
Paratick: Reducing Timer Overhead in Virtual Machines
Stijn Schildermans

Kris Aerts
stijn.schildermans@kuleuven.be

kris.aerts@kuleuven.be
KU Leuven Campus Diepenbeek

Diepenbeek, Belgium

Jianchen Shan
Hofstra University
New York, USA

Jianchen.Shan@hofstra.edu

Xiaoning Ding
New Jersey Institute of Technology

Newark, USA
xiaoning.ding@njit.edu

ABSTRACT
To this day, efficient timer management is a major challenge in
virtualized environments. Contemporary timekeeping techniques
in guest kernels frequently interact with timer hardware, which
requires continual and costly hypervisor interference.

This paper proposes the concept of virtual scheduler ticks, which
significantly reduces the need for guests to interact with timer
hardware through the use of paravirtualization. Guests no longer
program scheduler ticks, but rely on the host to inject its own ticks
into vCPUs upon VM entry. We implemented virtual scheduler
ticks in Linux/KVM under the name paratick.

We present a thorough performance analysis of paratick in the
context of hardware-assisted X86 virtualization. Paratick reduces
VM exits by up to 80%, enhancing system throughput by up to 125%
and execution time by up to 15% for multithreaded applications
relying heavily on blocking synchronization. For I/O-intensive ap-
plications, these numbers are respectively 45%, 30% and 25%.

KEYWORDS
timer, tick, virtualization, multithreading, I/O

ACM Reference Format:
Stijn Schildermans, Kris Aerts, Jianchen Shan, and Xiaoning Ding. 2021.
Paratick: Reducing Timer Overhead in Virtual Machines. In 50th Interna-
tional Conference on Parallel Processing (ICPP ’21), August 9–12, 2021, Lemont,
IL, USA.ACM, NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3472456.
3472510

1 INTRODUCTION
Timekeeping is a fundamental duty of the operating system (OS).
The OS assimilates hardware timekeeping devices and presents a
unified timer API to applications [29]. Additionally, the OS keeps
track of the passing of real time in the background, and performs
general maintenance tasks such as scheduling, accounting, etc. at
regular time intervals. In all popular contemporary general-purpose
operating systems, all of these duties are driven by recurring OS-
managed physical timer interrupts, called the scheduler tick [19].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPP ’21, August 9–12, 2021, Lemont, IL, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9068-2/21/08. . . $15.00
https://doi.org/10.1145/3472456.3472510

Historically, the scheduler tick was programmed at a constant
rate on all CPUs. Most modern operating systems use an optimized
version of this mechanism, called tickless kernel operation [12]. In
tickless systems, the scheduler tick is disabled whenever the OS
deems it acceptable to do so. Most commonly, this is done whenever
a CPU runs out of runnable tasks and enters an idle state.

In native environments tickless kernels are highly efficient, in
contrast to classic periodic ticks. In virtualized environments -which
are ubiquitous these days due to the advent of cloud computing-
however, both classic periodic ticks and tickless systems may in-
duce severe performance penalties. The former have been shown
to cause unacceptable levels of overhead in heavily overcommit-
ted virtualized systems because every vCPU -irrespective of its
workload- requires frequent tick interrupt injection [34]. The latter
suffer much less from this issue since idle vCPUs do not require tick
interrupts. However, enabling/disabling the scheduler tick upon
idle exit/entry is in itself a costly operation in a virtual environ-
ment, requiring hypervisor involvement. Certain workloads induce
frequent brief idle periods by design, such as multithreaded appli-
cations employing blocking synchronization or I/O-heavy applica-
tions, thereby inducing massive virtualization overhead in tickless
systems [32]. It is evident that a more intelligent solution is needed.

The main goal of this work is to drastically reduce virtualization
overhead induced by scheduler tick management through paravirtu-
alization. To this end, we introduce the concept of virtual scheduler
ticks, which proposes to remove scheduler tick management en-
tirely from guest kernels. Instead, the host utilizes the VM exits
generated by its own tick interrupts to inject virtual ticks into each
running vCPU. This may all but eliminate virtualization overhead
induced by scheduler tick management.

We implemented and evaluated the concept of virtual scheduler
ticks in Linux/KVM under the name paratick. Since our evaluation
shows that paratick improves system throughput by up to 125%
and application runtimes by up to 25% compared to the mainline
Linux/KVM at the time of writing, we hope this work attracts the
attention of operating system and hypervisor developers, especially
since scheduler tick management in virtual machines has to our
knowledge received very little attention in both literature and in-
dustry. Eventually, we plan to propose a patch for the mainline
Linux kernel based on paratick.

1.1 Contributions
• We detail why neither classic periodic ticks nor tickless ker-
nels perform satisfactorily in virtualized environments.

https://doi.org/10.1145/3472456.3472510
https://doi.org/10.1145/3472456.3472510
https://doi.org/10.1145/3472456.3472510
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3472456.3472510&domain=pdf&date_stamp=2021-10-05

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Stijn Schildermans, Kris Aerts, Jianchen Shan, and Xiaoning Ding

• We introduce virtual scheduler ticks: a paravirtualization-
based technique to drastically reduce virtualization overhead
induced by scheduler tick management;

• We present and evaluate paratick; an implementation of
virtual scheduler ticks in Linux/KVM.

2 BACKGROUND: TIMER MANAGEMENT
Many applications, as well as the OS itself, rely heavily on accurate
time management. Because timer hardware is often complex and
programming it may require expensive operations, many operating
systems choose to implement a high level of abstraction in their
timer APIs. Most often, application timers are managed as soft inter-
rupts. This means that when an application programs a timer, often
no actual timer hardware is programmed. Instead, the application
timer is added to a dedicated data structure (e.g. the timer wheel
in Linux [14]). Upon completion of any system call or hardware
interrupt, the OS checks if any soft interrupts have expired and
require servicing [30]. Therefore, timer management equates to
managing the underlying mechanisms that invoke context switches
and allow soft interrupts to be serviced.

Besides servicing soft interrupts, the OS must perform many
other tasks, including resource accounting, scheduling, etc. at a
regular interval. As mentioned in §1, for decades all mainstream op-
erating systems have employed a periodic scheduler tick to achieve
this [19]. Every CPU in the system is interrupted by a hardware
timer (commonly the LAPIC timer in X86) at a regular interval,
typically between one and ten milliseconds [34]. Upon receipt of
the tick interrupt, the CPU passes control to the kernel, which then
has the chance to perform the tasks described above.

While periodic scheduler ticks are simple and effective, they are
not suitable for all environments. Particularly, it is not uncommon
formodern SMP systems to havemultiple idle CPUs for themajority
of their lifespan. Because idle CPUs require negligible scheduling
and bookkeeping work, processing scheduler ticks is a waste of
resources for them. Especially for battery-powered systems such as
smartphones this unnecessary resource usage can be problematic.
Using classic periodic ticks, such systems may spend two thirds of
their energy usage on processing scheduler ticks on idle cores [12].
Because of these issues, starting with Linux (2.6.21), the concept of
tickless kernels was introduced, later to be adopted by most other
mainstream operating systems [23]. Such systems can be viewed as
systems based on a regular periodic scheduler tick, with additional
code that identifies scenarios in which the tick is not useful. If such
a scenario is detected, the tick is deferred or disabled entirely.

Generally, tickless kernels disable the scheduler tick whenever
a CPU runs out of runnable tasks and enters an idle state. Figure
1 schematically shows this algorithm in detail, as implemented in
Linux. Though implementation details may differ for other operat-
ing systems, the general algorithm is similar.

Handling tick interrupts in tickless kernel mode is largely identi-
cal to the tick handling process for classic periodic ticks, as shown in
fig. 1a. Whenever a tick interrupt is received, the kernel performs
the necessary tasks, reprograms the tick timer to expire after a
fixed amount of time, and returns. The only difference between the
tickless tick handler and the classic one is that the former checks
whether the tick has been deferred or disabled by the time the tick

interrupt handler was invoked. This may happen in exceptional
circumstances. If so, the reprogramming step is skipped.

Figures 1b and 1c represent the core of the tickless code in Linux.
Whenever a CPU is about to enter the idle loop, the code checks
if any system component (RCU, irq work,. . .) explicitly needs the
tick to remain enabled or if the next RCU event or soft interrupt
falls within the next tick period. If so, the tick is not disabled and
the CPU immediately enters the idle loop, as shown in fig. 1b. If
neither of these conditions are met, the algorithm finds the next
scheduled RCU callback or soft interrupt. The tick timer is then
reprogrammed to expire at the expiry time of that event. If there
are none, the tick is disabled entirely. Upon exiting the idle state,
the algorithm checks if the tick has been deferred or disabled upon
idle entry. If so, it is reprogrammed to expire at the regular tick
interval, as shown in fig. 1c.

This work only focuses on classic periodic ticks and tickless
kernels as shown in figure 1. After all, to our knowledge, these are
the only two mechanisms commonly used by operating systems
today. Besides these operating modes, called resp. periodic and
dynticks idle mode, another mode of operation exists with regard to
the scheduler tick, namely full dynticks mode. This mode disables
the tick on CPUs that have at most one runnable task. This may be
beneficial for systems that have predictable workloads that do not
spawn more tasks than the number of CPUs in the system. Because
this mode of operation targets highly specific workloads and to our
knowledge only exists in Linux as an option for advanced users,
we refrain from elaborating further on it.

3 VIRTUALIZING THE SCHEDULER TICK
Due to the advent of cloud computing ever more applications are
running in a virtual environment. Modern virtualization techniques
are mostly effective at mitigating virtualization overhead. However,
effectively virtualizing the scheduler tick is one of the last remain-
ing challenges [32]. In this section, we describe the state of the
art regarding timer virtualization in the context of Linux running
on an X86-platform employing hardware-assisted virtualization.
Although other systems may use different mechanisms, the same
general principles apply [5, 29].

If available, Linux uses the per-CPU time stamp counter (TSC),
which is the most accurate timer hardware available for program-
ming timers [2]. It is armed by writing the desired expiration time
to the TSC_DEADLINE MSR. When the TSC value reaches said expi-
ration time, the LAPIC generates a local timer interrupt. In native
environments, this process has a very low cost. In virtualized envi-
ronments however, each write to the TSC_DEADLINE MSR must be
intercepted by the hypervisor, as its current value may correspond
to a timer from the host or another VM. Moreover, the interrupt
generated as the timer expires generates another VM exit, as the
hypervisor must determine if the interrupt belongs to the currently
running VM, the host or another VM. Some hypervisors (e.g. KVM)
optimize this process by using the preemption timer rather than
the LAPIC timer to signal guest timer interrupts. Upon each VM
exit induced by a guest attempting to write to the TSC_DEADLINE
MSR, the hypervisor arms the preemption timer for the vCPU in
question, but leaves the TSC_DEADLINE MSR untouched. When the

Paratick: Reducing Timer Overhead in Virtual Machines ICPP ’21, August 9–12, 2021, Lemont, IL, USA

(a) Physical tick handler (b) Idle entry (c) Idle exit

Figure 1: Schematic representation of standard tickless kernel operation in Linux.

preemption timer expires, a (less costly) VM exit is triggered which
allows the hypervisor to inject a timer interrupt [1].

From the above, it is clear that handling scheduler ticks is a costly
process in virtualized environments. The magnitude and nature of
this cost may however vary greatly depending on the workload and
whether the system is employing classic periodic ticks or a tickless
kernel. Below we describe each of these scenarios in detail.

3.1 Classic Periodic Tick
As stated in §2, systems employing a classic periodic scheduler
tick program a tick interrupt at a fixed rate on every (v)CPU, ir-
respective of the workload. Thus, based on the above, a system
hosting a number of VMs nVM using classic periodic ticks, each
having a number of vCPUs nvCPU and a tick frequency ft ick , will
always incur the following number of VM exits related to timer
management over a time period t :

exits = 2 × t ×

nVM∑
n=1

(nvCPU × ft ick)

Especially for heavily overcommitted systems -where each physical
CPU is time-shared between multiple vCPUs- the host may spend
exorbitant resources on processing scheduler ticks. Namely, the
running vCPU is suspended whenever a tick interrupt arrives for
a descheduled vCPU, even if the latter is idle. Since one of the
main applications of virtualization is consolidating workloads, such
overcommitted scenarios where the majority of vCPUs are idle
for the majority of the time are not rare. While the virtualization
overhead for each individual vCPU is limited, system throughput
may be severely reduced [34].

3.2 Tickless Kernels
Tickless kernels are often depicted as almost purely beneficial [12,
34]. While in native environments this claim may hold true, in
virtualized environments their benefits are less clear. While tickless
kernels do reduce the number of timer interrupts generated by the
VM, which especially on overcommitted systems improves system
throughput significantly, they must reprogram the tick timer upon
each idle entry/exit, as described in §2. Since this reprogramming
requires a write to the TSC_DEADLINE MSR and thus induces a VM

exit, the number of VM exits induced by tick management in a
tickless system can be described as follows:

exits = 2 × t ×

nVM∑
n=1

(
Ln × nvCPU × ft ick +

(1 − Ln) × nvCPU
Tidle

)
With Ln the VM load expressed as a ratio of the utilized and maxi-
mum VM throughput and Tidle the average idle period during the
time t . Thus, the term Ln × nvCPU × ft ick represents active vCPU
operation and the term (1−Ln)×nvCPU

Tidle
represents the number of

transitions between active and idle states during the time t .
From the above, it is evident that for tickless kernels to be ef-

ficient in virtualized environments, the average idle period Tidle
must be long relative to the total CPU time spent on idling (t × (1−
Ln) × nvCPU), thus minimizing the number of transitions between
idle and active vCPU states. While this holds true in most cases,
certain workloads, such as multithreaded applications employing
blocking synchronization and I/O-heavy tasks, may exhibit the op-
posite behavior. Regarding the former, critical sections are often no
longer than a few microseconds. Therefore, synchronizing threads
may block and unblock thousands of times per second. Previous
work has shown that for such workloads, systems hosting tickless
guests may spend 15% of their CPU time on processing VM exits
related to tick management [32]. Regarding the latter, while I/O
latencies vary greatly between devices, most are no more than a
few ms. Given that most applications block on each I/O transaction
until it is completed [35], great numbers of transitions between
idle and active states may occur for I/O-heavy applications. In par-
ticular for high-performance I/O devices, this may induce severe
virtualization overhead. Thus, tickless kernels are certainly not a
silver bullet in all circumstances.

3.3 To Tick or not to Tick?
The above indicates that both periodic ticks and tickless kernels
may induce severe performance issues in a virtualized environment.
However, how they exactly relate to each other and which -if any-
is to be considered superior is still unclear. Below we illustrate this
by studying several concrete hypothetical virtualized workloads:

• W1: an idle VM with 16 vCPUs;
• W2: 4 idle VMs with 16 vCPUs each;

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Stijn Schildermans, Kris Aerts, Jianchen Shan, and Xiaoning Ding

W1 W2 W3 W4
periodic ticks 40 000 160 000 40 000 160 000
tickless 0 0 60 000 240 000

Table 1: Number of VM exits induced by periodic ticks and
tickless kernels in a variety of scenarios.

• W3: a workload using 16 threads, synchronizing 1000 times
per second through blocking synchronization, executed in a
single VM with 16 vCPUs;

• W4: 4 concurrent copies of W3, each in a VMwith 16 vCPUs.
Table 1 shows the amount of VM exits related to scheduler tick

management induced by each of the above workloads when all
of the VMs use resp. periodic ticks or tickless kernels with a tick
frequency of 250 Hz, assuming the workloads are run for 10 seconds
on a system with 16 physical CPUs. All values are calculated based
on the formulas derived in §3.1 and §3.2.

Table 1 shows that for low-intensity workloads where the system
is mostly idle, tickless kernels are vastly superior to periodic ticks.
However, for high-intensity workloads which frequently switch
between idle and active states, periodic ticks gain the upper hand.
Specifically, tickless kernels are preferable as long as the average
idle period Tidle is longer than the average vCPU tick period di-
vided by the number of vCPUs sharing the same physical CPU.
With tick periods commonly ranging between 1 and 10 ms, it is
evident that for many workloads, this is not the case. Given that
parallel computing has become the norm these days and more ef-
ficient I/O devices continue to emerge (e.g., datacenter network,
NVMe storage), demand for better handling of microsecond-level
idle periods continues to rise [8]. Stimulated by workloads such as
AI and blockchain, various highly parallel accelerators (e.g., GPGPU
and TPU) are being designed and deployed. Fine-grained computa-
tion offloads to such accelerators incur similar idle periods. Thus,
neither classic periodic ticks nor tickless kernels exhibit acceptable
levels of virtualization overhead for all common workloads. It is
clear that an alternative method for managing scheduler ticks in
virtualized environments is needed.

4 VIRTUAL SCHEDULER TICKS
To combat the issues highlighted in §3, we propose to reconsider
the concept of scheduler ticks in virtualized environments. After all,
as established in §2, scheduler tick management is a fundamental
duty of the OS. In a virtualized environment, the hypervisor acts
as the OS with regard to hardware management, essentially taking
over this duty from the guest kernels. Since the scheduler tick is an
OS-level mechanism designed solely for the purpose of tying system
time to physical time by interacting with timer hardware, we argue
that in a virtualized environment, management of the scheduler tick
should be the sole responsibility of the hypervisor. Thus, a guest
should be able to request scheduler ticks from the hypervisor much
like applications may request system services from the OS. The
hypervisor is responsible for performing the necessary hardware
interactions to provide this service. This is the basic idea behind
the concept of virtual scheduler ticks. Below we elaborate on the
design of this concept and establish concrete design goals.

4.1 Design
From a technical perspective, the concept of virtual scheduler ticks
may be interpreted as paravirtualizing the scheduler tick. The guest
kernel must be modified so that it no longer programs its own
scheduler tick. This obviously also eliminates the need for the VM
to enable/disable the scheduler tick upon idle exit/entry. Instead,
vCPUs rely on the hypervisor to inject virtual scheduler ticks. This
can easily be achieved, since irrespective of the VMs it is hosting, the
hypervisormust implement its own periodic interrupt to perform its
basic functions, such as scheduling. These host scheduler ticks must
interrupt any running vCPUs and pass control to the hypervisor.
When vCPU execution is resumed, the hypervisor may inject a
virtual tick interrupt, which the VM may handle as if it were its
own physical tick interrupt.

Because the abovemethod relies on each vCPU being interrupted
by the host scheduler tick (and thus actively running), it does not
suffice when the guest is idle or the physical CPU is time-shared
with other vCPUs or host tasks. Therefore, the time of the last vir-
tual tick injection must be accounted for each vCPU. On each VM
entry, the host checks if the last virtual tick injection predates the
requested tick interval for that vCPU. If so, a virtual tick is injected
and the current time is recorded as the last tick. Furthermore, to
ensure that idle vCPUs are woken up by the hypervisor in a timely
manner despite not receiving any virtual ticks after they have been
descheduled, upon idle entry, the guest checks if there are any soft
interrupts or RCU tasks scheduled. If so, a timer is programmed to
expire in accordance with the closest of these events. We heuris-
tically decide not to disable this timer upon exiting the idle state,
as the overhead induced by a single timer is negligible and it is
likely that the vCPU will re-enter an idle state before the timer has
expired. If the timer were to be disabled upon idle exit, the timer
would need to be reprogrammed upon idle entry, thus inducing
2 VM exits. This mechanism is comparable to that employed by
tickless kernels, as shown in figure 1b.

The above assumes that the host tick frequency equals that of the
guests. Since this cannot be guaranteed, the guest should declare
its tick frequency to the host during the boot sequence through
a hypercall. If the host tick frequency is a multiple of that of the
guest, no further actions are needed. If not, the host should program
the guest preemption timer such that virtual ticks may be injected
at the correct rate. Note that this does not introduce meaningful
overhead, since if the guest were to program its own tick interrupts,
two VM exits would be generated each tick period as well.

4.2 Performance Implications
The virtual scheduler tick concept drastically reduces the number
of VM exits required for guest-level scheduler tick management. It
thus eliminates the issues described in §3. While the guest may still
induce some VM exits when it needs to program a timer upon idle
entry, this number is negligible compared to the numbers induced
by periodic ticks and tickless kernels for almost any workload.
In fact, virtual scheduler ticks is guaranteed to never induce more
timer-related VM exits than tickless kernels, as the latter require the
timer hardware to be touched on practically every idle entry/exit.

Compared to classic periodic ticks, virtual scheduler ticks concep-
tually offer a tangible performance improvement, in particular when

Paratick: Reducing Timer Overhead in Virtual Machines ICPP ’21, August 9–12, 2021, Lemont, IL, USA

guests are mostly idle and/or the host is overcommitted. Compared
to tickless kernels on the other hand, the benefits are dependent
on the workload. In light use cases, tickless systems induce very
little virtualization overhead to begin with, as shown in §3.3. There-
fore, a significant reduction in tick-related virtualization overhead
may still only improve performance marginally. For multithreaded
workloads however, system throughput may be improved drasti-
cally. Nevertheless, application execution times may not improve
accordingly because the execution time of multithreaded applica-
tions is determined solely by the critical path [38]. Therefore, only
VM exits incurred upon idle exit (idle entry is by definition not
part of the critical path) and belonging to a single execution path
influence application execution time. Thus, for multithreaded work-
loads, a significant improvement in system throughput is expected,
which may however translate to a much smaller improvement in
application execution time. Regarding I/O-heavy workloads, appli-
cation execution time is dominated by waiting for the I/O device.
Additionally, I/O is known to generate many VM exits not related
to tick management [17]. Thus, for these workloads, a significant
improvement in system throughput is expected for low latency I/O
devices such as SSDs and high-performance NICs, since for such
devices the time spent waiting for the device is limited relative to
the time spent on processing the I/O. For high latency I/O devices
such as HDDs on the other hand, the potential for improvement is
limited. In any case, said throughput improvement will likely lead
to a comparable improvement in application execution time, since
almost all VM exits incurred upon idle exit are likely part of the
critical path, since when an I/O interrupt arrives, any delay directly
delays the next I/O operation.

5 PARATICK
We implemented virtual scheduler ticks in Linux/KVM under the
name paratick. Below we describe this implementation, using Linux
5.10.26 as the baseline. The source code is freely available1.

5.1 Host
Implementing paratick requires minimal effort on the host side.
Firstly, a field was added to the struct KVMuses to represent a vCPU
internally (kvm_vcpu) representing the time of the last virtual tick
injection. Secondly, we modified the main KVM loop which is re-
sponsible for running vCPUs. If the vCPU has a pending local timer
interrupt upon VM entry, the last_tick field of the kvm_vcpu
struct is updated. We thus assume that the local timer interrupt to
be injected will act as a tick interrupt. While this can not strictly be
guaranteed, we heuristically assume that the interrupt was likely
programmed by the guest-side paratick code upon idle entry. More-
over, upon receipt of any interrupt Linux by default performs basic
timekeeping work [4]. After extensive testing, we determined that
this heuristical optimization is valid. If no local timer interrupt is to
be injected upon VM entry, paratick evaluates if the time elapsed
since the last tick injection is greater than the tick period. If so,
a virtual tick interrupt is injected and the last_tick field of the
kvm_vcpu struct is updated. We reserve vector 235 for this purpose.
Fig. 2 illustrates the above schematically.

1https://github.com/StijnSchildermans/paratick.git

Figure 2: Schematic overview of host-side paratick code.

For our purposes, the above host-side implementation suffices
since both the host and guest run the same version of Linux, with
the same tick frequency. Therefore the guest will certainly receive
ticks at the desired frequency. However, if we can not guarantee
that the guest and host kernels are using identical tick frequen-
cies, additional code must be added in accordance with the design
described in §4.1. We leave the implementation of this feature for
future work, as it is does not add any value in terms of assessing
paratick from a research perspective.

5.2 Guest
The guest-side implementation of paratick is somewhat more per-
vasive than that on the host side. Still, all the changes can be
implemented by altering just the main scheduler tick source file
(kernel/time/tick-sched.c). Figure 3 schematically shows the
high-level guest-side paratick implementation, arranged in such
a way that it can easily be compared to the regular tickless Linux
kernel, as shown in figure 1.

Figure 3 shows that paratick preserves the basic structure of the
tickless Linux kernel, while adding an extra handler for virtual tick
interrupts. Below, we describe all the changes made in detail.

5.2.1 System Boot. High-resolution timers, upon which both tick-
less and paratick mode rely, only become available partway through
the boot process. Before this time, the system uses a regular periodic
scheduler tick. Therefore, we integrate the paratick initialization
code, which encompasses installing an interrupt descriptor for the
virtual scheduler tick interrupt vector, with the tickless initializa-
tion code. The periodic scheduler tick is disabled as soon as the
switch to paratick mode is made. Any virtual ticks arriving before
the switch to paratick mode are rejected.

5.2.2 Virtual Tick Handling. As figure 3a shows, a handler for the
virtual scheduler tick was added. This handler performs the same
functions as the standard Linux tick handler (fig. 1a), with the
exception that it never (re)arms a physical timer before returning.

5.2.3 Physical Tick Handling. As described in §4.1, paratick may
require a physical timer to be programmed upon idle entry. Figure
3b shows that the handler for this timer first checks if the vCPU is
still idle when receiving the interrupt. If so, this interrupt is likely
crucial to the system and is treated as a virtual tick interrupt. If not,
the vCPU is currently operating normally, meaning virtual ticks

https://github.com/StijnSchildermans/paratick.git

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Stijn Schildermans, Kris Aerts, Jianchen Shan, and Xiaoning Ding

(a) Virt. tick handler (b) Physical tick handler (c) Idle entry (d) Idle exit

Figure 3: Schematic representation of guest-side paratick code.

are actively being injected. There is thus no need to perform any
tick-related work and the handler returns.

5.2.4 Idle Entry. To determine whether a physical timer should
be programmed upon idle entry, paratick can largely recycle the
idle entry code from the vanilla kernel, as is evident by comparing
figures 3c and 1b, with the important distinction that the status quo
for paratick is that no tick is programmed and the idle entry code
must check whether a timer should be set, while the status quo
for tickless operation is that a timer is set and the idle code should
determine whether to disable the tick. Concretely, this means that
if the recycled tickless idle entry code determines the tick must be
retained, paratick programs a timer to expire at the regular tick
interval. Otherwise, paratick checks if a timer must be set to make
sure the vCPU is woken up at expiry time of the next RCU event
or soft interrupt, again recycling existing tickless kernel code. If
so, the determined deadline is compared to the current expiry time
of the tick timer, since as described in §4.1, the timer may not yet
have expired after having been set at a previous idle entry. Only
if the timer is not running or the newly determined expiry time is
sooner than that the timer is currently using, it is (re)programmed.

5.2.5 Idle Exit. Because as described in §4.1 we heuristically de-
termined that it is beneficial not to disable any physical timers set
at idle entry upon idle exit, no action must be taken when a vCPU
returns from idle, as shown by figure 3d. This stands in contrast to
the tickless kernel implementation in Linux, which must re-enable
the tick timer at (almost) each idle exit (see figure 1c).

6 EVALUATION
In this section we evaluate the effectiveness of paratick by compar-
ing it to the standard Linux kernel. We start by evaluating the per-
formance of computation-intensive sequential workloads -which
we do not expect to benefit from paratick since they do not induce
frequent transitions between idle and active CPU states- to assess
if paratick itself introduces significant performance overhead. Af-
terwards, we assess multithreaded and I/O-intensive workloads,
which are the main targets of this work, as established in §4.2.

The test system is a NUMA server with 4 sockets, each featuring
20 CPUs and 64 GB of RAM. Linux/KVM was installed on this ma-
chine, using kernel 5.10.26. We disabled pause loop exiting (PLE)
because this optimization is only beneficial in overcommitted envi-
ronments, where a physical CPU is time-shared between vCPUs.
When this is not the case, any VM exits triggered by PLE unnec-
essarily degrade performance, possibly distorting test results [32].
Additionally, we disabled halt polling because it may consume large
amounts of CPU cycles in an effort to slightly improve execution
times. In some cases, a more efficient execution may lead to seem-
ingly worse performance because faster execution increases thread
contention, which will lead to increased halt polling cycles without
improving execution time tangibly [32].

All VMs use Ubuntu 20.04 as the OS, running Linux 5.10.26 in
the default ’dynticks idle’ mode. Since kernels using classic periodic
ticks are rare nowadays and we already compared them to tickless
kernels in §3.3, we omit directly comparing paratick to classic
periodic ticks. Readers may nevertheless infer such a comparison
from combining the results in this section with those in §3.3.

For all experiments, we assess three metrics:

• VM exits: VM exits are the main source of host-level hard-
ware assisted virtualization overhead [32]. Since paratick
aims to eliminate themajority of writes to the TSC_DEADLINE
MSR and associated VM exits, they show to what extent the
basic goal of paratick has been achieved.

• System throughput: System throughput shows the effect
of paratick on system resources. Since this metric takes all
resources spent into account -useful work and overhead
alike- it places the virtualization overhead reduction paratick
yields into perspective.

• Execution time: Especially for multithreaded applications,
there is no strong correlation between system throughput
and application performance, since system resources spent
on any execution path other than the critical path do not
alter execution time [32]. Thus, application execution time

Paratick: Reducing Timer Overhead in Virtual Machines ICPP ’21, August 9–12, 2021, Lemont, IL, USA

0.0

0.5

1.0

bl
ac

ks
ch

ol
es

bo
dy

tr
ac

k
ca

nn
ea

l
de

du
p

fa
ce

si
m

fe
rr

et
flu

id
an

im
at

e
fr

eq
m

in
e

ra
yt

ra
ce

st
re

am
cl

us
te

r
sw

ap
tio

ns
vi

ps

x2
64

R
el

at
iv

e
V

M
 e

xi
ts

(a) VM exits

0.0

0.5

1.0

bl
ac

ks
ch

ol
es

bo
dy

tr
ac

k
ca

nn
ea

l
de

du
p

fa
ce

si
m

fe
rr

et
flu

id
an

im
at

e
fr

eq
m

in
e

ra
yt

ra
ce

st
re

am
cl

us
te

r
sw

ap
tio

ns
vi

ps

x2
64

R
el

at
iv

e
th

ro
ug

hp
ut

(b) System throughput

0.0

0.5

1.0

bl
ac

ks
ch

ol
es

bo
dy

tr
ac

k
ca

nn
ea

l
de

du
p

fa
ce

si
m

fe
rr

et
flu

id
an

im
at

e
fr

eq
m

in
e

ra
yt

ra
ce

st
re

am
cl

us
te

r
sw

ap
tio

ns
vi

ps

x2
64

R
el

at
iv

e
 ti

m
e

(c) Execution time

Figure 4: Relative performance of paratick compared to vanilla Linux for sequential PARSEC workloads.

is measured independently to provide an accurate depiction
of system performance improvement visible to end users.

All experiments described in this section were repeated until their
results stabilized. The displayed results are therefore the average
of 3 to 15 iterations. Despite our best efforts however, a deviation
of 5% is possible due to the multitude of non-deterministic factors
to be taken into account (e.g. scheduling deviations).

6.1 Sequential Workloads
As described in §4.2, paratick is not expected to benefit low-intensity,
I/O-lean workloads. Conversely, any overhead introduced by parat-
ick itself would still be present. Because of this, sequential, computation-
intensive workloads allow us to estimate the gross cost of paratick,
irrespective of potential performance gains.

For this first set of experiments, the PARSEC benchmark suite
was run in sequential mode on a VM with 1 vCPU. This benchmark
suite contains 13 varied, realistic computation-intensive workloads
[10]. Although PARSEC mainly targets parallel systems, all work-
loads can be executed sequentially as well. VM exits and application
execution time may be measured directly using perf2. We use CPU
cycles as a measure for system throughput. Although the latter is
determined by many other factors, sections 4 and 5 make it clear
that CPU cycles is the dominant metric being improved by paratick
(through eliminating VM exits). Therefore, the improvement in CPU
usage represents the maximum throughput improvement paratick
may achieve. Figure 4 shows the results for each benchmark in-
dividually. Because from this figure alone it is unclear what the
overall performance benefit of paratick is for the studied workloads
due to the variance between individual benchmarks, table 2 shows
the aggregated results for all benchmarks.

Figure 4a shows that even for low-intensity workloads, paratick
reduces the number of VM exits drastically. Indeed, for such work-
loads, very few VM exits are induced in tickless kernel mode, as
shown in §3.3. A large portion of these few VM exits are caused by
3 operations: arming the guest tick timer, delivering host ticks and
delivering guest ticks. Since paratick eliminates 2 of these 3 major

2https://man7.org/linux/man-pages/man1/perf-record.1.html

VM exits System throughput Execution time
-50% +7% -2%

Table 2: Average performance improvement of paratick ac-
cross all PARSEC benchmarks in sequential mode.

causes of VM exits, it has a highly positive effect on virtualization
overhead for low-intensity workloads.

Despite figure 4a showing excellent results, figures 4b and 4c
indicate that paratick only marginally improves system throughput
and application performance for low-intensity workloads. This is
in line with the expectations laid out in §4.2. Thus, even though the
number of VM exits is reduced drastically, the amount of resources
spent processing them is negligible relative to those spent on the
workload itself. More importantly, these figures show that even
in scenarios where paratick offers negligible benefits, workload
latency and system throughput are not affected negatively.

6.2 Multithreaded Workloads
Having established that paratick does not introduce tangible gross
overhead, we move on to assessing its potential benefits by evalu-
ating its performance for workloads that conceptually benefit the
most, being computation-intensive multithreaded applications (see
§4.2). To cover a broad range of real-world environments, we cre-
ate three test scenarios: a ’small’ VM with 4 vCPUs collocated on
the same NUMA socket, a ’medium’ VM with 16 vCPUs spread
over 2 NUMA sockets, and a ’large’ VM with 64 vCPUs spread
over 4 sockets. In each of these scenarios, we execute the PARSEC
benchmark suite with the level of parallelism equal to the number
of vCPUs in each scenario. All metrics are measured as in §6.1.
Equally analogously to §6.1, figure 5 displays the results for all
individual benchmarks and table 3 shows the aggregate results of
all the benchmarks in each test scenario.

Figure 5a shows that for multithreaded workloads, paratick re-
duces the relative number of VM exits compared to tickless kernel
operation by roughly the same amount as for sequential workloads.
Nevertheless, figure 5b indicates that for several of these workloads

https://man7.org/linux/man-pages/man1/perf-record.1.html

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Stijn Schildermans, Kris Aerts, Jianchen Shan, and Xiaoning Ding

0.0

0.5

1.0

1.5

2.0

bl
ac

ks
ch

ol
es

bo
dy

tr
ac

k
ca

nn
ea

l
de

du
p

fa
ce

si
m

fe
rr

et
flu

id
an

im
at

e
fr

eq
m

in
e

ra
yt

ra
ce

st
re

am
cl

us
te

r
sw

ap
tio

ns
vi

ps

x2
64

R
el

at
iv

e
V

M
 e

xi
ts

(a) VM exits

0.0

0.5

1.0

1.5

2.0

bl
ac

ks
ch

ol
es

bo
dy

tr
ac

k
ca

nn
ea

l
de

du
p

fa
ce

si
m

fe
rr

et
flu

id
an

im
at

e
fr

eq
m

in
e

ra
yt

ra
ce

st
re

am
cl

us
te

r
sw

ap
tio

ns
vi

ps

x2
64

R
el

at
iv

e
th

ro
ug

hp
ut

(b) System throughput

0.0

0.5

1.0

1.5

2.0

bl
ac

ks
ch

ol
es

bo
dy

tr
ac

k
ca

nn
ea

l
de

du
p

fa
ce

si
m

fe
rr

et
flu

id
an

im
at

e
fr

eq
m

in
e

ra
yt

ra
ce

st
re

am
cl

us
te

r
sw

ap
tio

ns
vi

ps
x2

64

R
el

at
iv

e
tim

e

VM size

Small
Medium
Large

(c) Execution time

Figure 5: Relative performance of paratick compared to vanilla Linux for multithreaded PARSEC workloads.

VM size VM exits System throughput Execution time
Small -42% +12% -1%

Medium -47% +13% -3%
Large -44% +16% -1%

Table 3: Average performance improvement of paratick ac-
cross all PARSEC benchmarks in all tested scenarios.

-in contrast to sequential ones- paratick drastically improves system
throughput. This is not illogical, since multithreaded workloads are
known to inducemanymore VM exits than their sequential counter-
parts [32]. This means that the same relative reduction in VM exits
translates to a much greater relative performance improvement for
multithreaded workloads than for sequential ones.

The results in figure 5b show a large inter-benchmark variance.
This is to be expected, since as outlined in §4.2, paratick specifi-
cally reduces blocking synchronization cost. Not all multithreaded
workloads rely on this mechanism to the same extent. Blocking
synchronization also lies at the heart of table 3 indicating increased
paratick effectiveness as VM size grows. Namely, the level of paral-
lelism dictates the amount of thread contention and therefore the
amount of switches between running and blocked states.

Figure 5c confirms that as described in §4.2, the large through-
put gain shown in figure 5b does not translate to a comparable
reduction in application execution times, implying that the VM
exits eliminated by paratick are mostly not part of the critical path.
Nevertheless, improved throughput in itself is highly beneficial,
since it reduces energy consumption and allows the host to per-
form more tasks in a given amount of time. Moreover, in scenarios
where system resources are saturated, for example when runnable
vCPUs from other VMs are waiting in the run queue, throughput
improvement may directly improve application performance, since
in such scenarios resource availability dictates the execution time
of the critical path and thus of the entire application.

0.0

0.5

1.0

rndr rndwr seqr seqwr

R
el

at
iv

e
V

M
 e

xi
ts

(a) VM exits

0.0

0.5

1.0

rndr rndwr seqr seqwr

R
el

at
iv

e
th

ro
ug

hp
ut

(b) System throughput

0.0

0.5

1.0

rndr rndwr seqr seqwr

R
el

at
iv

e
 ti

m
e

(c) Execution time

Figure 6: Relative performance of paratick compared to
vanilla Linux for I/O-intensive workloads.

6.3 I/O-Intensive Workloads
The final class of workloads described in §4.2 as conceptually bene-
fiting from paratick is that of I/O-intensive applications. To assess
the veracity of this claim, the fio benchmark from the Phoronix
benchmark suite [3] was executed in a VM with 1 vCPU. Sequen-
tial read (seqr), sequential write (seqwr), random read (rndr) and
random write (rndwr) performance were independently evaluated.
Each of these categories contain aggregated results for block sizes
varying between 4kB and 256kB. For all tests, we opted for the sync
I/O driver as synchronous I/O is much more popular than its asyn-
chronous counterpart, due to the complexity and limited flexibility
of the latter [35]. Direct I/O was disabled as is common practice.
Buffering I/O was disabled to simulate reading/writing large data
sets. Contrary to the PARSEC benchmark suite, phoronix-fio allows
direct measurement of I/O throughput. Since I/O operations are the
sole system bottleneck, I/O throughput equates to system through-
put for this use case. In a more generalized setting, this represents
the maximum throughput improvement paratick may achieve for
I/O-intensive applications. The other metrics were measured in the
same way as in §6.1 and §6.2. Again analogously to §6.1 and §6.2,
figure 6 shows the results for each category individually while table
4 shows the aggregated results of all categories.

Paratick: Reducing Timer Overhead in Virtual Machines ICPP ’21, August 9–12, 2021, Lemont, IL, USA

VM exits System throughput Execution time
-34% +20% -18%

Table 4: Average performance improvement of paratick
across all tested phoronix-fio benchmarks.

Figure 6a indicates that also for I/O-intensive workloads, paratick
significantly reduces virtualization overhead. The reduction in VM
exits is however somewhat smaller than for the application classes
discussed above. This is to be expected, because I/O is notorious for
inducing high virtualization overhead in general [17] and the test
system does not possess a high-end SSD device supporting single
root I/O virtualization (SR-IOV) [16]. Therefore, timer-related VM
exits make up a relatively small part of the total number of VM
exits such workloads induce.

Figure 6b shows that paratick may yield a significant through-
put improvement for I/O-intensive applications. Interestingly, the
average throughput improvement displayed in table 4 is not much
lower than the average reduction in virtualization overhead. This
indicates that virtualization overhead makes up a significant part
of the total system resources utilized by I/O-intensive applications.

Lastly, figure 6c and table 4 reveal that for I/O-intensive ap-
plications, throughput improvement translates almost directly to
improved application execution times. This makes sense, since as
described in §4.2, at least half of the VM exits eliminated by paratick
are part of the critical path for single-threaded I/O-intensive appli-
cations. Moreover, figure 6c indicates that read operations benefit
the most from paratick. Given that read latencies are lower than
write latencies and reads are mostly synchronous while writes are
generally asynchronous, more switches between active and idle
vCPU states are performed when reading data as opposed to writing
it in the same amount of time. Therefore, the VM exits eliminated
by paratick make up a larger percentage of the total application
runtime. This also indicates that paratick’s performance benefits
will only increase as time goes on, since state-of-the-art storage
devices supporting SR-IOV sport much lower access latencies.

7 RELATEDWORK
Timer overhead in virtualized environments has received little
attention in literature. Only a few papers [11, 18, 37] target time-
keeping in VMs and its effects on scheduling and application per-
formance [7, 20, 22]. One major reason for this is that most recent
efforts regarding reducing virtualization overhead focused on more
dominant forms thereof [16], including the lock-holder preemption
problem [13, 21, 33], blocked-waiter wakeup problem [15], lock-
waiter preemption problem [27], TLB shootdown preemption prob-
lem [28, 31], etc. All of these problems share the same fundamental
cause, namely vCPU discontinuity [6, 13, 25]. However, recent im-
provements to virtualization technology have largely mitigated
these issues [9, 17, 24, 39]. This makes optimizing timer manage-
ment one of the last significant remaining challenges regarding
efficient virtualization of the X86 platform [32].

Although the problem of scheduler tick management in virtu-
alized environments has to our knowledge never been addressed
explicitly in literature, some studies indirectly offer potential solu-
tions. OSv [26], a new guest operating system designed specifically

for cloud computing employs a fully tickless design, utilizing a
high resolution clock for time accounting as long as the use case
only calls for a single application to be run at a time. While for
many cloud applications such a design suffices, it is obviously not
applicable to general-purpose operating systems. A more promising
existing solution in that regard is direct interrupt delivery (DID) [36].
DID directly delivers timer interrupts to the target VM, bypassing
VM exits through clearing the external interrupt exiting (EIE) bit in
VMCS (Virtual Machine Control Structure). In addition, it programs
the hardware not to perform VM exits upon writes to timer-related
MSRs. This solution does however not come without cost, since
timers set by the hypervisor and descheduled vCPUs are restricted
to a designated core, which can become a bottleneck under heavy
loads. Moreover, the designated core can not be used by VMs. This
can be interpreted as a static virtualization overhead inversely pro-
portional to the number of CPUs in the system. For all but the most
high-end contemporary systems, this results in a non-negligible
loss in system throughput.

From the above, we conclude that to our knowledge, virtual
scheduler ticks is the only low-overhead solution to the problem
of excessive timer-related virtualization overhead applicable to
general-purpose operating systems and on limited as well as state-
of-the-art hardware platforms.

8 CONCLUSION
Even in state-of-the-art virtualized environments, timer manage-
ment remains a major source of virtualization overhead. In the
context of hardware-assisted virtualization of the X86 platform,
this overhead manifests itself as VM exits induced by managing the
scheduler tick. In this paper, we have shown that classic periodic
ticks as well as tickless kernels may induce excessive amounts of
said VM exits in specific scenarios. Since to our knowledge, all
general-purpose operating systems rely on either of these mecha-
nisms, addressing this issue is paramount.

This paper introduced the concept of virtual scheduler ticks in an
effort to address the above problem through the use of paravirtual-
ization. We have shown the potential of this concept by implement-
ing it in Linux/KVM under the name ’paratick’ and demonstrating
that it may enhance system throughput greatly by drastically reduc-
ing the number of VM exits related to scheduler tick management.
Especially multithreaded applications relying heavily on blocking
synchronization and I/O-intensive applications benefit. For the
former, the system throughput improvement yielded by paratick
translates to only a minor application execution time reduction,
since many of the VM exits eliminated by paratick are not part of
the critical path. For the latter however, performance gains are in
accordance with system throughput amelioration.

To our knowledge, we are the first to address excessive tick-
induced virtualization overhead directly in a generally applicable
way. The only drawback of virtual scheduler ticks that we were able
to identify during the course of the project this paper covers is that it
relies on paravirtualization and therefore requires modifications to
the guest kernel. This complicates dissemination, especially towards
closed-source systems. Whenever this drawback is not a concern
however, paratick is a clear improvement over regular tickless
kernels as well as classic periodic ticks in virtualized environments.

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Stijn Schildermans, Kris Aerts, Jianchen Shan, and Xiaoning Ding

Therefore, as future work, we aim to further refine paratick and
test it in more diverse scenarios, focusing on high-performance
I/O applications. Eventually, we aim to propose a patch based on
paratick for the mainline Linux kernel.

ACKNOWLEDGMENTS
We thank the reviewers for their insightful feedback. This work is
partially funded by the US National Science Foundation through
grant CCF 1617749.

REFERENCES
[1] 2016. [V4,4/4] Utilize the vmx preemption timer for tsc deadline timer.

https://patchwork.kernel.org/project/kvm/patch/1465852801-6684-5-git-send-
email-yunhong.jiang@linux.intel.com/

[2] 2019. Timer Interrupt Sources. https://wiki.osdev.org/Timer_Interrupt_Sources
[3] 2021. Open-Source, Automated Benchmarking. https://www.phoronix-test-suite.

com/
[4] 2021. torvalds/linux. https://github.com/torvalds/linux
[5] Keith Adams and Ole Agesen. 2006. A comparison of software and hardware

techniques for x86 virtualization. ACM Sigplan Notices 41, 11 (2006), 2–13.
[6] Jeongseob Ahn, Chang Hyun Park, and Jaehyuk Huh. 2014. Micro-sliced virtual

processors to hide the effect of discontinuous cpu availability for consolidated
systems. In 2014 47th Annual IEEE/ACM International Symposium on Microarchi-
tecture. IEEE, 394–405.

[7] Mohit Aron and Peter Druschel. 2000. Soft timers: Efficient microsecond software
timer support for network processing. ACM Transactions on Computer Systems
(TOCS) 18, 3 (2000), 197–228.

[8] Luiz Barroso, Mike Marty, David Patterson, and Parthasarathy Ranganathan.
2017. Attack of the killer microseconds. Commun. ACM 60, 4 (2017), 48–54.

[9] Ravi Bhargava, Benjamin Serebrin, Francesco Spadini, and Srilatha Manne. 2008.
Accelerating two-dimensional page walks for virtualized systems. In Proceedings
of the 13th international conference on Architectural support for programming
languages and operating systems. 26–35.

[10] Christian Bienia and Kai Li. [n.d.]. PARSEC 2.0: A New Benchmark Suite for
Chip-Multiprocessors. In MoBS 2009.

[11] Timothy Broomhead, Laurence Cremean, Julien Ridoux, and Darryl Veitch. 2010.
Virtualize Everything but Time.. In OSDI, Vol. 10. 1–6.

[12] Mauro C. Chehab and Julia Lawall. 2020. NO HZ: Reducing scheduling-clock
ticks. Linux Kernel Source Tree (July 2020). https://github.com/torvalds/linux/
blob/master/Documentation/timers/no_hz.rst

[13] Luwei Cheng, Jia Rao, and Francis CM Lau. 2016. vscale: Automatic and effi-
cient processor scaling for smp virtual machines. In Proceedings of the Eleventh
European Conference on Computer Systems. 1–14.

[14] Jonathan Corbet. 2015. Reinventing the timer wheel. https://lwn.net/Articles/
646950

[15] Xiaoning Ding, Phillip B Gibbons, Michael A Kozuch, and Jianchen Shan. 2014.
Gleaner: Mitigating the blocked-waiter wakeup problem for virtualized multicore
applications. In 2014 USENIX Annual Technical Conference (USENIX ATC 14). 73–
84.

[16] Xiaoning Ding and Jianchen Shan. 2015. Diagnosing Virtualization Overhead for
Multi-threaded Computation on Multicore Platforms. In 2015 IEEE 7th Interna-
tional Conference on Cloud Computing Technology and Science (CloudCom). IEEE,
226–233.

[17] Yaozu Dong, Xiaowei Yang, Jianhui Li, Guangdeng Liao, Kun Tian, and Haibing
Guan. 2012. High performance network virtualization with SR-IOV. J. Parallel
and Distrib. Comput. 72, 11 (2012), 1471–1480.

[18] Sandeep D’Souza and Ragunathan Rajkumar. 2018. QuartzV: Bringing Quality of
Time to Virtual Machines. In 2018 IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS). IEEE, 49–61.

[19] Yoav Etsion, Dan Tsafrir, and Dror G Feitelson. 2003. Effects of clock resolution
on the scheduling of interactive and soft real-time processes. In Proceedings of the
2003 ACM SIGMETRICS international conference on Measurement and modeling of
computer systems. 172–183.

[20] Yoav Etsion, Dan Tsafrir, and Dror G Feitelson. 2003. Effects of clock resolution
on the scheduling of interactive and soft real-time processes. In Proceedings of the
2003 ACM SIGMETRICS international conference on Measurement and modeling of
computer systems. 172–183.

[21] Thomas Friebel and Sebastian Biemueller. 2008. How to deal with lock holder
preemption. Xen Summit North America 164 (2008).

[22] Ashvin Goel, Luca Abeni, Charles Krasic, Jim Snow, and Jonathan Walpole.
2002. Supporting time-sensitive applications on a commodity OS. ACM SIGOPS
Operating Systems Review 36, SI (2002), 165–180.

[23] Ahmad Golchin. 2017. Control based tickless scheduling. Ph.D. Dissertation.

[24] Intel. 2019. Intel(R) RDT Software Package. https://github.com/intel/intel-cmt-
cat.

[25] Sanidhya Kashyap, Changwoo Min, and Taesoo Kim. 2018. Scaling Guest OS
Critical Sections with eCS. In 2018 USENIX Annual Technical Conference (USENIX
ATC 18). 159–172.

[26] Avi Kivity, Dor Laor, Glauber Costa, Pekka Enberg, Nadav Har’El, Don Marti, and
Vlad Zolotarov. 2014. OSv—optimizing the operating system for virtual machines.
In 2014 USENIX Annual Technical Conference (USENIX ATC 14). 61–72.

[27] Jiannan Ouyang and John R Lange. 2013. Preemptable ticket spinlocks: Im-
proving consolidated performance in the cloud. In Proceedings of the 9th ACM
SIGPLAN/SIGOPS international conference on Virtual execution environments. 191–
200.

[28] Jiannan Ouyang, John R Lange, and Haoqiang Zheng. 2016. Shoot4U: Using
VMM assists to optimize TLB operations on preempted vCPUs. ACM SIGPLAN
Notices 51, 7 (2016), 17–23.

[29] Simon Peter, Andrew Baumann, Timothy Roscoe, Paul Barham, and Rebecca
Isaacs. 2008. 30 seconds is not enough! A study of operating system timer usage.
ACM SIGOPS Operating Systems Review 42, 4 (2008), 205–218.

[30] Rusty Russell. 2005. Unreliable Guide To Hacking The Linux Kernel. https:
//www.kernel.org/doc/htmldocs/kernel-hacking/index.html

[31] Stijn Schildermans, Kris Aerts, Jianchen Shan, and Xiaoning Ding. 2020. Ptlbmal-
loc2: Reducing TLB Shootdowns with High Memory Efficiency. ISPA-BDCloud-
SocialCom-SustainCom 2020 (2020), 76–83.

[32] Stijn Schildermans, Jianchen Shan, Kris Aerts, Jason Jackrel, and Xiaoning Ding.
2021. Virtualization Overhead of Multithreading in X86 State of the Art &
Remaining Challenges. IEEE Transactions on Parallel & Distributed Systems 01
(2021), 1–1.

[33] Jianchen Shan, Xiaoning Ding, and Narain Gehani. 2016. APPLES: Efficiently
handling spin-lock synchronization on virtualized platforms. IEEE Transactions
on Parallel and Distributed Systems 28, 7 (2016), 1811–1824.

[34] Suresh Siddha, Venkatesh Pallipadi, and AVD Ven. 2007. Getting maximum
mileage out of tickless. In Proceedings of the Linux Symposium, Vol. 2. Citeseer,
201–207.

[35] Houjun Tang, Quincey Koziol, Suren Byna, John Mainzer, and Tonglin Li. 2019.
Enabling Transparent Asynchronous I/O using Background Threads. In 2019
IEEE/ACM Fourth International Parallel Data Systems Workshop (PDSW). IEEE,
11–19.

[36] Cheng-Chun Tu, Michael Ferdman, Chao-tung Lee, and Tzi-cker Chiueh. 2015. A
comprehensive implementation and evaluation of direct interrupt delivery. Acm
Sigplan Notices 50, 7 (2015), 1–15.

[37] VMware. 2011. Timekeeping in VMware Virtual Machines.
[38] C-Q Yang and Barton P Miller. 1988. Critical path analysis for the execution of

parallel and distributed programs. In 8th International Conference on Distributed.
IEEE Computer Society, 366–367.

[39] Matıas Zabaljáuregui. 2008. Hardware assisted virtualization intel virtualization
technology. accessed at linux. linti. unlp. edu. ar/images/f/f1/Vtx. pdf (2008), 1–54.

https://patchwork.kernel.org/project/kvm/patch/1465852801-6684-5-git-send-email-yunhong.jiang@linux.intel.com/
https://patchwork.kernel.org/project/kvm/patch/1465852801-6684-5-git-send-email-yunhong.jiang@linux.intel.com/
https://wiki.osdev.org/Timer_Interrupt_Sources
https://www.phoronix-test-suite.com/
https://www.phoronix-test-suite.com/
https://github.com/torvalds/linux
https://github.com/torvalds/linux/blob/master/Documentation/timers/no_hz.rst
https://github.com/torvalds/linux/blob/master/Documentation/timers/no_hz.rst
https://lwn.net/Articles/646950
https://lwn.net/Articles/646950
https://github.com/intel/intel-cmt-cat
https://github.com/intel/intel-cmt-cat
https://www.kernel.org/doc/htmldocs/kernel-hacking/index.html
https://www.kernel.org/doc/htmldocs/kernel-hacking/index.html

	Abstract
	1 Introduction
	1.1 Contributions

	2 Background: Timer Management
	3 Virtualizing the Scheduler Tick
	3.1 Classic Periodic Tick
	3.2 Tickless Kernels
	3.3 To Tick or not to Tick?

	4 Virtual Scheduler Ticks
	4.1 Design
	4.2 Performance Implications

	5 Paratick
	5.1 Host
	5.2 Guest

	6 Evaluation
	6.1 Sequential Workloads
	6.2 Multithreaded Workloads
	6.3 I/O-Intensive Workloads

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

