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Virtualization Overhead of Multithreading in X86
State-of-the-Art & Remaining Challenges
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Abstract—Despite great advancements in hardware-assisted virtualization of the x86 architecture, certain workloads still suffer
significant overhead. This article dissects said overhead in the context of multi-threading. We describe the state-of-the-art, pinpoint
challenges, and suggest improvements, aiming to provide a valuable reference to developers and users of virtualization systems alike.
We study the virtualization overhead of the PARSEC and SPLASH2X multithreaded benchmarks in a variety of scenarios using a state-
of-the-art system. Through controlled experiments, source code analysis and literature review, we quantify the virtualization overhead
multithreading still induces and link it to its root causes, after which we suggest possible mitigation strategies. Multithreading still
induces high virtualization overhead, mainly caused by synchronization, spinning at user level and NUMA management. The overhead
is diverse in nature and embodiment as it is a function of many system and workload properties. System-level solutions are feasible, but
often imply difficult trade-offs. Systematic workload optimization is a promising alternative.

Index Terms—Multi-threading, virtualization, overhead, performance, guidelines, classification

1 INTRODUCTION

IRTUALIZATION is known to have many benefits, as exem-
Vpliﬁed by the blooming popularity of cloud computing
[1]. However, these benefits come at a cost, mainly in the form
of efficiency and performance losses. Identifying and mitigat-
ing said losses is a long-standing challenge for researchers at
all system layers [2], [3], [4], [5], [6]. Thanks to these efforts,
most virtualized workloads can presently achieve near-native
performance [7]. Some types of workloads however deviate
from this trend. Prominent examples of such workloads are
multi-threaded applications [8]. Because deploying these
applications in a virtualized setting is becoming the norm in
this era of cloud computing, HPC, IoT and big data, we deem
optimizing their performance in this context paramount. With
this work we aim to contribute thereto by providing an over-
view of the state of the art regarding hardware-assisted virtual-
ization of multithreading in x86, identifying major outstanding
issues and exploring to what extent these can be addressed.

A major motivation for this work is our observation that
research regarding virtualization of computation-intensive
workloads is losing momentum. We speculate that consider-
able progress in this field over the past decade and the emer-
geance of containerization are main drivers of this trend. We
find both of these reasons unfounded. Virtualization is still
widely used in industry due to its distinct benefits over
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containerization such as far fewer security risks and increased
flexibility [9]. Furthermore, this paper will show that virtuali-
zation overhead is still far from eliminated in the studied con-
text, and that accepted solutions to some issues have much
room for improvement. We thus aim to reinvigorate research
into hardware virtualization for x86, in particular for multi-
threaded applications.

We specifically target multi-threaded applications for 4
reasons. First, literature lacks a systematic study regarding
the issues arising from virtualizing this application type, in
contrast to many others [10], [11], [12]. While studies related
to our goal are plentiful [13], [14], [15], their scope is limited
to specific phenomena. Second, thread-coordination with
minimal VMM intervention is conceptually challenging and
demands much research attention [8]. Third, multi-threaded
applications are by nature very sensitive to overhead. As we
will show in Section 5.2, a small amount of overhead may
cause significant performance degradation. Lastly, virtuali-
zation technology has advanced considerably in recent
years, addressing many classic problems affecting multi-
threaded workloads, such as lock-holder preemption [16].
We aim to assess to what extent these advancements are suc-
cessful and which challenges remain.

1.1 Methods
The paper first formally defines virtualization overhead.
Based on this definition, we present a quantitative analysis
of virtualization overhead for multi-threaded workloads
based on controlled experiments using state-of-the-art hard-
ware-assisted x86 virtualization techniques. We use com-
mon performance profiling tools to collect our results and
verify them through source code analysis and literature
review. Besides plainly describing the overhead, we pro-
vide a deeper understanding thereof by linking it to its con-
ceptual causes. Lastly, we reflect on promising directions
for future work that may mitigate said causes.

While we can not guarantee that all our findings are un-
iversally applicable, we cover a wide variety of system
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configurations and workloads to minimize the threats to valid-
ity inherent to empirical work such as this. Moreover, we
reflect on how our findings would translate to scenarios we
did not cover explicitly (e.g., other hardware/hypervisors).

1.2 Main Findings & Contributions

e We propose a definition for virtualization overhead
that explicitly divides it into internal system effects
and external application effects. This allows overhead
to be described accurately and unambiguously.

e With the latest virtualization support, overhead
imposed on individual threads is low. For sequential
applications, overhead is mainly incurred by han-
dling I/0O.

e Virtualization overhead for multi-threaded applica-
tions has been significantly reduced in recent years
thanks to various advancements in virtualization
technology.

e  Multi-threaded computations still suffer significant
virtualization overhead, especially when the system
is overcommitted. Thus, further improvements are
desirable.

e For multi-threaded applications, there can be a large
divergence between internal virtualization overhead
and externally observed performance degradation
when the overhead is incurred on the critical path.

e Most virtualization overhead incurred by multi-
threaded applications is caused by interaction between
threads, in the form of data sharing (especially
in NUMA systems) and synchronization (especially
spinning at user level and blocking synchronization).

e Most multi-threaded workloads benefit from being
consolidated using virtualization. Some even con-
sume less resources when consolidated.

e Abstraction of underlying NUMA architectures still
poses an issue for multi-threaded applications. Mod-
ern techniques to optimize vCPU placement are still
lacking.

e Remaining overhead is hard to tackle at the system
level. Application-level solutions are, however, prom-
ising and understudied as of now.

2 BACKGROUND

2.1 Hardware-Assisted Virtualization

Virtual machines (VMs) allow execution environments to
remain identical when underlying implementations, systems,
or hardware change. VMs range from single-process (e.g.,
JVM) to whole system VMs running a complete OS [17].

Most guest instructions are executed directly on the hard-
ware [18]. Privileged and sensitive operations must however be
handled differently because they can break the virtualization
barrier. Today, hardware-assisted virtualization has become
the dominant technique to implement this in x86. This involves
the CPU trapping to a dedicated piece of software, a hypervisor
(VMM) (e.g., Xen [19], vSphere [20], and KVM [21]), when it
detects a sensitive operation. The VMM handles the traps and
coordinates VMs. Intel and AMD both implement this technol-
ogy in most of their CPUs (resp. VT-x and AMD-V [16], [22]).

Contrary to other methods, hardware-assisted virtualiza-
tion allows the guest to run in the CPU’s privilege ring 0,
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allowing it to execute most privileged instructions without
costly traps to the hypervisor, which itself runs in a dedi-
cated VMX root mode, with full control over the system. The
CPU traps to root mode when the VM carries out a sensitive
operation, allowing the VMM to intervene. Such traps are
called VM exits. System administrators can control to a large
extent which operations trigger VM exits [23].

2.2 \Virtualization Performance Issues

It is well-known that applications tend to show lower per-
formance when virtualized for various reasons. Below we
elaborate on the most important of these, as well as the tech-
niques already adopted to mitigate the issues:

e Multiple VMs often share hardware resources. Due to
inefficient resource management policies in the VMM
or unmanaged contention between VMs, applications
may be unnecessarily starved of resources such as
CPU, cache or memory. Many efforts have been made
to improve this (e.g., memory deduplication [24], Intel
RDT [25]).

e Atthe VMM level, emulation of sensitive operations is
still a major cause of performance degradation for cer-
tain workloads. While some virtualization techniques
(i.e., paravirtualization) avoid this cost, doing so has
other drawbacks such as reduced flexibility [26].

e I/0 operations, such as accessing I/O ports, DMA,
and interrupts, are all privileged and trapped. Addi-
tionally, for high bandwidth I/O devices, extra data
needs to be copied to the VMM. Techniques mitigat-
ing this include paravirtualization (e.g., paravirtual-
ized drivers sharing I/O buffers between VM and
VMM) [27] and hardware assistance [11].

e Invirtualized systems, guest memory accesses have to
be translated to VMM-managed machine addresses.
Two techniques are common for this, namely VMM-
level shadow page tables [28] and hardware-level nested
paging [29]. Both techniques are still in use, and cause
(limited) overhead in their own ways [26]. Neither of
them is universally superior.

e Spinning synchronization is often used to coordinate
short critical sections in OS kernels. When the hard-
ware is overcommitted however, the VMM may
deschedule a vCPU holding a spin lock, causing the
vCPUs waiting for that lock to waste cycles. This is
known as lock holder preemption (LHP) [13]. Various
related problems have been identified (e.g., lock-waiter
preemption [30]). Several approaches have been pro-
posed to mitigate such issues. Hardware extensions
that trigger a VM exit when a vCPU executes excessive
amounts of PAUSE instructions -indicating spinning-
are already widely adopted (Pause Loop Exiting (PLE)
for Intel [16] and Pause Filter (PF) for AMD [22]).

e VCPUs holding a blocking-based lock can also be
descheduled by the VMM while other threads are
waiting for it. When a thread blocks on such a lock and
the guest has no more useful work to do, it will issue a
HLT instruction, triggering a VM exit and running
the VMM s scheduler excessively. This is known as the
blocked-waiter wakeup (BWW) problem [15]. Some
VMMs implement halt polling to help mitigate this.
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Fig. 1. Breakdown of potential virtualization effects and their causes.
The dotted box circles the scope of the paper.

When a VM exit due to HLT occurs, the VMM will spin
for some time before executing its scheduler or halting
the pCPU, hoping the vCPU is woken up by the guest.
If so, vCPU execution is immediately resumed.

e Usually the guest is unaware of the exact physical
hardware configuration. This can decrease e.g., cache
and memory performance. Particularly for NUMA
systems this is an issue, since NUMA-unaware
scheduling can greatly increase memory and syn-
chronization latency [1]. Several solutions to this
problem have been developed, such as NUMA-
aware VMM schedulers [31], dedicated VMM-level
NUMA locality managers [32] and exposing the
NUMA-architecture to the guest [33].

3 DEFINING VIRTUALIZATION OVERHEAD

Thoroughly analyzing virtualization overhead requires
unambiguously defining it. Most literature only measures
performance degradation when executing an application in
a VM (e.g., the increase in wall-clock execution time). How-
ever, we argue that the toll on the entire system should be
considered. Fig. 1 provides a breakdown of this toll.

Based on Fig. 1, virtualization overhead consists of a set
of system effects, viewed internally from the host’s perspec-
tive, which translate to a set of application effects, viewed
externally from the user’s perspective. These are not neces-
sarily correlated. For example, when a server is not over-
loaded, I/O operations may be offloaded to redundant
cores, not slowing down the workloads in the VMs. We
argue that this ‘concealed’ cost is important for 2 reasons:
first, public cloud environments are evolving towards
charging consumers for CPU cycles used by their VMs [34],
rather than VM uptime (e.g., serverless environments [35]).
Second, 'concealed cost’ may become ‘visible’ after all in
certain scenarios (e.g., under heavy server load). Below we
provide a formal definition of both effect classes from Fig. 1.

3.1 System Effects
Any excess resource usage caused by virtualization (cycles,
memory, bandwidth,...) is a system effect. However, we are
only interested in system effects due to multithreading. As
this is a purely computational concept, the main resource of
interest to us is the CPU. While other metrics such as memory
usage may be important, from a pragmatic perspective this is
only an issue when they bottleneck the system. This will how-
ever be reflected by increased CPU cycles. Thus, we define
the system effects of virtualizing multithreading in terms of
CPU cycles as reduced resource efficiency, 81,

Let C,(W, P(S,,)) be the CPU cycles used by workload W on
physical system P(S,,), with S,, all settings for P. Let C,(W,V
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(Sw), P(S,)) be the system cycles used by W on a virtual machine
V(S.) with the same settings, hosted on a system P(S,). Then
8n, = SWV(Eu)PE0) - Cp(W.P(Su))
r Cp(W.P(Sw))

S, includes all system settings only visible to the VMM, e.g.,
the VMM used, concurrent VMs, etc. S, reflects all settings
observable within the (guest) OS, e.g., concurrent applica-
tions, CPU count, etc. Note that it is almost impossible to
guarantee S, and S, remain constant between executions
due to non-deterministic aspects of the system (e.g., inter-
rupts, background processes,...). To reduce the variance in
S, and S, to negligible levels, experimental results should
always be averaged over many iterations.

3.2 Application Effects

Like system effects, application effects encompass different
metrics such as latency, throughput, etc. The main metric of
interest however is wall-clock execution time. Other metrics
indirectly translate thereto (e.g., reduced system throughput
increases execution time). Analogously to reduced resource
efficiency, we can thus define reduced temporal efficiency, én;, as
the increased time needed to execute a workload in a VM.
One addition must be made though. Since wall-clock time is
measured externally and S, may include temporally multi-
plexing resources between V(S,,) and other tasks, we must
take the effective resources available to the VM into account.
We thus essentially separate the effects of resource sharing
from those of virtualization. Based on Section 3.1, we use the
amount of available CPU time as a proxy for resources in gen-
eral. This yields the following definition for é»,:

to(W, V(Sw), P(Sy)) X v, — tp(W, P(Su)) X v,
tp(W, P(8w)) X v, ’

oy =

with ¢, and t, the real times for executing the workload in
resp. the physical and virtual environments and y, and y,
the ideal effective CPU count available to the workload
given S, and S, in each resp. environment.

4 EXPERIMENTAL SETUP

Below we describe the main experiments for this study. We
carefully designed these so that our findings are as general as
possible. Wherever this generality is not guaranteed -as is often
the case with empirical work- we reason on how our results
would translate to other prevalent contexts in Section 6.

4.1 System
The CPU is by far the most important hardware component
in hardware-assisted virtualization. Since Intel dominates
the corporate x86 server CPU market, with AMD having a
market share of only 8 percent, we focus on Intel VT-x for
our experiments [36]. However, results can be safely gener-
alized to AMD-v, since it is nearly identical to VT-x [16],
[22]. To our knowledge, no studies suggest a notable perfor-
mance difference in any regard between these technologies.
Concerning hypervisors, four players dominate with a
combined market share of over 95 percent: VMWare,
Hyper-v, Xen, and KVM [37]. Unfortunately, the most pop-
ular of these -VMWare and Hyper-v- are closed source. This
means we can not verify empirical results by analyzing
VMM source code for these VMMs. We therefore limit our
detailed analysis to Xen (HVM) and KVM. Because previous
studies have shown that KVM is in general by a narrow
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margin slower than Xen for CPU-bound workloads [38], we
pick KVM for our experiments in an effort to err on the side
of caution, minimizing the risk of our results being overly
optimistic in a generalized context.

For the guest OS we opt for Linux since it is by far
the most popular server OS, with the only noteworthy
competitor being Windows [39]. The latter is however
closed-source, making analysis of results again difficult.
Moreover, we intuitively expect the guest OS not to be a
major contributor to virtualization cost, which justifies
only using 1 guest OS.

We create environments with 4, 8, 16, 32 and 64 CPUs. To
emulate P(S,,) from Section 3, we use taskset' to limit the
usable CPUs. To emulate V(S,,), we create VMs with said
vCPU counts and 64 GB of memory. The vCPUs were laid
out in a way preventing the vCPU stacking problem [40].

Concretely, the host system is a HPE ProLiant DL385
Gen10 server with 4 Intel Xeon Gold 6138 20-core processors
and 256GB of memory. Hyperthreading was disabled, as
were C states deeper than C1 to prevent performance degra-
dation due to CPU power management [41]. Ubuntu Server
18.04.2 (kernel 4.15) is the OS for both the host and the
guest, as it is the most recent version of one of the most pop-
ular Linux distributions at the time of writing [42]. Because
each CPU only has 20 cores, we spread the CPUs for the 32-
and 64-core environments equally over resp. 2 and 4 sock-
ets. This allows us to study how virtualization cost is influ-
enced by NUMA architectures as an added benefit.

4.2 Workloads & Measurement

Since this study focuses on multithreading as a concept,
multithreaded, computation intensive benchmarks employ-
ing minimal I/O are a natural workload choice. We prefer
using a well-rounded benchmark suite over hand-picking
or devising arbitrary programs. We found that the PARSEC
3.0 and SPLASH2X benchmark suites fit our requirements
perfectly [43]. These suites contain 26 multithreaded, com-
putation-intensive workloads designed to cover a wide
range of real-world tasks ranging form games to scientific
computation, maximizing generalizability of results.

All benchmarks were compiled using pthreads and run
with their ‘native’ inputs [43]. The level of parallelism is set
equal to the number of CPUs for each test. We always pre-
warmed the OS buffer cache to minimize I/O operations.
We take the average of 10 iterations as our result. We use
the per £ profiling tool for all measurements.

4.3 Scenarios

Because certain forms of overhead only appear when multiple
VMs share resources [13], we conduct all experiments in 2
scenarios: undercommitted (UC) and overcommitted (OC). We
launch resp. 1 and 2 identical VMs running a benchmark
instance on the same pCPU set. By using identical workloads
we avoid unfair resource allocation, which is known to be an
issue for synchronization-heavy workloads [44]. When both
VMs demand all available resources, each will receive 50 per-
cent thereof. Thus, y, = V—Q” VMM cycles can also be split
equally between VMs, so that C, = % + Cyy = % Note
that when the VMs would not be running identical workloads,
these measurements would be much more complicated.

1. https:/ /linux.die.net/man/1/taskset
2. https:/ /man7.org/linux/man-pages/manl/perf.1.html
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Fig. 2. Box plots of virtualization overhead for the sequential versions of
all PARSEC and SPLASH2X workloads, aggregated for each scenario.

Since in Section 3 P(S,,) = V(S,), C, and t, refer to under-
committed native execution, even when S, includes over-
committing the system. This is conceptually sound, since
multiplexing system resources between V(S,) and other
tasks is opaque to the VM and thus a virtualization effect
from the perspective of the workload. On the other hand, this
intertwines the effects of virtualization and hardware consol-
idation. To address this, we supplement the UC and OC data
sets discussed above with the data set’overcommitted base 2’
(OC,), which directly compares C, and ¢, for 2 concurrent
VMs each running one instance of W to C), and ¢, when exe-
cuting 2 concurrent instances of W on P(S,,).

5 RESULTS

5.1 Sequential Applications

We first briefly analyze virtualization overhead for sequen-
tial applications to compare it to their multithreaded coun-
terparts. Fig. 2 shows the aggregate results for sequential
executions of all PARSEC and SPLASH2X workloads.

As Fig. 2 shows, virtualization overhead has been mini-
mized for sequential workloads. On average, both 85, and
81, are negligible. Some outliers can be observed however.
Detailed analysis reveals that these are attributable to I/O.
This is a well-known issue, as described in Section 2.2.

Generally, én, > én, in Fig. 2. In the OC scenario, 87, is
even negative. We found that QEMU is responsible for this,
as it has to handle write-backs of newly generated data
(reads come from the pre-warmed OS buffer cache). This
consumes up to 20 percent of the CPU cycles. Because
QEMU runs on a separate thread in parallel with the VMs,
this does not increase 87,. On the contrary, this effect results
in a negative 87, in the OC scenario since a vCPU from the
second VM may run while the first is waiting for QEMU.

5.2 Multithreaded Applications

We collected virtualization overhead for multithreaded
applications analogously to Section 5.1. Fig. 3 shows the
results with a separate set of bars for each vCPU count.

Fig. 3 shows that also for multithreaded applications, é, is
limited in general. In the OC scenario, it is even strongly nega-
tive; increasingly so as the vCPU count increases. First, this is
caused by processing I/O in the background, as described in
Section 5.1. Second, the 2 instances of the benchmark that
share each pCPU can compensate for each other’s idle time.
When a vCPU starts to idle in the UC scenario, the pCPU is
also idle. In the OC scenario however, a vCPU from the other
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Fig. 3. Box plots of metrics of interest for multi-threaded executions of all PARSEC and SPLASH2X workloads. Results are shown separately for each
vCPU count. Overcommitted results are measured in 2 ways, as described in Section 4. Results for all benchmarks are aggregated for each scenario.

VM can be scheduled, thus increasing system throughput.
This is confirmed by the OC, data set, for which &y, is positive
as in a native setting this consolidating effect also occurs.

Fig. 3 also shows that multithreaded applications still suf-
fer high virtualization overhead compared to sequential ones.
Overhead tends to greatly increase with vCPU count, indicat-
ing that mitigating it will only gain importance as time goes
on, since VMs tend to become ever larger in size. However,
we are pleased to find that great advancements have been
made in the past few years. For example, a study from only 5
years ago found that the performance of Dedup could be
degraded by more than 500 percent when the system is over-
committed [8], much more than any value in Fig. 3.

When comparing Figs. 2 and 3, the variance between
benchmarks appears to be much greater for multithreaded
executions than for sequential ones. For some benchmarks
81, is strangely negative, while for others it may be over 150
percent. To gain a deeper understanding of these results, we
provide a detailed breakdown of the multithreaded execu-
tions in Fig. 4, showing the average and maximum
8n, (Fig. 4a) and &1, (Fig. 4b) for each benchmark for all vCPU
counts combined with overlapping bars. Fig. 4b breaks each
of the overlapping bars down into 2 parts stacked on top of
each other: cycles spent in the guest and host, resp.

Fig. 4 provides several insights. First, the OC, data set
explains why 85, < 0 for some benchmarks in the OC sce-
nario (e.g., FFT, Radiosity, s.Raytrace). Namely, overcommit-
ting has a positive effect on 5, in a native setting as well.
This is thus an effect of consolidation rather than virtualiza-
tion. The main causes are the following;:

e  Reduced lock contention: As the system is overcommit-
ted, the effective CPU utilization of individual bench-
marks is lower. As less threads are competing for the
same spin locks, less cycles are wasted spinning;

o  NUMA management: When the system is overcommit-
ted, the scheduler can do a better job of balancing the
workload between different NUMA nodes, thus reduc-
ing memory latency. This is discussed in detail in
Section 6.1.

e  Reduced idling: When a CPU runs out of work, the OS
performs several operations to prepare it to idle. We
explain this in detail in Section 6.2.1. When the sys-
tem has more work, it is less likely to start idling,
thus eliminating these operations.

Lastly, 65, and 87, may be wildly divergent for multithreaded
workloads in contrast to their sequential counterparts according
to Figs. 2 and 3. To better understand this, we define the overhead

. 1+6 .
impact factor w = 11’5;’* as a measure of the correlation between
T

system and application effects. For multithreaded applications,
the variance in o (ow) is very high. For example, for Bodytrack,
UC o = 1.1, while for Ocean CP, OC w = 0.6. This suggests that
overhead may vary in nature depending on the workload.

The main reason for the high ow in Fig. 4 is that the run-
time of a multithreaded application is determined by its
critical path [45]. When 87, is located mostly on the critical
path, 87, increases drastically. Otherwise, 85, may have little
to no effect on 87,. To illustrate this, we collected the cycles
spent by each (v)CPU for Bodytrack and Ocean CP, 64
vCPUs, UC. Fig. 5 shows the distribution of the native and
virtualized cycles by vCPU ID, normalized to native.

Fig. 5 shows that system-level overhead is distributed
very differently between vCPUs for Bodytrack and Ocean
CP. None of the vCPUs show much overhead for Bodytrack,
except for 1. It is likely other vCPUs will at some point have
to wait for this overhead-heavy vCPU since it has so much
work, thus slowing down the entire application. For Ocean
CP, the distribution of extra work is much more egalitarian.
Because of this, many of the extra cycles are likely not part
of the critical path, yielding a much smaller w.

6 VIRTUALIZATION OVERHEAD BREAKDOWN

The large variance in 67,, 6, and @ between benchmarks in
Section 5.2 suggests that multiple causes are responsible,
warranting detailed analysis. Because Fig. 4 reveals patterns
in overhead profiles between benchmarks, we begin by cate-
gorizing them based on said profiles. Since én, and 81, are
not strongly correlated and &7, represents merely the exter-
nal symptoms of 87,, we focus only on the latter as a guiding
metric for this categorization. Some benchmarks exhibit
characteristics of several overhead profiles and were there-
fore added to multiple categories.

o  Negligible overhead (OH): Barnes, Ferret, FFT, FMM,
Fregmine, LU NCB, parsec.Raytrace, Radiosity, splash2x.
Raytrace, Swaptions, Water NSquared and Water Spatial.

e High quest OH: Blackscholes, Canneal, Fluidanimate,
Ocean CP, Ocean NCP and Radix.

e High host OH: Bodytrack, Dedup, Facesim, Vips and
Volrend.

e High OC OH: LU CB, Streamcluster, Vips, Volrend, X264.
Below we discuss each of the categories defined above in
detail. Because Figs. 3 and 4 indicate that overhead varies
severely between VM sizes, we start each analysis by break-
ing the overhead down for each VM size in the most rele-
vant scenario, after which we reason about the causes and
reinforce our conclusions with empirical evidence. We care-
fully consider the generality of our findings.

Authorized licensed use limited to: Hofstra University. Downloaded on March 18,2023 at 20:18:35 UTC from IEEE Xplore. Restrictions apply.



2562

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 10, OCTOBER 2021

150

-50 avgmax
UC, guest
UC, host

avg[max avg[max
OC, guest OC,, guest

OC, host 0C,, host
P A PO N PO N PO O P T P
& & PN EL PN @R
SO S AR R P\ N
& @é\@ots & o ‘<’§J® ¢ Ab'b"\\é\ ¢ Q@&(\ » N
o X

Fig. 4. Average and maximum én, (a) and 8n, (b) for the studied vCPU counts, displayed separately for each benchmark with overlapping bars.

6.1 High Guest Overhead

Several benchmarks with high guest overhead display most
overhead in the UC scenario in Fig. 4. While some show
higher OC overhead, the OC, data is similar to UC, indicating
that even on physical systems, overcommitting adds over-
head. The increase in OC overhead is thus due to resource
consolidation rather than virtualization. We therefore con-
clude that analyzing the UC scenario is sufficient for this cate-
gory of benchmarks. Fig. 6 shows the results.

In Fig. 6, overhead is negligible for vCPU counts below 32,
after which it increases enormously. Since from 32 vCPUs we
use multiple sockets, NUMA may be the culprit. Namely,
memory-intensive applications may often access data on
remote NUMA nodes. In a VM, the guest scheduler lacks
NUMA information, preventing it from optimizing locality
like it would natively. For computation-intensive workloads
like ours, cycles per instruction (CPI) can prove this hypothe-
sis by indicating memory latency [46], as shown in Fig. 7.
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Fig. 5. Distribution of cycles over (v)CPUs for the 64 (v)CPU variants of
Bodytrack and Ocean CP, normalized to native so that S°% | P(C) =
(8n, + 1)(x100%), with C a particular CPU ID.

Fig. 7 verifies our intuition. Overhead is highest for the
benchmarks with the highest CPI, being the most memory-
intensive benchmarks. For native executions, CPI increases
slightly with CPU count. When virtualized, this increase is
much more pronounced, particularly for 64 vCPUs. Ocean
CP is the only exception. Detailed analysis shows that this
benchmark is bottlenecked by memory bandwidth. When
more CPU sockets are used, available bandwidth increases,
improving performance despite increased memory latency.

For all benchmarks in Fig. 6, w is low. The reason for this
is that performance-critical data tends to be accessed often
and thus cached. Only data that is rarely used is fetched
from main memory, which is usually input for worker
threads and therefore not directly on the critical path.

Abstraction of the underlying system is a core concept of
virtualization, implying that the above issue is independent
of the virtualization technology used. Rather, it depends on
the host system P(S,). All popular virtualization platforms
are known to struggle with NUMA locality [4], [47].

6.2 High Host Overhead

Most benchmarks in this category suffer most in the UC sce-
nario. Those that do not (Vips and Volrend) are also included
in the "high overcommitted overhead’ category. To avoid
duplicate results, we only break down the overhead in
detail for the UC scenario here. Fig. 8 shows the results.

Fig. 8 is interesting. &1, rises until 32 vCPUs, but drops
severely at 64. §n, however keeps rising for all benchmarks
except Vips. w thus varies greatly between benchmarks and
vCPU counts. It is obvious that a deeper analysis is neces-
sary. Since any host operations are preceded by a VM exit in
hardware-assisted virtualization, we break down the host-
level CPU cycles by VM exit reason in Fig. 9. We show both
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Fig. 6. Breakdown of virtualization overhead for the benchmarks with
high guest overhead per studied vCPU count in the UC scenario.

the UC and OC scenarios to include meaningful results for
Vips and Volrend.

Fig. 9 explains the variance in w observed in Fig. 8. The
strange pattern for 6, is exclusively attributable to schedul-
ing. When scheduling cycles are ignored in Fig. 8, one
observes a consistent, high w. This makes sense, since in
the UC scenario, VMM:-level scheduling only occurs when
the VM voluntarily yields the vCPU. Therefore, host-level
scheduling is rarely on the critical path. Most other VM exits
are caused by the VM performing sensitive operations.
Many of these are by nature highly likely to be on the critical
path, thus yielding a high w. Below, we discuss Fig. 9 in
detail in terms of the high-level overhead causes.

6.2.1 Blocking Synchronization

Blocking synchronization is prevalent in multithreaded appli-
cations. VMM intervention is usually not necessary in this
process, as it is mostly implemented in user space. There are
however 3 exceptions to this rule:

e  When a thread blocks and no other work is available
for the (v)CPU, the OS executes the HLT instruction.
This generates a VM exit. The VMM then usually
schedules another vCPU, if available. Because sched-
uling is expensive, KVM implements an optimization
called halt polling [48]: The host first polls for a dynami-
cally determined amount of time before scheduling,. If
the vCPU is woken up by the guest kernel during this
time, it is immediately rescheduled.

e When a contended lock is released, usually one
waiting thread is woken up. If there are any idle
CPUs, the kernel sends one of them a RESCHEDULE
inter-processor interrupt (IPI). On the receiving (v)
CPU, the scheduler is invoked and the newly awo-
ken thread is run [44]. Sending an IPI requires writ-
ing to the ICR MSR, which triggers a VM exit.
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Fig. 7. CPI for the benchmarks of interest per vCPU count, UC.
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Fig. 8. Breakdown of virtualization overhead for the benchmarks with
high host overhead per vCPU count in the UC scenario.

e Linux updates the global system time through the sched-
uler tick: periodic per-CPU timer interrupts driven by
the CPU’s time stamp counter (TSC) (250 Hz for Ubuntu
18.04). When a thread blocks and no runnable tasks are
available for the (v)CPU, an idle governor runs to predict
heuristically how long the CPU will likely be idle. If the
predicted idle time is sufficiently long, the idle governor
reduces the tick frequency to 1 Hz for that CPU. When
the CPU wakes up again, the original tick frequency is
restored [31]. This is called tickless kernel mode and yields
energy savings of up to 70 percent [49]. However, alter-
ing the tick frequency requires writing to the
TSC_DEADLINE MSR, inducing a VM exit.

All the above causes are correlated. When a thread blocks
and there are no other runnable tasks for the vCPU, the
guest usually disables its scheduler tick and halts it,
resulting in 2 VM exits. When the thread is woken up
again, 2 more VM exits follow for sending a RESCHEDULE
IPI and re-activating the scheduler tick. Thus, each block-
ing operation results in up to 4 VM exits. Fig. 9 shows
that each of these operations can be costly. We were espe-
cially surprised to find that TSC_DEADLINE MSR writes
account for a 7, of up to 10 percent, since tickless kernels
have been described before as having a positive effect on
virtualization [50].

While 3 out of 4 VM exits associated to blocking synchroni-
zation are caused by MSR writes, Fig. 9 shows that scheduling
overhead still dominates. We found that scheduling is almost
always triggered by a HLT VM exit. When halt polling is suc-
cessful (i.e., the vCPU is woken up before the polling ends and
is immedjiately rescheduled), the cost of handling this VM exit
is limited. When it is unsuccessful however (i.e., the polling
interval expires and the vCPU needs to be descheduled any-
way), the cost becomes very high. Because cycles spent on
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Fig. 9. Breakdown of host cycles for the benchmarks with high host over-
head into their main causes per vCPU count.
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unsuccessful polling only slow down the scheduling process,
we consider them as scheduling overhead as well in Fig. 9.
Halt polling has 3 interesting implications for virtualization
overhead. First, 87, is in general much higher for 32 vCPUs than
for 64 in Fig. 9. This is a consequence of the heuristics KVM uses
to manage the polling threshold. If the poll was unsuccessful,
KVM grows or shrinks the threshold if the vCPU was blocked
for resp. a short or long time. [31]. As vCPU counts increase, so
do contention, average blocking time and the polling threshold.
At 64 vCPUs however, the average blocking time is so long that
the polling threshold shrinks to 0. We confirmed this by measur-
ing the success rate of halt polling, which drops from 30 percent
on average for 4 vCPUs, to close to 0 percent for 64 vCPUs. Sec-
ond, halt polling is largely responsible for the strange evolution
of w in Fig. 8. By design, halt polling expends CPU cycles to
improve performance, lowering @ ever more as the polling
threshold grows up to 32 vCPUs. When the polling threshold
shrinks back to 0 for 64 vCPUs, w rises drastically as 67, drops
at the expense of 8n,. Lastly, 81, is higher in the UC scenario
compared to OC in Fig. 9. Contrary to the UC scenario, polling
can degrade system throughput in the OC scenario, as other
VMs may use the cycles spent on polling to make progress.
KVM solves this by disabling polling altogether when the CPU
has other runnable tasks [31], reducing 7, in the OC scenario.
Halt polling overhead may vary between VMMs. In Xen
HVM for example, halt polling is not implemented. 87, will
thus be lower in the UC scenario for Xen than for KVM,
while 81, will be higher. In the OC scenario, scheduling
overhead for Xen will be comparable to KVM. On the other
hand, as the root cause of the TSC_DEADLINE MSR writes
lies in the guest OS, this overhead may vary between guests.
The induced VM exits are handled comparably by Xen and
KVM, as are IPIs. In terms of hardware, Intel and AMD offer
unique APIC virtualization extensions (resp. APICv [16]
and AVIC [22]). While implementation details differ, their
effect and performance are similar. Both eliminate the need
for VMM intervention to inject the IPI and acknowledge its
receipt, but still require a VM exit to write the ICR MSR.

6.2.2 Virtual Memory Management

Fig. 9 shows that Dedup and Vips spend a lot of cycles on
processing TLB shootdown IPIs. The TLB is a per-CPU
cache that stores page table entries (PTEs) [16]. TLB consis-
tency across different CPUs has to be maintained by the OS.
When a process changes a PTE, the OS sends a TLB shoot-
down IPI to all other CPUs using the same virtual address
space to make them flush the altered entry from their TLBs
[31]. This induces a VM exit due to the ICR MSR being
written.

The high-level cause of TLB shootdown IPIs is data shar-
ing between threads. The exact amount of such IPIs is highly
dependent on the application source code and underlying
system libraries. The glibc memory allocator can in some
cases perform excessive heap resizing operations that induce
these IPIs. For example, when an application often allocates
small amounts of memory at the top of the heap and frees ita
short while later, glibc will trim the heap and return the
pages to the OS, only to request them again soon after. This
induces many madvise and mprotect system calls, which
send the vast majority of TLB shootdown IPIs observed in
Fig. 9 [5]. While there are other causes of IPIs such as page
migrations, we found them to be insignificant for our work-
loads compared to heap resizing.
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The direct virtualization overhead for sending a TLB
shootdown IPI is identical to that for rescheduling IPIs. As
this overhead is handled comparably across hardware plat-
forms and VMM, similar performance can be expected for
AMD- or Xen-based systems.

6.2.3 Spinning at Kernel Level

Some years ago, spinning at kernel level was a serious issue for
overcommitted virtualized systems in the form of LHP and
related issues, as described in Section 2.2. Our experiments
however show that PLE is very effective at dealing with this.
We found that for our experiments, only Vips in the OC sce-
nario suffers from many PLE VM exits. While the overhead
caused by these exits themselves is low, they invoke the sched-
uler, inducing significant scheduling overhead. As Vips incurs
negligible HLT and preemption timer VM exits compared to
the other workloads suffering high host-level virtualization
overhead, almost all the scheduling overhead for Vips shown
in Fig. 9 can be attributed to PLE. Nevertheless, we consider
this scheduling overhead acceptable, since it is comparable to
that for other benchmarks in the OC scenario and the scheduler
would otherwise be triggered anyway by other mechanisms.

Despite our reassuring results, PLE is not a fundamental
solution, since it can only trigger a VM exit after some spinning
has already occurred. Because this spinning takes place in the
guest kernel, it is visible as guest-level overhead in Fig. 4. Over-
all however, we are pleased to note considerable progress in
dealing with LHP and related issues in recent years. Only half
a decade ago, 17, was over 500 percent for Dedup on overcom-
mitted systems, mainly due to LHP [8]. Thanks to PLE, 81, ~
—20% (OC) or 81, ~ 50% (OCy).

AMD implements pause filter (PF) in its CPUs, which is
identical to Intel’s PLE [22]. Both solutions are treated
equally by KVM as well. Xen source code reveals that it han-
dles PLE/PF much like KVM. We thus conclude that spin-
ning at kernel level has been tackled effectively across
hardware and virtualization platforms.

6.3 High Overcommitted Overhead

Naturally, we break down the overhead for this category in
the OC scenario. We choose the OC, data set to eliminate
the effects of server consolidation, as we are purely inter-
ested in the overhead itself. Fig. 10 shows the results.

The benchmarks in Fig. 10 seem to consist of 2 sub-
groups: those with resp. positive (LU CB, Vips, X264) and
negative (Streamcluster, Volrend) virtualization overhead.
Note that besides overcommitting overhead, Streamcluster
suffers from NUMA locality issues, distorting the results.

In an effort to understand the patterns in Fig. 10, we com-
pare the callstack of the UC and OC executions of the bench-
marks in terms of CPU cycles. We only show the 64 vCPU
variants, since Fig. 10 indicates there is limited variance
between vCPU counts. Fig. 11 shows the results.

Fig. 11 shows that for subgroup 1 in Fig. 10 the system
function smp_call_function_many is mainly responsi-
ble for the difference between UC and OC CPU time, while
for subgroup 2 some application-level functions are the cul-
prit. We discuss each group in detail below.

6.3.1 TLB Shootdown Preemption

smp_call_function_many is a system-level function used
to send TLB shootdown IPIs. In the OC scenario, these IPIs
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Fig. 10. Breakdown of the virtualization overhead in the OC2 scenario for
the benchmarks that show high overhead in the OC scenario.

thus become even more costly. Namely, the sending vCPU
must synchronize with the receiving vCPUs by means of a
spin lock before proceeding. When a receiving vCPU is not
running, the sender must wait until it is rescheduled, which
leads to excessive spinning. While PLE largely mitigates this,
PLE itself is not cost-free (see Section 6.2.3). This also explains
the many PLE VM exits for Vips observed in Fig. 9. This is
known as the TLB shootdown preemption problem [51].

6.3.2 User-Level Spinning

Streamcluster and Volrend show greatly increased CPU time
for particular application functions in the OC scenario. By
analyzing the source code of these functions, we found that
they implement their own spinning-based synchronization
at user level, rather than using kernel routines. Previous
research has shown that many applications make use of
similar primitives [52]. This leads to an LHP-like problem at
user level. PLE can not intervene here, as it relies on the
PAUSE instruction to work. User-level synchronization
primitives rarely compile down to this instruction. More-
over, PLE only works in kernel mode (CPL = 0) [16].

We use Volrend as an example to illustrate the user-level
spinning problem, since it suffers the most from this issue.
When analyzing the source code of the Ray_Trace func-
tion, which consumes approx. 10 times more cycles in the
OC scenario in Fig. 11, we find that it utilizes the following
user-level spin-based barrier:

Listing 1. User Level Spin-Based Barrier in Volrend

LOCK (Global->CountLock) ;
Global->Counter-;

UNLOCK (Global->CountLock) ;
while (Global->Counter) ;

By definition, user-level spinning is heavily dependent
on the application source code. Additionally, we found 2
factors that influence the severity of user-level spinning;:

e Increasing thread- and vCPU counts lead to more inten-
sive spinning synchronization, as shown in our experi-
ments. This problem will thus gain importance towards the
future, as VM sizes tend to grow.

e More frequent task switches increase the chance that a
thread holding a lock gets preempted, increasing the sever-
ity of user-level spinning. Figs. 4 and 10 prove this, as Vol-
rend shows high overhead for the OC data set, but negative
overhead for the OC, data set. First this indicates that
the overcommitted native execution is much slower than
the undercommitted one, meaning that user-level spinning
is also an issue when running natively. Second, the
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Fig. 11. Comparison of subroutine CPU profile between UC and OC vir-
tualized execution with 64 vCPUs for the benchmarks of interest.

overcommitted virtualized execution is faster than its native
counterpart because in each VM there is only one instance
of the benchmark, while natively 2 instances are run within
the same OS for the OC, data set. As time slices are allocated
to vCPUs at a much larger granularity than to threads, it is
much less likely that a lock-holding thread is preempted in
a VM, thus reducing user-level spinning.

From Fig. 4, it is clear that user-level spinning is an as of
yet unaddressed issue with potentially severe performance
implications in both native and virtualized contexts. On the
other hand, Fig. 11 shows a decrease in kernel-level spinning
(native_gqueued_spin_lock_slowpath) and blocking
synchronization (pthread_mutex_trylock) for Stream-
cluster, for reasons explained in Section 5.2. Combined with
the NUMA issues for this benchmark identified above, this
illustrates the complexity of quantifying overhead and cate-
gorizing the benchmarks.

Since user-level spinning originates from the application,
it must be treated as a conceptual rather than an implemen-
tation issue from the VMM'’s perspective. Therefore, all
VMMs and hardware are equally prone to this problem.

7 MITIGATION

It is evident that multithreading still induces substantial vir-
tualization overhead stemming from various sources. Con-
ceptually, we can group these sources in 2 categories:
thread coordination and NUMA locality. The former can be
split further into blocking synchronization, spinning syn-
chronization and memory management. Below we highlight
the challenges to further reducing overhead for each of
these categories and discuss promising research directions.

7.1 Thread Coordination
7.1.1  Blocking Synchronization

Research efforts regarding overhead induced by blocking syn-
chronization mainly focus on vCPU scheduling. Currently,
halt polling is already adopted in KVM, albeit seemingly at a
high cost (see Section 6.2.1). To clarify this perception, we com-
pared én, and 81, from the experiments in Fig. 8 to identical
experiments with halt polling disabled. Fig. 12 shows the
results. We omit the OC scenario since the impact of halt poll-
ing is much smaller there, as discussed in Section 6.2.1.

Fig. 12 shows that halt polling is not very efficient. While
it reduces én, by up to 14 percent, this comes at a great cost
in cycles. When performance is the only concern, this is jus-
tifiable. However, in these days of efficiency being a pri-
mary concern and cloud providers charging users by the
CPU-ms, such situations are becoming a rarity. Moreover,
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Fig. 12. 8n, and &5, caused by halt polling for the benchmarks with high
host overhead per vCPU count, UC.

halt polling is much less effective when the system is over-
committed and/or VM sizes are large, indicating that it is
not a durable solution in heavily consolidated cloud envi-
ronments, especially towards the future.

The above issues are inherent to the polling concept. It is
very hard to balance performance and efficiency, especially
on the overcommitted systems where any cycles spent on
polling reduce throughput. The reluctance of Xen to adopt
halt polling underpins this. Therefore more intelligent solu-
tions are highly desirable. Existing research has attempted to
replace polling by computation migrated from other vCPUs,
but this introduces vCPU overloading as a side-effect [15]. A
recent solution, vScale [53], can reduce such side-effects, but
requires substantial changes to the guest OS.

IPI-induced overhead has received much attention from
hardware manufacturers. APICv and AVIC reduce IPI-
induced overhead by 60 percent. Nevertheless, our results
indicate that this issue is still significant, especially since
IPIs are often on the critical path. Strict co-scheduling could
solve this problem since it would eliminate the need for
intercepting IPIs because whenever a guest CPU sends an
IPI, the receiving vCPU is guaranteed to be running on the
intended pCPU. However, co-scheduling has its own issues
such as CPU fragmentation [44].

Overhead related to management of the scheduler tick can be
swayed by tweaking the boot parameter CONFIG_NO_HZ in
Linux [49]. One can choose to never disable the scheduler tick,
only disable it on idling CPUs (default), or disabling it on CPUs
that have at most 1 runnable task. We found that never disabling
the tick does not improve performance accordingly. While we
did find a large reduction in writes to the TSC_DEADLINE
MSR, the writes to the ICR MSR increased drastically, since the
scheduler will be much more likely to send RESCHEDULE IPIs
to idling cores when the tick was not disabled. Moreover, on
highly overcommitted systems this may lead to overwhelming
overhead, as the host must handle each guest’s tick interrupts
individually [50]. Disabling the tick for CPUs that have at most
one runnable task can be a solution for some workloads, but for
others such as dedup that have many more threads than cores by
design this merely offsets the problem from the transition
between 1 and 0 runnable tasks to that between 2 and 1.

All the issues with blocking synchronization are caused by
discontinuous CPU availability to idle vCPUs. Efficiently
increasing CPU availability in system software must handle
difficult trade-offs (e.g., polling versus blocking). System soft-
ware has no direct knowledge of the workload, and must rely
on heuristical approaches. Hardware solutions increase the
hardware contexts in a core to guarantee a hardware context
for each vCPU and ensure CPU availability without reducing
throughput. As full-fledged hardware solutions are not
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Fig. 13. Number of virtualization-sensitive synchronization operations for
the PBARSEC workloads relative to their original equivalents that show
many such operations per vCPU count, UC.

readily available, enabling SMT can increase CPU availability
and serve as a mitigation.

Because system solutions are challenging, an alternative
approach is desirable. Literature shows that one such approach
could be adopting a different application architecture that
focuses on data parallelism and eliminating dependencies
between threads as much as possible. Such application-level
solutions can be highly effective for synchronization-heavy
workloads [5]. The obvious downside of this approach is that it
can be labor-intensive. However, solutions aiding in this pro-
cess exist. For example, parallel patterns can abstract the imple-
mentation details of multithreading from developers. The
authors of [54] have applied this technique to the PARSEC
benchmark suite. We profiled their implementation to asses its
effectiveness in reducing virtualization-sensitive synchroniza-
tion operations. Fig. 13 shows the results for all the PARSEC
benchmarks identified in Section 6.2.1 as having high synchro-
nization overhead, broken down per vCPU count in the UC
scenario. Comparable results are expected in the OC scenario.

Fig. 13 shows promising results. All synchronization oper-
ations have been reduced by up to 70 percent. The improve-
ment tends to increase with vCPU count. One exception
seems to be the HLT operations for Dedup. However, profiling
Dedup in detail reveals that these operations are induced by I/
O rather than synchronization. Fig. 13 also suggests this, as
the RESCHEDULE IPIs are drastically reduced. This suggests
that application-level solutions indeed have great potential.

Our results in Section 6.2.3 show that spinning in guest OS
kernels is no longer a major concern for virtualized multi-
threaded applications, largely thanks to PLE. In Linux, this
hardware mechanism is supplemented by PV-spinlocks, fur-
ther reducing LHP-like problems in many critical areas [31].

On the other hand, user-level spinning remains a chal-
lenge. Apart from co-scheduling with its known issues,
addressing this issue at system level is very challenging,
because programs may implement spinning in many different
ways. This makes detecting user-level spinning at runtime
without knowledge of application specifics prohibitively
expensive if not impossible. Because the problem originates
in user space, solutions at application level are naturally
highly appealing as such an approach allows tackling the
issue directly and precisely. Below we discuss a few options:

e Alternative synchronization primitives could be used in
a variety of ways. First, spinning can manually be
replaced by blocking synchronization in application
source code. We explored this approach for wvolrend,
finding that », and én, were reduced by resp. 60 and 25
percent in the OC, 64 vCPU scenario. These results are
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somewhat modest since blocking synchronization is
much more costly than spinning and introduces new
host-level overhead (see Section 6.2.1). Alternatively,
spin-then-block primitives which first spin for a short,
heuristically determined time, after which they block
can be used. Programming language APIs should pro-
vide such abstractions. Complementarily, compilers
and interpreters could also be extended to detect basic
user-level spinning constructs and replace them with
these spin-then-block primitives.

e A solution exploiting PLE is possible by making
user-level spin locks compile down to the PAUSE
instruction, either through automated detection by
the compiler/interpreter or through the use of dedi-
cated primitives and extending the hardware so that
PLE works at user level.

e A VMM-level solution could be to use pause exiting
rather than pause-loop exiting, which generates a VM
exit on each PAUSE instruction [16]. On such an exit,
the VMM can reschedule the vCPU immediately for a
while until a threshold is reached. If the vCPU keeps
exiting, LHP is likely and another vCPU can be sched-
uled. This principle is similar to halt polling. While
this approach may be more demanding in terms of
resources, it does not burden application developers
and does not require hardware extensions.

7.1.2  Memory Management

The last sizeable remaining challenge regarding virtualizing
memory in x86 is TLB consistency. The core issue here is the
fact that in x86, the TLBs are populated by hardware but -in
contrast to other caches- have to be synchronized by the OS.
Because of this, the contents of each TLB are opaque to the
OS, leaving little room for optimization. Even in a native
context, this can have problematic performance implications
[55]. In VMs, TLB shootdown cost is even greater due to
the ICR MSR write VM exits associated to sending IPIs and
TLB shootdown preemption. Our results from Section 6.2.2
show that despite recent hardware improvements (APICv/
AVIC), TLB shootdown overhead can still be significant.
We envision several possible mitigation strategies:

e Many alternative TLB designs have been proposed,
e.g., using a shared TLB or implementing various
forms of TLB synchronization in hardware [56].
These proposals could easily be extended to work
for virtualized systems since modern TLBs contain a
VM ID tag for each TLB entry [16].

e Strict co-scheduling could eliminate the need for
VMM handling of ICR writes as well as TLB shoot-
down preemption. Implementation and drawbacks
are already discussed in Section 7.1.1 in the context
of scheduling IPIs.

e Since the root cause of most TLB shootdowns for
computation-intensive multithreaded workloads lies
at application level, altering source code is a viable
option as well. However, besides laborious, this is
highly challenging since memory allocators are very
complex. Identification and correction of problem-
atic code without greatly compromising memory
efficiency is therefore not an easy task.
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e Application memory allocators could be tweaked so
that they call system routines inducing IPIs much
less often at the inevitable expense of some memory
efficiency. Essentially, we argue that rising TLB
shootdown cost due to increasingly parallel and vir-
tualized systems warrants reconsidering the trade-
off between memory efficiency and performance
from a memory allocator design perspective. We
consider this the most promising approach.

7.2 NUMA Locality

Several approaches already exist to deal with excessive mem-
ory latency in VMs. Two methods are common: passing
through the hardware NUMA architecture to the VM, and
using automated heuristical NUMA-optimization algorithms
at VMM level. The former method is available in every major
VMM [4]. The latter is integrated in most common VMM and
OS schedulers. Besides, one can use dedicated daemons that
advise the kernel on optimal memory locality. Optimizing
these automated techniques is the subject of active research,
independent of the VMM used [4], [47].

We assess the effectiveness of both NUMA-optimization
methods described above for the 64 vCPU, UC variant of
the benchmarks from Fig. 6. Since the former method relies
on the guest OS scheduler, identical performance can be
expected for any VMM. For the latter method, much more
variance between VMMs is possible, since each VMM uses
its own algorithm. However, results for 1 algorithm may
give some indication of how others will behave. We pick
numad’, which is a common dedicated NUMA locality
management daemon for Linux/KVM. We analyze the
number of local and remote memory accesses using the tool
pcm-numa.?t Fig. 14 shows the results, normalized to native.

As Fig. 14 shows, memory locality is greatly reduced for
all benchmarks when run in a VM without optimizations.
Manual NUMA exposure mitigates this issue entirely. This
solution however reduces the potential for resource consoli-
dation, since vCPUs can no longer be migrated between
sockets without compromising the advantages of passing
through the NUMA architecture to the guest. While numad
achieves even better locality than manual passthrough, its
performance is unpredictable. After analyzing &7, for the
benchmarks from Fig. 14, we found that for Blackscholes,
Canneal and Radix, using numad reduces 8,, despite often
increasing memory accesses. For the other benchmarks
however, an additional é», of up to 45 percent is observed.

From Fig. 14 it is unclear which NUMA-optimization
method is preferable, since their relative performance varies
greatly between benchmarks. We investigate this further by
analyzing the benchmark for which numad shows the worst
8n,, Ocean CP, in detail. First, we found that numad itself
consumes many cycles. Second, Ocean CP is bottlenecked by
memory bandwidth, as noted in Section 6.1. Numad seems
to ignore this metric, only optimizing locality. Because more
threads are scheduled on the same socket, the bottleneck
magnifies. On the other hand, manual exposure is tedious
and limits flexibility regarding resource allocation and VM
migration. Thus, neither solution is universally superior.

We were surprised to find that NUMA-locality is still
such a severe issue in virtualized systems. The underlying

3. https:/ /linux.die.net/man/8/numad
4. https://github.com/opcm/pcm
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Fig. 14. Memory locality normalized to native for varying NUMA man-
agement techniques applied to the benchmarks with high guest over-
head in the UC, 64 vCPU scenario.

issue is dynamic scheduling of vCPUs. If we can guarantee
that a vCPU will always be scheduled on the same NUMA
node, the NUMA architecture can be automatically exposed
to the VM. The strict co-scheduling and SMT-based
approaches proposed in Section 7.1 could provide exactly
this guarantee. Alternatively, if improvements are made to
numad to take more metrics into account, it can be highly
effective as well. Lastly, [4] proposes extended paravirtuali-
zation (XPV) (applied in Xen). This method alters the guest
OS so that it can dynamically change its NUMA configura-
tion through communication with the hypervisor. While
native performance can be achieved like this without the
flexibility restrictions of classic NUMA passthrough, it
requires changes to the guest kernel, limiting its potential.

8 THREATS TO VALIDITY

As this work is based on controlled experiments, it is empir-
ical in nature. Threats to validity are inherent to any such
endeavors. We aim to provide the reader with the correct
context in which to interpret our results by discussing the
main threats to validity for this study below:

e  First, any work measuring benchmark performance is
faced with non-determinism inherent to some system
components (e.g., variations in scheduling, external
interrupts,...). Despite our best efforts as described in
Section 4, we found that a variance of approx. 5 per-
cent is to be expected in all measurement results. Par-
ticularly benchmarks that suffer from NUMA locality
issues are sensitive to such non-deterministic perfor-
mance fluctuations, since slight variations in schedul-
ing heavily influence their overhead.

e Naturally, our measurement results are only valid
for our exact system configuration. Nevertheless, the
identified high-level overhead causes are conceptual
in nature, regardless of system or workload specifics.
Moreover, in Section 6 we reasoned about how our
findings would translate to other platforms. In this
way, this paper is to a large extent implementation-
agnostic, despite its empirical nature.

e  While we are confident that we identified the vast major-
ity of remaining challenges within the scope of the paper,
it is impossible to guarantee this. Due to the many layers
of abstraction in virtualized systems and quasi endless
variety of workloads these systems may be tasked with,
some issues that did not emerge in our analysis might
surface under very specific circumstances.
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e Software typically evolves rapidly. While we used the
newest version of Ubuntu when we started this study,
by the time we completed it many newer Linux/
Ubuntu versions have been released. While it is impos-
sible to redo our entire analysis every time a new ker-
nel version is released, we provide a strong indication
that our results will be valid for a long time to come by
running the 64 vCPU variant of 1 benchmark from
each category defined in Section 6 using the latest sta-
ble Linux kernel on the host at the time of finishing this
project: 4.19.88. We chose the benchmarks Bodytrack,
Ferret, Ocean CP and X264 for this purpose.

We found that all tested benchmarks yield almost identi-
cal results on the new kernel compared to kernel 4.15, with
the exception of X264 in the overcommitted scenario. We
found that the overhead induced by TLB shootdown pre-
emption has disappeared. After analyzing the new kernel’s
source code, we found that in kernel 4.16 a patch was imple-
mented that mitigates this problem entirely by paravirtual-
izing TLB shootdowns in Linux for KVM [57]. The guest
only sends IPIs to vCPUs that are running. Other vCPUs
flush their TLB on re-scheduleding. Very recently, a similar
solution has been implemented for Xen [58], [66].

Overall, we conclude that while some variance in the exact
results is to be expected, our findings are solid and largely
independent of variations in system settings or non-determin-
istic factors. Since our test system sports all contemporary
industry-standard enhancements to mitigate virtualization
overhead, practitioners are likely to experience performance
close to our test results for several more years as any research
advancements only slowly trickle down into industry due to
reliability and compatibility concerns.

9 RELATED WORK

While virtualization overhead is a popular research topic,
most studies fail to provide deep insight into overhead
causes or their link to system and application effects; let
alone differentiate between the latter [2], [58], [59]. More
profound work tends to have a very narrow scope, e.g.,
nested paging [60], NUMA locality [47] or I/O [61]. Never-
theless, these studies have pinpointed various major causes
of virtualization overhead, such as false cache sharing, extra
iTLB misses and poor I/O performance, resulting in various
hardware improvements being implemented [11], [62].

In the context of multithreading, existing studies have
identified two main drivers of virtualization overhead:
interaction between threads which often requires costly
traps to the VMM, e.g., for handling IPIs [5], [8], [15], [44],
[51] and the semantic gap between the VMM and guest OS,
which results in a variety of issues for particularly spinning
synchronization (e.g., LHP) [14], [63]. Due to huge advance-
ments in hardware and VMM design in recent years such as
PLE and halt polling however, many of these studies have
become inaccurate to the point of obsolescence.

Concerning the overcommitted scenario, literature has
shown performance isolation and fairness issues caused by
resource contention. Due to poor management of shared
resources such as cache space, memory bandwidth and CPU
time by the VMM, some virtualized applications may be
unfairly deprived of resources in favor of competing work-
loads on the host [64], [65]. Various techniques such as cache
space partitioning and improved scheduling algorithms have
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been developed to address this. These fairness issues are not
in the scope of our paper, because they are not specific to vir-
tualization, nor multithreaded applications.

10 CONCLUSION

Thanks to persistent efforts from academia and industry,
hardware-assisted x86 virtualization induces minimal over-
head for sequential computation-intensive workloads on
modern platforms. Unfortunately, this is not yet the case for
their multithreaded counterparts. Overhead may manifest
itself in many different ways. The perceived application
effects may differ greatly from the underlying impact on the
system. Both of these may vary greatly between workloads
and system configurations.

The main causes of the overhead are thread-coordination
and NUMA management. Ongoing efforts on these fronts
prove that both these issues are challenging to deal with at
system level. We propose that increased attention be given
to application-level solutions, especially since our first
exploratory steps in this direction yield promising results.

While this paper touches on many known issues -notwith-
standing some novel findings-, we are the first to perform a
broad systematic analysis of virtualization overhead related to
multithreading on modern systems. In this way, we have pro-
vided a clear overview of the state of the art, remaining chal-
lenges and the link between overhead causes and effects.
Especially considering the enormous advances in virtualiza-
tion technology in the last decade which render most estab-
lished related work obsolete, we consider this study a
valuable asset to the research and system development com-
munities alike.
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