pages in the same sequential order, with the starting address
also 2MB aligned, then an in-place huge page promotion can be
performed. This involves merging these base virtual pages into one

JIA et al.: EFFECTIVE HUGE PAGE STRATEGIES FOR TLB MISS REDUCTION IN NESTED VIRTUALIZATION 5

huge virtual page and similarly combining the physical pages into
one huge physical page, followed by updating the mappings in
the page table accordingly. If the physical pages cannot meet the
above criteria, an out-of-place huge page promotion is required.
This involves remapping the base virtual pages to physical pages
that do meet the criteria, transferring the data, and then performing
the same steps as in an in-place promotion. When a huge page
is under-utilized, huge page demotion can reverse the promotion
operation and split a huge page back into base pages. Huge page
promotions and demotions, particularly out-of-place promotions,
are expensive because costly operations, such as memory copying
and TLB flushing, are involved. Thus they are typically executed
asynchronously in the background to minimize the impact on
system performance, as seen with Linux’s khugepaged daemon.

Applications can request huge page allocation or promotion
via system calls (e.g., madvise). However, most applications rely
on system-level huge page strategies, such as Transparent Huge
Page (THP) support in Linux and FreeBSD, to automatically
manage the allocation and promotion of huge pages and enhance
performance transparently without the need of code changes from
the applications.

3 Research Problem and Challenges
3.1 Huge Page Misalignment in Virtualized Systems
On a native system, when accessing the data in any huge pages,
the mappings between the virtual and physical huge pages can be
cached in TLB to reduce TLB misses. Thus, the more huge pages
are created and used, the more address translation overhead can be
reduced. However, on virtualized platforms, guests and hosts have
their own huge page strategies. They manage huge page allocation
and promotion independently using different page tables. Thus,
the same guest virtual page may be backed at different layers by
physical pages of different sizes. For example, a huge page in
the guest may be backed by base pages in the host, as shown
in Figure 6. In this case, for this guest virtual page, there is no
direct page mapping that can be used to translate the addresses
within this page directly to host physical addresses. Depending on
specific designs, a TLB may choose not to cache a direct mapping
in this case or cache direct mappings in a smaller granularity
(i.e., at the size of base pages [11]). Either way, huge page
mappings formed at individual layers cannot help reduce TLB
misses. With fewer mappings being cached, the former design
would even increase TLB misses. The paper refers to such huge
pages as misaligned huge pages and this problem as huge page
misalignment problem. Using huge pages can reduce TLB misses
only when a virtual huge page is backed by a physical huge page
at both the guest and the host layers. For brevity, we refer to such
huge pages as well-aligned huge pages.

On virtualized platforms, the huge pages may still be “well-
aligned”. However, it is largely by chance. Though this chance
increases when more huge pages are created in every layer,
the pressure to reduce the adverse effects of huge pages (e.g.,
space waste and paging overhead) caps the chance, limiting the
effectiveness of huge page strategies.

Though the misaligned huge pages still can help reduce page
walk overhead, they increase TLB misses. Thus, they can hardly
reduce address translation overhead when the benefits of reducing
page walk overhead is largely offset by increased misses. Using
well-aligned huge pages can substantially improve performance
by reducing both TLB misses and page walk overhead.

Our previous work, GEMINI [20], identifies this huge page
misalignment problem and analyzes the causes. It reveals and ex-

L1 guest

L0 hypervisor

huge page (virtual)

huge page (physical)

misaligned

base pages (virtual)

base pages (physical)

Fig. 6: An example of a misaligned huge page. Note that an actual
2MB huge page contains 512 base pages.

perimentally confirms that only huge guest pages backed by huge
host pages can effectively reduce address translation overhead.
Existing huge page strategies only aim to increase huge pages at
each layer, and fail to consider this cross-layer requirement on the
alignment of huge pages.

To show how virtualization affects the effectiveness of huge
page management, we measure the performance of a micro-
benchmark when misaligned huge pages and well-aligned huge
pages are used, respectively. We show the results in Figure 7.
The micro-benchmark running in a virtual machine randomly
accesses a data set. When the data set is small, well-aligned
huge pages show similar performance as the baseline; however,
the performance of misaligned huge pages is even worse than the
baseline. This is because misaligned huge pages incur more TLB
misses compared to the baseline. When the data set is large, well-
aligned huge pages can greatly improve performance, because
they can reduce TLB misses and address translation overhead.
Misaligned huge pages can hardly improve performance compared
to the baseline, as the benefits of reducing page walk overhead are
largely offset by increased TLB misses.

 0

 50

 100

 150

 200

Small data set Large data set

N
o

rm
al

iz
ed

 T
h

ro
u

g
h

p
u

t
(%

) Misaligned Huge Pages
Well-aligned Huge Pages

Fig. 7: Well-aligned huge pages can effectively reduce address
translation overhead. Throughput is normalized to that of vanilla
Linux/KVM.

To address this issue, GEMINI designs a cross-layer solution
for non-nested virtualization environments. It guides the allocation
and promotion of huge pages in guests and the host. With GEMINI,
the guest has the information about which memory regions are be-
ing backed by the host with huge pages, and with the information,
it preferentially allocates or promotes huge pages in these regions;
meanwhile, the host has the information about which memory
regions in the guest are huge pages, and tries to use huge pages
(via allocation or promotion) to back these regions. Because huge
pages are preferentially formed and allocated from these regions
and less from other regions, more well-aligned huge pages can be

6 IEEE TRANSACTIONS ON COMPUTERS, VOL. 27, NO. 9, MAY 2024

formed without aggravating the adverse effects incurred by exces-
sive huge pages. However, GEMINI cannot be directly applied in
nested virtualization as we will explain below. Our evaluation also
shows directly applying GEMINI in nested virtualization cannot
effectively resolve the huge page misalignment problem (see §5).

3.2 Research Challenges in Nested Virtualization

To address the huge page misalignment problem in nested virtual-
ization environments, we need to overcome three main challenges.
The first major challenge is the interposition of guest hypervisors
between the guest OS and the host OS. Under non-nested virtu-
alization environments, the host can directly control the memory
page allocations to VMs to facilitate the creation of well-aligned
huge pages with GEMINI. However, this becomes very challenging
in nested virtualization environments. Theoretically, we can apply
two Gemini systems to three layers in the nested environment (i.e.,
Gemini guest component in the nested VM, paring with Gemini
host component in the guest hypervisor, and another Gemini guest
component in the guest hypervisor, pairing with another Gemini
host component in the host hypervisor) as shown in Figure 2(b).
With slight changes, the two separate Gemini systems can com-
municate and coordinate to make well-aligned huge pages across
three layers. However, this design is not viable for two reasons.
First, it requires the changes of guest hypervisors (not possible
for closed-source hypervisors or prohibitive for formally verified
hypervisors). Second, coordinating three layers is inherently more
challenging and costly than coordinating two layers. It is harder
to reach an agreement since the huge page alignment made by
one Gemini system between two layers may not be ideal for the
other Gemini system to enforce alignment between the other two
layers. For example, one Gemini system may make a huge page
in the nested VM backed by a huge page in the guest hypervisor
which, however, is backed by base pages that are not contiguous
on the host. In such a case, the other Gemini system has to perform
costly out-of-place huge page promotion using page migration to
let the huge page in the guest hypervisor be backed by a huge
page on the host. Moreover, frequent changes would be made to
the guest hypervisor EPT, triggering expensive VMexits to update
the shadow EPT. The high overhead would offset the benefits of
reduced TLB misses.

The second major challenge is that the shadow EPT used for
nested virtualization does not well support huge pages. To our
knowledge, some hypervisors do not support huge pages in their
shadow page table mechanisms [21]. Other hypervisors may
support huge pages only when a guest hypervisor huge page is
backed by a host hypervisor huge page, such that the huge page
mappings in both guest hypervisor EPT and the host hypervisor
EPT can be merged into the shadow EPTs without incurring any
issues. This may miss some opportunities when a guest huge page
is mapped to multiple guest hypervisor base pages that are actually
backed by a huge page or base pages in a huge page aligned and
sized region in the host. In this case, the shadow EPT should also
form a well-aligned huge page to translate guest physical address
to host physical address.

The last major challenge is how to fully unlock the performance
benefits of XGEMINI. Nested virtualization incorporates four lay-
ers of address space, including guest virtual address (GVA) space,
guest physical address (GPA) space, guest hypervisor physical
address (GHPA) space, and host physical address (HPA) space,
as shown in Figure 5. If guest virtual addresses of an application
is not allocated and aligned with huge pages, it cannot benefit from
the well-aligned huge pages created by XGEMINI. To make guest

virtual addresses aligned with huge pages, we need to improve
the application’s virtual memory allocation mechanisms (malloc)
by modifying the guest OS because GVAs are initiated by the
application and actually allocated by the guest OS. Modern OS
usually uses virtual memory areas (VMAs) to organize application
virtual address space. VMA is an OS abstraction of contiguous
regions in the virtual address space of a program. Each VMA
contains a set of virtual pages with the same protection, repre-
senting a local data section (e.g., code, data, heap, stack, or a
memory-mapped file).It has a base virtual address and size of the
mapped region, along with other metadata. Collectively, VMAs
in a program constitute the program’s working set [22]. It is
challenging to modify guest OS to allocate huge page aligned
VMAs to maximize the performance of XGEMINI.

4 XGEMINI Design

4.1 System Overview

Figure 8 shows XGEMINI’s system architecture. XGEMINI is
designed for nested virtualization and built based on GEMINI [20]
that was designed for non-nested virtualization. XGEMINI includes
three new components (highlighted with blue in Figure 8): 1) Huge
Aligner (HA) allocates huge page aligned guest virtual memory
for application data to maximize XGEMINI’s performance; 2)
Nested Enhanced Memory Allocator (NEMA) enhances the memory
allocator to create huge pages from the memory regions reserved
by the Huge Booking in the nested virtualization environments.
3) Nested Well-aligned Huge Page Creator (NWHPC) scans the
guest page table and the shadow EPT to identify the misaligned
huge pages and create well aligned huge pages by modifying
the corresponding mappings in the host hypervisor EPT and the
shadow EPT.

Guest

Host
Nested Well-
aligned Huge
Page Creator

Guest
page table

Host
hypervisor

EPT
Scan/Update

Update

Misaligned
huge pages

info.

Nested
Enhanced
Memory
Allocator

xGemini Guest

Guest hypervisor

Guest hypervisor
EPT (write protected)

Trap

Update

Huge
Aligner

Shadow
EPTScan/Update

Gemini
Guest

Get
misaligned

info.

Get
misaligned

info.

Gemini
Host

Misaligned
huge pages

info.

Nested
Enhanced
Memory
AllocatorxGemini Host

xGemini
newly added
components

Get
misaligned

info.
Get

misaligned
info.

Fig. 8: XGEMINI System Overview.

XGEMINI reuses some components from GEMINI, such as Huge
Booking and Misaligned Huge Page Promoter, as represented by
the orange boxes in Figure 8. Huge Booking temporarily reserves
well-aligned huge-page-sized memory regions between the guest
and the host upon the VMA being touched for the first time
in a non-nested virtualized environment. Misaligned Huge Page
Promoter preferentially promotes misaligned huge pages in guest-
and host-level in non-nested virtualization environments. Next, we
detail the three newly added components in XGEMINI and explain
their interactions with the reused GEMINI components.

JIA et al.: EFFECTIVE HUGE PAGE STRATEGIES FOR TLB MISS REDUCTION IN NESTED VIRTUALIZATION 7

4.2 Huge Aligner

The application running in guest VM invokes malloc (or other
memory allocation interfaces) to allocate guest virtual address
space. To allocate the GVA space, the OS returns virtual memory
areas (VMAs), which are contiguous regions in the virtual address
space of the application. VMAs are dynamically changed. For
instance, a small VMA of one application can be expanded into a
larger one as the workload executes and requests.

Figure 9a shows how default guest virtual address space is
allocated for an application. The application first requests some
virtual memory space and the OS returns the requested VMA, as
highlighted with blue in Figure 9a. Later, the application wants
more GVA space by calling the system call (e.g., mremap) to
expand the VMA; and the OS expands the VMA, as highlighted
with orange in Figure 9a. Such VMA expansion may bring a
serious issue. Once the huge page aligned virtual memory region
is all allocated, it needs to pay a high cost to form a huge page
(i.e., out-of-place huge page promotion) [23]. The main reason
for the high overhead is that the out-of-place huge page promotion
incurs costly memory copy, as base pages backing the huge page
aligned guest virtual memory region need to be copied to another
huge page sized physical memory region for promotion.

Huge page
aligned

GVA1st mem.
allocation

Huge page
aligned

(a) Default guest virtual address (GVA) space allocation

Huge page
aligned

GVA

Huge page
aligned

(b) Huge Aligner: GVA space is allocated and
aligned with huge pages

2nd mem.
allocation

1st mem.
allocation

2nd mem.
allocation Pad

Fig. 9: Huge Aligner.
To address the problem and create more well aligned huge

pages in nested virtualization, XGEMINI proposes Huge Aligner,
as shown in Figure 9b. The main idea is to allocate the whole
huge page aligned guest virtual memory region when it is touched
for the first time. XGEMINI’s Nested Enhanced Memory Allocator
allocates corresponding guest physical memory and host physical
memory aligned with the guest virtual memory allocation while
reserving the corresponding padding regions, such that the huge
page promotion cost can be eliminated, as we will explain in
Section 4.3. The solution is practical and effective (confirmed
in §5), albeit it may waste some guest virtual memory space.
However, we argue that the virtual memory space of an application
is usually large and we have not found any issues in our imple-
mentations and evaluations. Moreover, if this may be an issue, we
may consider some mechanisms to allocate the whole huge page
aligned guest virtual memory region only when the size of the
memory allocation space is larger than a threshold (e.g., 70%).

4.3 Nested Enhanced Memory Allocator

The main goal of the Nested Enhanced Memory Allocator (NEMA)
is to form well-aligned huge pages without changing the guest
hypervisor in the nested virtualization environments. The number
of well-aligned huge pages can be significantly increased, if HPA,
GPA, and GVA are well aligned to huge pages when the VMA is
touched for the first time. We do not need to align the guest hyper-
visor physical address (GHPA) to huge pages because hardware

HPA

2MB aligned
free memory

GPA

GPA2=GVA2-GuestOffset
GuestOffset=GVA1-GPA1

HPA2=GPA2-HostOffset
HostOffset=GPA1-HPA1

GVA. . .

.

. . .

. . .

2MB

. . .

GVA1

GPA1

First fault addr. at GVA2

2MB
2MB aligned

allocated memory2MB

HPA1

2MB

2MB

2MB

GHPA

Guest layer

Guest hypervisor layer (unchanged)

Host layer

Guest hypervisor
EPT

Host hypervisor
EPT

Guest
page table

Shadow
EPT

2MB

2MB

Fig. 10: Nested Enhanced Memory Allocator (NEMA).

only supports two-dimensional page walks by walking the guest
page table and the shadow EPT to realize three dimensional page
walks for nested virtualization, as introduced in §2.3. We show
how NEMA works in Figure 10.

Thanks to the Huge Aligner, NEMA only needs to align GPA
and HPA to GVA upon the first page fault to the virtual memory
area (VMA). This is because Huge Aligner makes the VMA in
the GVA space already aligned with huge pages. When the VMA
(highlighted with blue in GVA in Figure 10) is touched at GVA2
for the first time, NEMA allocates guest physical memory space
starting at GPA2. GPA2 is aligned to GVA2 based on huge pages.

Particularly, NEMA guest component first locates the starting ad-
dress of the Huge Page Aligned and Sized (HPAS) region (GVA1
in Figure 10) that the VMA’s starting address (GVA2) belongs
to. Then, NEMA finds a free HPSA region in GPA that can fit the
VMA. Next, NEMA locates the starting address of the free HPSA
region found in GPA (GPA1). Finally, NEMA calculates the offset
between GVA1 and GPA1 (i.e., GuestO f f set = GVA1−GPA1)
to maintain a one-to-one mapping between the HPSA regions in
GVA and GPA, facilitating any allocation in that HPSA region in
GVA in calculating where to allocate GPA (e.g., GPA2).

Subsequently, the guest hypervisor would respond to the page
fault by modifying the guest hypervisor EPT, which triggers a
VM exit trapping to the host where NEMA host component can
find a corresponding free HPSA region in HPA. The starting
address of HPA is fault at HPA2 that is aligned to GPA2 using
the offset in the host level that is calculated in the same way
as it is in the guest level (i.e., HostO f f set = GPA1 − HPA1).
For forthcoming memory allocations, GuestO f f set is used as the
guest level offset to calculate where to allocate GPA; HostOffset
is used as the host level offset to calculate where to allocate
HPA. These two types of offset are calculated and maintained
individually by the NEMA guest and host components. There is
no need to pass the GuestOffset to the host or verse-visa. This
process is transparent to the guest hypervisor and the memory
management in the guest hypervisor is untouched. Please note that
XGEMINI does not allocate a huge page if the touched memory
space is smaller than a huge page. The memory size allocated
by XGEMINI depends on the size of the touched memory space
in the VMA (e.g., memory space marked as blue in GPA and
HPA, respectively). The Huge Booking component [20] is used
to temporarily reserve these HPSA regions to form well-aligned
huge pages.

Host memory allocations are triggered in two ways. First,

8 IEEE TRANSACTIONS ON COMPUTERS, VOL. 27, NO. 9, MAY 2024

TABLE 1: Configurations of the evaluation platform.

Parameter Configuration
Machine Type Dell EMC PowerEdge T630

L0 Processor Intel® Xeon® E5-2620 v4 @ 2.10GHz (2 sockets)
L0 Memory 32GB DDR4 2400 MT/s (2 per socket, 128GB total)
L0 Kernel Linux 4.19.60
L0 Host Hypervisor QEMU/KVM
L1 VM Processor 32 vCPU
L1 VM Memory 110 GB
L1 Kernel Linux 4.19.60
L1 Guest Hypervisor QEMU/KVM
L2 VM Processor 32 vCPU (Single VM) / 16 vCPU (Colocated VMs)
L2 VM Memory 100 GB (Single VM) / 50 GB (Colocated VMs)
L2 Kernel Linux 4.19.60

when the guest hypervisor physical page is touched for the
first time without being backed by host physical memory page,
host conducts the aforementioned procedure to allocate host
physical HPSA memory region and modifies the shadow EPT
to reflect such change. Second, the guest hypervisor physical
page is touched for the first time and has been backed by the
host physical memory page. This may happen because, in the
virtualization environments, the address mapping between GHPA
and HPA remains as long as the guest hypervisor is alive or until
the host OS reclaims it [24], [25]. In this case, when the guest
hypervisor modifies the guest hypervisor EPT, it traps to the host
to update the shadow EPT, as the GHPT is write-protected. If this
is the first fault for the corresponding VMA, the aforementioned
host physical memory allocation is conducted. This may need to
modify the mapping between the GPA space to the HPA space by
allocating new host HPSA memory region to accommodate and
create well-aligned huge pages (i.e., pseudo huge pages as shown
in Figure 1) but the overhead is acceptable (confirmed in §5) as it
does not involve data copying.

4.4 Nested Well-aligned Huge Page Creator

This component is used to further increase the rate of well-aligned
huge pages without incurring extra overhead in the nested virtual-
ization environments. With the aforementioned mechanisms, huge
pages at the guest level backed by huge pages at the host level may
still not form well-aligned huge pages. This is because the shadow
EPT is formed by combining the guest hypervisor EPT and the
host hypervisor EPT; and if a guest huge page is backed by guest
hypervisor base pages, it may not form well-aligned huge pages in
the shadow EPT. Even worse, shadow EPTs in some hypervisors
do not support huge pages [21]. To address this issue, we propose
Nested Well-aligned Huge Page Creator (NWHPC). Specifically,
NWHPC periodically scans the guest page table and the shadow
EPT and forms well-aligned huge pages only when a guest-level
huge page is backed by a host-level pseudo huge page. This is
doable because the shadow EPT is used to map a guest physical
address to a host physical address.

5 Evaluation
We have implemented XGEMINI prototype based on our previous
work, GEMINI [20]. We added and modified around 800 LoC
mainly in the Linux kernel memory management and KVM
kernel module. We conducted our evaluation on a Dell PowerEdge
machine as shown in Table 1 where the details, such as the guest
VM kernel, guest hypervisor, and host hypervisor are listed. The
evaluation is conducted under three huge page strategies:
• Vanilla Nested Linux/KVM: As ineffective huge page strategies
can hurt the performance, to show the effectiveness of the pro-

TABLE 2: Workloads used in the evaluation.

Name Suite Usage Domain
Img-dnn Tailbench Latency, Throughput Image recognition
Masstree Tailbench Latency, Throughput Key-value store
Moses Tailbench Latency, Throughput Real-time translation
Silo Tailbench Latency, Throughput In-memory database
Specjbb Tailbench Latency, Throughput Java middleware
Sphinx Tailbench Latency, Throughput Speech recognition
Xapian Tailbench Overhead Online search
Canneal PARSEC Latency, Throughput Simulated annealing
Facesim PARSEC Throughput Motion simulation
Raytrace PARSEC Throughput Real-time raytracing
Streamcluster PARSEC Throughput Online clustering
Dedup PARSEC Throughput Data deduplication
x264 PARSEC Throughput Video encoding
FFT PARSEC Throughput Scientific computation
Ferret PARSEC Overhead Content search

posed huge page strategy, the transparent huge page is disabled
in this setting to serve as the baseline. Although applications can
still allocate huge pages by invoking the madvise interface, most
applications do not use that interface.
• GEMINI: We deploy a dual GEMINI setup as shown in Fig-
ure 2(b). One GEMINI guest component is in the nested VM,
paring with GEMINI host component in the guest hypervisor,
and another GEMINI guest component is in the guest hypervi-
sor, pairing with another GEMINI host component in the host
hypervisor. The two components at the guest hypervisor layer can
communicate and coordinate to make well-aligned huge pages
across three layers. Though we still call this scenario GEMINI
for brevity, note that deploying a single GEMINI is ineffective in
reducing TLB misses.
• XGEMINI: XGEMINI is deployed to guest and host only. No
change is made to the guest hypervisor. GEMINI was built for
non-nested virtualization. A comparison between XGEMINI and
dual GEMINI can illustrate the superior effectiveness of XGEMINI
in nested virtualization.

The objective of our evaluation is three-fold: 1) to show that
XGEMINI can improve the throughputs of throughput-oriented
workloads compared to vanilla nested Linux/KVM and GEMINI
(§5.1), 2) to show that XGEMINI can reduce mean and tail la-
tencies of latency-sensitive workloads compared to vanilla nested
Linux/KVM and GEMINI (§5.2), and 3) to evaluate the applicabil-
ity and overhead of XGEMINI (§5.3).

A diverse set of workloads are used in our evaluation, as listed in
Table 2. Specifically, we evaluated XGEMINI with TLB-sensitive
workloads in Tailbench [26] and PARSEC [27] benchmark
suites. To test XGEMINI’s applicability and overhead, we use
two TLB-nonsensitive workloads, i.e., Xapian and Ferret. In our
evaluation, each nested VM encapsulates one workload.

We categorized the benchmarks into two types: throughput-
oriented benchmarks (provided by the PARSEC benchmark suite)
and latency-critical benchmarks (provided by the Tailbench bench-
mark suite). We tested the workloads with memory fragmenta-
tion and without memory fragmentation, respectively. We care
more about XGEMINI’s performance when memory is fragmented
because previous works [23], [28] show that memory quickly
fragments in multi-tenant virtualized cloud environments. We
first measured the throughputs of the throughput-oriented work-
loads. Then, we collected average and tail latencies reported
by the latency-sensitive workloads. Since Tailbench workloads
also report throughputs, we show them in the figures related
to throughput-oriented workloads. The performance results may
vary significantly across different workloads. When we present

JIA et al.: EFFECTIVE HUGE PAGE STRATEGIES FOR TLB MISS REDUCTION IN NESTED VIRTUALIZATION 9

 0
 20
 40
 60
 80

 100
 120
 140
 160

Img-dnn

M
asstree

M
oses

Silo
Specjbb

Sphinx

Canneal

Facesim

Raytrace

Streamcluster

Dedup

x264
FFT

Img-dnn

M
asstree

M
oses

Silo
Specjbb

Sphinx

Canneal

Facesim

Raytrace

Streamcluster

Dedup

x264
FFT

N
o

rm
al

iz
ed

 T
h

ro
u

g
h

p
u

t
(%

)

 Without fragmentation With fragmentation

Dual Gemini xGemini

Fig. 11: Throughputs of GEMINI and XGEMINI. Throughput is normalized to that of vanilla nested Linux/KVM.

 0
 20
 40
 60
 80

 100
 120

Img-dnn

M
asstree

M
oses

Silo
Specjbb

Sphinx

Canneal

Facesim

Raytrace

Streamcluster

Dedup

x264
FFT

Img-dnn

M
asstree

M
oses

Silo
Specjbb

Sphinx

Canneal

Facesim

Raytrace

Streamcluster

Dedup

x264
FFT

N
o

rm
al

iz
ed

 T
L

B
 M

is
s

(%
)

 Without fragmentation With fragmentation

Dual Gemini xGemini

Fig. 12: TLB misses of GEMINI and XGEMINI. TLB miss is normalized to that of vanilla nested Linux/KVM.

 0

 40

 80

 120

 160

Im
g
-d

n
n

M
asstree

M
o
ses

S
ilo

S
p
ecjb

b
S

p
h
in

x
Im

g
-d

n
n

M
asstree

M
o
ses

S
ilo

S
p
ecjb

b
S

p
h
in

x
Im

g
-d

n
n

M
asstree

M
o
ses

S
ilo

S
p
ecjb

b
S

p
h
in

x
Im

g
-d

n
n

M
asstree

M
o
ses

S
ilo

S
p
ecjb

b
S

p
h
in

x
N

o
rm

al
iz

ed
 L

at
en

cy
 (

%
)

Without fragmentation With fragmentation Without fragmentation With fragmentation
Mean Latency 99th Tail Latency

Dual Gemini xGemini

Fig. 13: The mean and tail latencies of GEMINI and XGEMINI. Latency is normalized to that of vanilla nested Linux/KVM.

these results in figures, for clarity, we normalized the performance
results of XGEMINI and Dual GEMINI against those of vanilla
nested Linux/KVM, as indicated in the figures.

5.1 Experiments with Throughput-Oriented Workloads

Figure 11 shows the throughputs of all the evaluated workloads,
when the three systems are tested with memory fragmentation and
without memory fragmentation, respectively.

Without memory fragmentation, XGEMINI offers 16.5% more
throughput on average, compared to vanilla nested Linux/KVM;
this is because XGEMINI reduces TLB misses by 35.0% on
average relative to vanilla nested Linux/KVM, as shown in Fig-
ure 12. With memory fragmentation, XGEMINI increases through-
put by 18.8% and reduces TLB misses by 53.8%, compared to
vanilla nested Linux/KVM. On average, GEMINI outperforms
vanilla nested Linux/KVM by 16.6% and 3.5% with memory
fragmentation and without memory fragmentation, respectively.
The main reason is that GEMINI increases more huge pages in
each virtualization layer, such that the TLB misses are reduced,
albeit this also incurs much overhead.

In comparison to GEMINI, XGEMINI improves throughput by
9.4% and decreases TLB misses by 3.7% on average when mem-
ory is not fragmented. With memory fragmentation, on average,
XGEMINI provides 15.3% more throughput and 37.7% lower

TLB misses relative to GEMINI. There are two main reasons.
First, XGEMINI increases the number of well aligned huge pages
through better huge page management mechanisms specifically
designed for nested virtualization, which can significantly reduce
TLB misses and improve application throughput especially when
memory is fragmented. Second, by aligning huge pages across
different virtualization layers, XGEMINI makes different virtual-
ization layers work on the same huge page, mitigating redundant
page faults and thus reducing shadow paging overhead, which
is mainly generated by the VMExits upon handling nested page
faults [6].

For some applications (e.g., Silo and Sphinx), XGEMINI out-
performs GEMINI but shows more TLB misses in the non-
fragmentation environments. This is due to GEMINI’s extra control
at the guest hypervisor layer. When a workload leads to constant
changes to the guest hypervisor EPT, XGEMINI has to constantly
modify the host hypervisor EPT to maintain the direct huge page
mappings. On the contrary, the dual Gemini setup can well control
the guest hypervisor EPT to reduce the misalignment in such a
case by creating more huge pages in the guest hypervisor, possibly
leading to fewer TLB misses. However, GEMINI provides worse
throughput compared to XGEMINI due to the extra overhead. For
instance, producing more huge pages leads to frequent changes to
guest hypervisor EPT, triggering expensive VMexits to update the

10 IEEE TRANSACTIONS ON COMPUTERS, VOL. 27, NO. 9, MAY 2024

 0

 20

 40

 60

 80

 100

 120

Img-dnn

Img-dnn

Img-dnn

Silo
Moses

Silo

N
o

rm
al

iz
ed

 T
h

ro
u

g
h

p
u

t
(%

)

Dual Gemini xGemini

Fig. 14: Throughputs of GEMINI and XGEMINI when multiple
nested VMs are colocated together. Throughput is normalized to
that of vanilla nested Linux/KVM.

 0

 20

 40

 60

 80

 100

 120

Im
g-dnn

M
asstree

M
oses

Silo
Specjbb

Sphinx

C
anneal

Facesim

R
aytrace

Stream
cluster

D
edup

x264
FFT

N
o

rm
al

iz
ed

 F
ra

g
m

en
t

In
d

ex
 (

%
)

xGemini

Fig. 15: Fragmentation caused by XGEMINI. Fragmentation index
is normalized to that of vanilla nested Linux/KVM.

shadow EPT. XGEMINI forms well-aligned huge pages without
creating more huge pages and incurring much overhead thanks to
the direct coordination between the guest and the host.

5.2 Experiments with Latency-Sensitive Workloads

Figure 13 shows the mean and tail latencies of different systems
when they are tested with memory fragmentation and without
memory fragmentation. Relative to vanilla nested Linux/KVM,
XGEMINI reduces the mean latency by 28.0% and the 99th tail
latency by 28.4% on average, when memory is not fragmented.
With memory fragmentation, XGEMINI offers 26.1% lower mean
latency and 28.5% lower 99th tail latency on average compared
to vanilla nested Linux/KVM. Compared to GEMINI, XGEMINI
reduces the mean latency by 25.7% and the 99th tail latency by
28.0% on average, when memory is fragmented.

To understand why XGEMINI provides lower mean and tail
latencies compared to vanilla nested linux/KVM and GEMINI, we
profile the TLB misses when the three systems are tested with
memory fragmentation and without memory fragmentation. We
show the test results in Figure 12. On average, XGEMINI reduces
the TLB misses by 35.0% without memory fragmentation and
53.8% with memory fragmentation, compared to vanilla nested
linux/KVM. This is consistent with the latency test results and
also shows XGEMINI’s effectiveness in reducing the latency for
latency-sensitive workloads as well as the overhead of TLB
misses. XGEMINI shows lower latencies compared to GEMINI
because XGEMINI forms more well aligned huge pages in nested
virtualization, such that it can further reduce the mean and tail
latencies through decreasing TLB misses and address translation
cost.

To understand whether XGEMINI causes more memory frag-
mentation compared to vanilla nested Linux/KVM, we measure

 0

 20

 40

 60

 80

 100

 120

Xapian
Ferret

N
o
rm

al
iz

ed
 T

h
ro

u
g
h
p
u
t

(%
) xGemini

Fig. 16: Overhead of XGEMINI. We leverage TLB non-intensive
workloads to measure XGEMINI’s overhead. Throughput is nor-
malized to that of vanilla nested Linux/KVM.

their fragmentation using the free memory fragmentation in-
dex (FMFI) [1], [29] while testing the benchmarks. FMFI is a
value between 0 (unfragmented) and 1 (heavily fragmented). We
show the test results in Figure 15. Compared to vanilla nested
Linux/KVM, XGEMINI increases the fragmentation by 2% on
average. XGEMINI incurs negligible extra memory fragmentation
because it reuses the booking timeout adjustment algorithm, as
described in Algorithm 1 in GEMINI [20]. The main idea of the
algorithm is to reduce memory fragmentation without decreasing
the effectiveness of forming well-aligned huge pages in virtualiza-
tion environments.

5.3 Applicability and Overhead

To evaluate XGEMINI’s applicability, we co-locate two nested
virtual machines (VMs) on the same server. We want to test
XGEMINI’s performance when multiple nested VMs are co-
located together, as VM co-location is pervasive in clouds. We
show our test environment in Table 1.

Figure 14 shows throughputs of colocated workloads when they
are tested with different systems. XGEMINI outperforms vanilla
nested Linux/KVM and GEMINI by 7.6% and 12.2% on aver-
age, respectively. This shows XGEMINI can improve application
performance when multiple nested VMs are collocated on the
same server. Surprisingly, vanilla nested Linux/KVM performs
better than GEMINI when nested VMs are colocated together.
The main reason might be that resource contention increases
alignment efforts and associate overhead in GEMINI. This also
shows XGEMINI performs better than GEMINI as XGEMINI can
efficiently avoid overhead by simplifying the alignment in nested
virtualization environments.

To evaluate XGEMINI’s overhead, we tested the throughputs
of two TLB non-intensive workloads, i.e., Xapian and Ferret,
when they are executed with vanilla nested Linux/KVM and
XGEMINI, respectively. We show the test results in Figure 16.
When workloads are TLB non-intensive, XGEMINI cannot provide
performance benefits by reducing TLB misses. Interestingly, we
find XGEMINI can still improve their performance (4.0% on
average) as it can reduce the shadow paging overhead. In all our
evaluations, we didn’t observe XGEMINI incurs high overhead.

6 Related Work
Huge Pages. Many research proposals focus on optimizing huge
page mechanisms to reduce address translation overhead. In-
gens [1] addresses several issues of Linux THP. HawkEye [29]
further optimizes Ingens. Illuminator [30] proposes to manage
movable, unmovable, and hybrid memory regions separately to
address memory fragmentation. Navarro et al. [2] propose to

JIA et al.: EFFECTIVE HUGE PAGE STRATEGIES FOR TLB MISS REDUCTION IN NESTED VIRTUALIZATION 11

control memory fragmentation with several huge page optimiza-
tions. Zhu et al. [31] propose Quicksilver to optimize memory
bloat and fragmentation problems. Temeraire [32] aggressively
allocates 2MB and 1GB huge pages based on application memory
allocation patterns. Perforated page [33] enables huge pages for
fragmented physical memory by allowing holes in huge pages and
providing alternative mappings for the holes. Gemini [20] forms
well-aligned huge pages between guest and host to improve TLB
efficiency for non-nested virtualization environments.
Hardware Approaches. Some prior works reduce address trans-
lation overhead by prefetching [19] or caching [22], [34], [35]
translation entries. ASAP [19] prefetches page table entries
through the mappings formed between virtual addresses and page
table entries. PTEMagnet [36] preserves CPU cache locality for
page table entries by reserving contiguous guest physical memory
space for page table entries. POM-TLB [34] proposes to use part
of DRAM space as a very large level-3 TLB to reduce address
translation overhead. Midgard [22] proposes a new virtual cache
mechanism that maps the virtual address to a single intermediate
Midgard address space in the system. Barret al. [35] study
different designs of MMU caches and conclude that the most
effective one is the translation cache (e.g., page walk caches).
Hashed page tables [37] challenge this conclusion and propose to
use the hashing scheme to shorten the page walk latency.

Some other approaches increase TLB reach by merging multiple
TLB entries into one [38] or storing application data on contigu-
ous physical memory [24], [39], [40], [41]. As TLB capacity does
not increase at the same rate as DRAM capacity, these approaches
may not be scalable. Today’s big memory workloads still result in
frequent TLB misses. RMM [41] enables ranges of an arbitrary
number of virtually and physically contiguous pages to increase
TLB reach. TLB Coalescing [38] increases TLB efficiency by
merging multiple TLB entries into one. Gandhi et al. [39] propose
to apply direct segment [40] in virtualized systems. It requires
large contiguous physical memory space to store the application’s
entire data set. CA-paging [24] mitigates the address translation
overhead through software and hardware collaboration.

Other works on improving the translation leverage hashed page
tables [37], [42], flattened page tables [43], [44] , or combined
nested and shadow page table [17], [18] to accelerate address
translation. FPT [43] merging adjacent page table layers. Agile
Paging [17] combines the advantages of nested paging and
shadow paging to speed up address translation. SHSP [18]
proposes to use nested paging and shadow paging for different
workloads. Flat nested page table [44] flattens the nested page
table. Mosaic pages [42] verifies the feasibility of the Iceberg
hashing [45].

7 Conclusion and Future Work
Nested virtualization becomes increasingly important in today’s
clouds, as it can be used to improve application and system
reliability and security and many others. However, due to the huge
page misalignment issue, using huge pages becomes ineffective
in reducing TLB misses in nested virtualization environments.
This reduces the performance of memory intensive applications,
such as scientific computing programs, and hampers the adoption
of nested virtualization in modern clouds. This work proposes
XGEMINI as an effective system solution to address the problem
in the nested virtualization environments. To realize XGEMINI,
we address several technical challenges such as how to form
well-aligned huge pages without modifying the guest hypervisor.
Our evaluations confirm that XGEMINI can greatly reduce TLB

misses and improve application performance through forming
more well-aligned huge pages. In future work, we plan to test
XGEMINI on ARM servers. As ARM servers have become popular
in clouds, memory-intensive workloads running in VMs on these
servers may also suffer from TLB ineffectiveness and application
performance degradation.

8 Acknowledgments
We sincerely thank the anonymous reviewers for their insightful
suggestions. We are equally grateful to Zhaoxi Shi for his help in
the manuscript revision. The work of Weiwei Jia was supported
in part by NSF grant CRII-SHF-2348066. The work of Jianchen
Shan was supported in part by NSF grant CNS-2324923.

References
[1] Y. Kwon, H. Yu, S. Peter, C. J. Rossbach, and E. Witchel, “Coordinated

and Efficient Huge Page Management with Ingens,” in Proceedings
of the 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2016.

[2] J. Navarro, S. Iyer, P. Druschel, and A. Cox, “Practical, Transparent
Operating System Support for Superpages,” ACM SIGOPS Operating
Systems Review, 2002.

[3] “Intel 64 and ia-32 architectures developer’s manual,” https:
//www.intel.com/content/www/us/en/architecture-and-technology/64-ia-
32-architectures-software-developer-manual-325462.html.

[4] H. Huang, J. Lai, J. Rao, H. Lu, W. Hou, H. Su, Q. Xu, J. Zhong,
J. Zeng, X. Wang et al., “Pvm: Efficient shadow paging for deploying
secure containers in cloud-native environment,” in Proceedings of the
29th Symposium on Operating Systems Principles, 2023, pp. 515–530.

[5] M. Ben-Yehuda, M. D. Day, Z. Dubitzky, M. Factor, N. Har’El, A. Gor-
don, A. Liguori, O. Wasserman, and B.-A. Yassour, “The Turtles Project:
Design and Implementation of Nested Virtualization,” in Proceedings
of the 9th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2010.

[6] J. T. Lim and J. Nieh, “Optimizing nested virtualization performance us-
ing direct virtual hardware,” in Proceedings of the Twenty-Fifth Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2020.

[7] F. Zhang, J. Chen, H. Chen, and B. Zang, “CloudVisor: Retrofitting
Protection of Virtual Machines in Multi-tenant Cloud with Nested Vir-
tualization,” in Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles (SOSP), 2011.

[8] J. T. Lim and J. Nieh, “Optimizing Nested Virtualization Performance
Using Direct Virtual Hardware,” in Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2020. [Online]. Available:
https://doi.org/10.1145/3373376.3378467

[9] X. Shang, W. Jia, J. Shan, X. Ding, and C. Borcea, “Reestablishing page
placement mechanisms for nested virtualization,” IEEE Transactions on
Cloud Computing, 2023.

[10] J. Nakajima, “Making nested virtualization real by using hardware
virtualization features,” LinuxCon Japan, p. 11, 2013.

[11] “Amd64 architecture programmer’s manual,” https://developer.amd.com/
resources/developer-guides-manuals/.

[12] D. Skarlatos, A. Kokolis, T. Xu, and J. Torrellas, “Elastic Cuckoo Page
Tables: Rethinking Virtual Memory Translation for Parallelism,” in Pro-
ceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
2020.

[13] Z. Mi, D. Li, H. Chen, B. Zang, and H. Guan, “(mostly) exitless {VM}
protection from untrusted hypervisor through disaggregated nested virtu-
alization,” in 29th {USENIX} Security Symposium ({USENIX} Security
20), 2020.

[14] Microsoft, “Virtualization-based Security (VBS),” https:
//learn.microsoft.com/en-us/windows-hardware/design/device-
experiences/oem-vbs.

[15] MicroSoft, “Frequently Asked Questions about Windows Subsystem for
Linux,” https://learn.microsoft.com/en-us/windows/wsl/faq.

[16] J. M. Thara Gopinath, Mickaël Salaün, “Hypervisor-Enforced Ker-
nel Integrity (Heki),” https://lpc.events/event/17/contributions/1515/
attachments/1353/2717/LPC 2023 LVBS.pdf.

[17] J. Gandhi, M. D. Hill, and M. M. Swift, “Agile Paging: Exceeding the
Best of Nested and Shadow Paging,” in Proceedings of the 43rd Annual
International Symposium on Computer Architecture (ISCA), 2016.

12 IEEE TRANSACTIONS ON COMPUTERS, VOL. 27, NO. 9, MAY 2024

[18] X. Wang, J. Zang, Z. Wang, Y. Luo, and X. Li, “Selective Hard-
ware/Software Memory Virtualization,” ACM SIGPLAN Notices, 2011.

[19] A. Margaritov, D. Ustiugov, E. Bugnion, and B. Grot, “Prefetched
Address Translation,” in Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2019.

[20] W. Jia, J. Zhang, J. Shan, and X. Ding, “Making Dynamic Page Co-
alescing Effective on Virtualized Clouds,” in Proceedings of the 18th
European Conference on Computer Systems (EuroSys), 2023.

[21] “Xen does not support huge pages in shadow page tables,” https://wiki.
xenproject.org/wiki/Huge Page Support.

[22] S. Gupta, A. Bhattacharyya, Y. Oh, A. Bhattacharjee, B. Falsafi, and
M. Payer, “Rebooting Virtual Memory with Midgard,” in Proceedings
of the 48th Annual International Symposium on Computer Architecture
(ISCA), 2021.

[23] Z. Yan, D. Lustig, D. Nellans, and A. Bhattacharjee, “Translation ranger:
operating system support for contiguity-aware tlbs,” in Proceedings of
the 46th International Symposium on Computer Architecture, 2019.

[24] C. Alverti, S. Psomadakis, V. Karakostas, J. Gandhi, K. Nikas,
G. Goumas, and N. Koziris, “Enhancing and Exploiting Contiguity
for Fast Memory Virtualization,” in Proceedings of the 47th Annual
International Symposium on Computer Architecture (ISCA), 2020.

[25] X. Shang, W. Jia, J. Shan, and X. Ding, “Coplace: Effectively mitigating
cache conflicts in modern clouds,” in 2021 30th International Conference
on Parallel Architectures and Compilation Techniques (PACT), 2021.

[26] H. Kasture and D. Sanchez, “Tailbench: A benchmark suite and eval-
uation methodology for latency-critical applications,” in Proceedings of
the 2016 IEEE International Symposium on Workload Characterization
(IISWC), 2016.

[27] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dissertation,
Princeton University, 2011.

[28] J. Araujo, R. Matos, P. Maciel, R. Matias, and I. Beicker, “Experimental
evaluation of software aging effects on the eucalyptus cloud computing
infrastructure,” in Proceedings of the Middleware 2011 Industry Track
Workshop, 2011.

[29] A. Panwar, S. Bansal, and K. Gopinath, “HawkEye: Efficient Fine-
grained OS Support for Huge Pages,” in Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), 2019.

[30] A. Panwar, A. Prasad, and K. Gopinath, “Making Huge Pages Actually
Useful,” in Proceedings of the Twenty-Third International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2018.

[31] W. Zhu, A. L. Cox, and S. Rixner, “A comprehensive analysis of
superpage management mechanisms and policies,” in 2020 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 20), 2020.

[32] A. Hunter, C. Kennelly, P. Turner, D. Gove, T. Moseley, and P. Ran-
ganathan, “Beyond malloc efficiency to fleet efficiency: a hugepage-
aware memory allocator,” in Proceedings of the 15th USENIX Symposium
on Operating Systems Design and Implementation (OSDI), 2021.

[33] C. H. Park, S. Cha, B. Kim, Y. Kwon, D. Black-Schaffer, and J. Huh,
“Perforated Page: Supporting Fragmented Memory Allocation for Large
Pages,” in Proceedings of the 47th Annual International Symposium on
Computer Architecture (ISCA), 2020.

[34] J. H. Ryoo, N. Gulur, S. Song, and L. K. John, “Rethinking TLB Designs
in Virtualized Environments: A Very Large Part-of-Memory TLB,” ACM
SIGARCH Computer Architecture News, 2017.

[35] T. W. Barr, A. L. Cox, and S. Rixner, “Translation Caching: Skip, Don’t
Walk (the Page Table),” ACM SIGARCH Computer Architecture News,
2010.

[36] A. Margaritov, D. Ustiugov, A. Shahab, and B. Grot, “PTEMagnet: Fine-
grained Physical Memory Reservation for Faster Page Walks in Public
Clouds,” in Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2021.

[37] I. Yaniv and D. Tsafrir, “Hash, Don’t Cache (the Page Table),” ACM
SIGMETRICS Performance Evaluation Review, 2016.

[38] C. H. Park, T. Heo, J. Jeong, and J. Huh, “Hybrid TLB Coalescing: Im-
proving TLB Translation Coverage under Diverse Fragmented Memory
Allocations,” in Proceedings of the 44th Annual International Symposium
on Computer Architecture (ISCA), 2017.

[39] J. Gandhi, A. Basu, M. D. Hill, and M. M. Swift, “Efficient Memory
Virtualization: Reducing Dimensionality of Nested Page Walks,” in

Proceedings of the 47th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2014.

[40] A. Basu, J. Gandhi, J. Chang, M. D. Hill, and M. M. Swift, “Efficient
Virtual Memory for Big Memory Servers,” ACM SIGARCH Computer
Architecture News, 2013.

[41] V. Karakostas, J. Gandhi, F. Ayar, A. Cristal, M. D. Hill, K. S. McKinley,
M. Nemirovsky, M. M. Swift, and O. Ünsal, “Redundant Memory Map-
pings for Fast Access to Large Memories,” ACM SIGARCH Computer
Architecture News, 2015.

[42] K. Gosakan, J. Han, W. Kuszmaul, I. N. Mubarek, N. Mukherjee,
K. Sriram, G. Tagliavini, E. West, M. A. Bender, A. Bhattacharjee,
A. Conway, M. Farach-Colton, J. Gandhi, R. Johnson, S. Kannan, and
D. E. Porter, “Mosaic Pages: Big TLB Reach with Small Pages,” in
Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
2023.

[43] C. H. Park, I. Vougioukas, A. Sandberg, and D. Black-Schaffer, “Ev-
ery Walk’s a Hit: Making Page Walks Single-Access Cache Hits,” in
Proceedings of the 27th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
2022.

[44] J. Ahn, S. Jin, and J. Huh, “Revisiting Hardware-Assisted Page Walks for
Virtualized Systems,” in Proceedings of the 39th Annual International
Symposium on Computer Architecture (ISCA), 2012.

[45] M. A. Bender, A. Conway, M. Farach-Colton, W. Kuszmaul, and
G. Tagliavini, “All-Purpose Hashing,” arXiv preprint arXiv:2109.04548,
2021.

Weiwei Jia is an Assistant Professor in the De-
partment of Electrical, Computer, and Biomedi-
cal Engineering at The University of Rhode Is-
land. He received his Ph.D. degree in Computer
Science from New Jersey Institute of Technol-
ogy. His research interests lie in the areas of
computer systems, including operating systems,
edge and cloud computing, virtualization, mem-
ory and storage systems, and systems architec-
ture.

Jiyuan Zhang received a BS degree in com-
puter science from the New Jersey Institute of
Technology in Newark, New Jersey in 2022. He
is currently pursuing a master’s degree at the
University of Illinois at Urbana-Champaign. His
research interests include computer systems,
memory and storage system, and computer ar-
chitecture. He is a student member of IEEE and
IEEE Computer Society.

Jianchen Shan is an Assistant Professor in
the Computer Science Department at Hofstra
University. His research interests include Cloud
Systems, Parallel and Distributed Systems, and
Operating Systems. He received his Ph.D. de-
gree in Computer Science from the New Jersey
Institute of Technology.

Xiaoning Ding is an Associate Professor at the
New Jersey Institute of Technology. His inter-
ests are in the area of experimental computer
systems, such as distributed systems, virtualiza-
tion, operating systems, and storage systems.
He earned his Ph.D. degree in computer science
and engineering from the Ohio State University.

