
The Linux Load Balance: Wasted vCPUs in Clouds

Matthew Elbing
Hofstra University

melbing1@pride.hofstra.edu

Jianchen Shan
Hofstra University

jianchen.shan@hofstra.edu

I. INTRODUCTION

With the rise of multicore machines, the Linux scheduler has

introduced a sophisticated load balancing mechanism to spread

the tasks over the cores. Study [1] has shown that the load

balancer implemented in the default Linux scheduler, Com-

plete Fair Scheduler (CFS), works well to evenly distribute the

workload and succeeds in maintaining high CPU utilization.

However, our experiment shows that the Linux load balancer

performs poorly in virtualized environments. Specifically, the

CPU time available to a virtual machine (VM) cannot be fully

utilized. The Linux load balancer assumes that the virtual

CPUs (vCPUs) of a VM are symmetric, since the VM will

equally assign CPU time to each vCPU with the intention of

emulating the underlying multicore machine. But in a multi-

tenant cloud where time sharing is employed for high resource

utilization and low cost, the vCPU capacity is also determined

by the VMs of other users on the server. Thus, this assumption

no longer holds true and may mislead the load balancer into

making incorrect scheduling decisions.

Our observation indicates that the vCPUs are dynamically

asymmetric when the physical machine is time-shared by

multiple VMs. A vCPU can reach its maximal capacity when

all other vCPUs co-located on the same core are idle. In this

case, all the CPU time of the core can be utilized by the vCPU

due to the work-conserving principle, which may even allow

a vCPU to consume more CPU time than it was assigned.

On the other hand, a vCPU would have lower capacity on a

core that is highly contended by multiple co-running vCPUs.

A vCPU’s capacity varies when the contention on the core

changes. This makes the vCPU capacity dynamic.

Our major contribution is to experimentally reveal that

Linux load balancer is unaware of the dynamic asymmetry

of vCPUs, which results in vCPU time wasted and low re-

source utilization within a cloud VM. We propose dynamically

collecting and exposing the vCPU capacity to the Linux

scheduler. This can assist the load balancing algorithm in

making more informed scheduling decisions when responding

to a change in vCPU capacity. For example, heavy or critical

jobs would be migrated to powerful vCPUs, and light or trivial

tasks would be scheduled to weak vCPUs.

The multi-tenant cloud has been known to suffer from poor

and unpredictable performance. To guarantee the Quality of

Service (QoS), major cloud vendors, like Amazon AWS, are

forced to deploy the most of their VMs on dedicated machines

and sacrifice the benefits of time sharing. To overcome this

challenge, major issues such as virtualization overhead [2],

vCPU discontinuity [3], and poor performance isolation [4],

have been heavily studied. However, little attention has been

paid to increasing the resource utilization within the VM. Our

efforts towards this end complement, and are orthoganal to,

previous work. Furthermore, many algorithms such as Bias

Scheduling [5], have been successfully designed to schedule

tasks on asymmetric multicore machines. Although not di-

rectly applicable, the basic ideas could be applied to the Linux

load balancer in VMs.

II. DYNAMIC AND ASYMMETRIC VCPUS IN THE CLOUD

To demonstrate the Dynamic and Asymmetric vCPUs (DA-

vCPUs) in the cloud, we first define vCPU capacity and

explain how it is measured. Since vCPUs are time-sharing the

cores, the vCPU capacity can be defined as the percentage

of the CPU time a vCPU can consume during a certain

period. Increased vCPU capacity comes with an increase in

consumable CPU time.

The vCPU capacity is mainly determined by three factors.

First, the CPU time allocated to a vCPU is translated to the

ability of the vCPU to compete for CPU time. Second, the

vCPU capacity depends on the co-located vCPUs of other

VMs. If all co-located vCPUs are actively competing for CPU

time and the core cannot satisfy the total CPU time demands,

a vCPU may consume less CPU time than it was allocated.

In addition, if all co-located vCPUs are idle, a vCPU may

consume all the CPU time of a core. Third, the vCPU capacity

is affected by other vCPUs in the same VM. The vCPUs in a

VM participate in time sharing as a group to receive the CPU

time allocated to the VM. For instance, if only one vCPU is

active and all other sibling vCPUs are idle, the active vCPU

would be prioritized and receive a larger share of the CPU

time in order to increase the VM’s resource utilization.

To measure the vCPU capacity, we developed a multi-

threaded tool [7] which launches one thread on each vCPU

running a CPU-bound task (i.e., incrementing a counter). Each

thread will periodically collect the steal time, which is only

available within VM to indicate the percentage of the time

that the vCPU has to wait while other co-located vCPUs are

running on the same core. For example, if the tool reports that

the steal time of a vCPU over a certain period is 30%, then the

vCPU capacity is 70% of the total CPU time in this period.

The tool is implemented inside the VM to allow measurement

of relative vCPU capacity of a VM in the cloud where the

user has no access outside the VM.

174

2020 IEEE Cloud Summit

978-1-7281-8266-7/20/$31.00 ©2020 IEEE
DOI 10.1109/IEEECloudSummit48914.2020.00035

Authorized licensed use limited to: Hofstra University. Downloaded on March 18,2023 at 20:17:48 UTC from IEEE Xplore. Restrictions apply.

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7

C
ap
ac
ity

vCPUs

Capacity
Min-Max

(a) Normalized vCPU capacity

0

5

10

15

20

25

30

0 200 400 600 800 1000 1200 1400 1600 1800

C
oe
f
ci
en
to
fV
ar
ia
tio
n
(%
)

Time (s)

Coef cient of Variation
Steal Time

(b) vCPU capacity distribution

Fig. 1: vCPU capacity is dynamic and asymmetric in the cloud

To gain insight into of the characteristics of vCPUs in a

real-world cloud, we deployed our tool in a t2.2xlarge instance,

which has 8 vCPUs time sharing a physical machine with other

VMs on Amazon Web Services (AWS). We ran the tool for 30

minutes. Figure 1a shows the vCPU capacity for each vCPU

at a specific point in time and their min-max values during

the test. Figure 1b shows how the Coefficient of Variation

(CV) of the vCPU capacity distribution and the total steal

time of the VM change over the course of the experiment.

The results clearly demonstrate that the vCPU capacity can be

significantly asymmetric. Moreover, such asymmetry changes

notably over time. AWS t2 instances normally serve burstable

workloads, which dynamically change the loads on cores

which in turn influences the vCPU capacity. This can be shown

via the impact of changing steal time on the CV.

III. UNAWARENESS OF DA-VCPUS

In this section, we will show that the Linux load balancer

is unaware of the vCPU asymmetry through experiments in

which two 6-vCPU VMs (i.e. the main VM and the co-runner

VM) sharing a 6-core machine are built to mimic a multi-

tenant cloud. Both VMs are created by KVM running Linux

kernel v5.4.47. The vCPUs of each VM are pinned one-on-one

to cores. To create the vCPU asymmetry in the main VM, we

let the co-runner VM keep some vCPUs busy running CPU-

bound tasks and some vCPUs idle. Therefore, within the main

VM, the vCPUs co-located with idle co-runners would have a

higher capacity than the those co-located with busy co-runners.

Linux load balancer mainly functions by thread placement

and thread re-balancing. The former attempts to place a

new/wakened thread on the core with the least load. The latter

detects imbalance (e.g. a core becomes idle) and conducts

thread migrations if a re-balance is possible. To see if they

work well on the DA-vCPUs, we wrote a synthetic program to

generate single-threaded and multi-threaded workloads on the

main VM. We observed that both mechanisms failed, leading

to wasted vCPU time due to the unawareness.

A. Single-threaded Execution on DA-vCPUs

This experiment is conducted to show that the Linux load

balancer cannot place a thread based on the vCPU capacity.

In the co-runner VM, only vCPU5 is set to idle on core5, and

other vCPUs are set to busy. Thus, in the main VM, vCPU5

has sole usage of a core and can therefore reach its maximum

capacity. Then, we let the synthetic program launch one thread

running CPU-bound tasks in the main VM for 30 seconds, and

tracked its execution by profiling the loads on each of the cores

(a) Single-threaded execution on DA-vCPUs

(b) Multi-threaded execution on DA-vCPUs

Fig. 2: Linux load balancing is unaware of vCPU asymmetry

using the scheduler visualization tool [6]. Figure 2a depicts the

results. The red color indicates the load of two busy vCPUs

and the green color represents the load of one busy vCPU.

The thread is expected to be scheduled to vCPU5 if the Linux

load balancer is aware that it has the highest capacity. Instead,

it is scheduled to vCPU4 and is thus competing for the core

with the co-runner’s vCPU.

B. Multi-threaded Execution on DA-vCPUs

This experiment is designed to demonstrate that the Linux

load balancer fails to do re-balancing by matching the thread

load with the vCPU capacity. In the co-runner VM, vCPU0-2

are set to busy and vCPU3-5 are set to idle. Thus, in the main

VM, vCPU3-5 should have higher capacities. In the main VM,

the synthetic program launches 3 heavy threads running CPU-

bound tasks and 3 light threads alternating between running

CPU-bound tasks and sleeping; these threads are run for 30

seconds. Ideally, if the Linux load balancer was aware of

the vCPU capacity distribution, the 3 heavy threads should

be scheduled to vCPU3-5 and the 3 light threads ought to

be scheduled to vCPU0-2 to achieve the ”balance” in which

the load/capacity ratio on each vCPU is similar. However, as

shown in figure 2b, 2 heavy threads are scheduled to core0

and core2, and 1 heavy thread is scheduled to core5 and then

migrated to core6. The 3 light threads are migrated among

vCPU1 and vCPU3-5, which leads to more vCPU time wasted.

IV. DISCUSSION AND FUTURE WORK

In the future, more investigation could be done to discover

other issues (e.g. fairness problem) caused by the unaware-

ness. Evaluations using realistic workloads will be performed

to measure related performance degradation. We propose to

periodically collect and expose the vCPU capacity in order

to assist the Linux load balancer in making more informed

decisions and optimize the resource utilization in the cloud.

REFERENCES

[1] Bouron, Justinien, et al. ”The Battle of the Schedulers: FreeBSD ULE
vs. Linux CFS.” USENIX ATC 2018.

[2] Ding, Xiaoning, et al. ”Gleaner: Mitigating the blocked-waiter wakeup
problem for virtualized multicore applications.” USENIX ATC 2014.

[3] Cheng Luwei, et al. ”vScale: automatic and efficient processor scaling
for SMP virtual machines.” EuroSys 2016.

[4] Zhao Yong, et al. ”Characterizing and optimizing the performance of
multithreaded programs under interference.” PACT 2016.

[5] Koufaty David, et al. ”Bias scheduling in heterogeneous multi-core
architectures.” EuroSys 2010.

[6] Lozi Jean-Pierre, et al. ”The Linux scheduler: a decade of wasted cores.”
EuroSys 2016.

[7] vCPU capacity measurement, https://github.com/melbing1/da-vcpus

175

Authorized licensed use limited to: Hofstra University. Downloaded on March 18,2023 at 20:17:48 UTC from IEEE Xplore. Restrictions apply.

