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Abstract—Virtual machine (VM) sizes keep increasing in the
cloud. However, little attention has been paid to analyze and
understand the scalability of multicore applications on big VMs
with multiple virtual CPUs (VCPUs), assuming that application
scalability on VMs can be analyzed in the same ways as that
on physical machines (PMs). The paper demonstrates that, since
hardware CPU resource is dynamically allocated to VCPUs, the
executions of multicore applications on VMs show different scal-
ability from those on PMs. The paper systematically studies how
the virtualization of CPU resource changes execution scalability,
identifies key application features and system factors that affect
execution scalability on VMs, and investigates possible directions
to improve scalability.

The paper presents a few important findings. First, the
execution scalability of applications on VMs is determined by
different factors than those on PMs. Second, virtualization
and resource sharing can improve scalability by nature. Thus,
applications may show better scalability on VMs than on PMs.
Linear scalability can be achieved even when there is substantial
sequential computation. Third, there is still much space to further
improve execution scalability by enhancing system designs. Better
scalability can be achieved by increasing allocation period length
and/or matching resource allocation and workload distribution.

Index Terms—scalability, multicore, virtual machine, cloud
computing, resource sharing

I. INTRODUCTION

In the cloud, virtual machine (VM) sizes increase steadily to
meet the demand for increasing computing power in each VM
and to utilize the growing core counts in underlying physical
machines. For example, a X1 instance on Amazon EC2
platform now has as many as 128 virtual CPUs (VCPUs) [1].
With increasing VM sizes, an important question to answer
is how well applications can scale and take advantage of the
computing power of bigger VMs to improve performance.

Common practice assumes that virtual machines have a
similar architecture to their hosting physical machines (PMs),
and thus the execution scalability of multicore applications on
VMs can be analyzed in the same way as that on dedicated
physical machines. As an evidence, VMs with multiple VCPUs
on x86 architecture are called SMP-VMs or virtual SMPs [2],
and Amdahl’s law is used to analyze scalability.

However, due to the sharing of physical CPU resource on
virtualized platforms and the dynamic CPU resource allocation
for enabling the sharing, VCPUs show substantially different
behaviors and performance features than physical computing
cores. Thus, applications show different scalability on VMs
than they do on physical machines. For example, research
has shown that some multicore programs may suffer lower

scalability on VMs, because the VCPUs in a VM may not
make progress continuously and simultaneously [2], [3].

Although a few scalability problems have been noticed on
VMs and the specific reasons have been analyzed, how the
scalability of multicore applications in the cloud is changed by
the virtualization of CPU resource has not been systematically
studied. The paper analyzes and verifies with experiments how
CPU resource sharing in virtualization impacts application
scalability, identifies key application features and system fac-
tors affecting application scalability, and explore the potential
and design alternatives for improving application scalability.

First, by re-defining speedup based on resource utilization
efficiency as a measurement of scalability, the paper analyzes
and reveals the fundamental reasons for multicore applications
showing different scalability on VMs than they do on PMs
(Section II). Second, based on the analysis, the paper identifies
two key application features for scalability and shows with ex-
periments how virtualization affects scalability differently for
the applications with different features (Section III). Though
applications are usually considered to have similar or lower
scalability on VMs, the paper shows that virtualization tends to
improve scalability. However, the improved scalability might
be offseted by frequent synchronization and long scheduling
delay. Third, though some applications already show better
scalability on VMs than they do on PMs with existing system
design, the paper shows that there is still much space to further
improve scalability on VMs. Thus, the paper identifies the sys-
tem factors that can be leveraged for improved scalability. The
paper investigates two factors that have not been mentioned or
studied before in other literatures — allocation period length
and the matching between resource allocation and workload
distribution. With experiments, the paper demonstrates that
improved scalability can be achieved by increasing allocation
period length or matching resource allocation and workload
distribution (Section IV).

II. RESOURCE SHARING’S IMPACT ON SCALABILITY

Due to the sharing of CPU resource, the methods and
models developed to analyze the execution scalability of appli-
cations on dedicated hardware, e.g., Amdahl’s law, cannot be
used for understanding the execution scalability of applications
on VMs. This section first introduces how CPU resource
is managed and shared on virtualized platforms. Then, it
provides a new method which measures scalability based on



resource utilization efficiency. With the method, it explains
how resource sharing affects execution scalability on VMs.

A. Resource Sharing between VMs

On a physical machine hosting multiple VMs, a virtual
machine monitor (VMM) is used to manage and dynamically
allocate hardware resource to each VM. For CPU resource,
a physical CPU (PCPU) is usually time-shared by multiple
VCPUs. The VMM treats VCPUs as independent schedulable
entities and allocates CPU time to them. Inside each virtual
machine, threads are further scheduled onto VCPUs by the
guest OS. Thus, by having multiple VCPUs in each VM, the
threads in the VM can eventually run on multiple PCPUs,
achieving higher performance than that with a single VCPU.

When allocating CPU time, the VMM first allocates CPU
time to VMs based on their weights, and then distributes CPU
time to VCPUs in each VM. As in typical OS implementations,
to guarantee responsiveness, CPU time is usually allocated
periodically to VCPUs as their timeslices in each period. For
brevity, we refer to the period in which CPU time is distributed
to VCPUs as an Allocation Period.

A VCPU consumes its timeslice when it runs on a core.
For improved efficiency, a VCPU is descheduled when it stops
making progress (e.g., when it becomes idle or busy-waiting1),
and stops consuming timeslice. If a VCPU is not rescheduled
for long time, it is possible that the VCPU cannot consume up
its timeslice in an allocation period. In such a case, the VMM
usually does not roll over the unused timeslice or a part of
the unused timeslice to the next allocation period, in order to
prevent a VCPU from accumulating too much timeslice and
starving other VCPUs on the same core.

B. Efficiency-Based Scalability Measurement

To analyze scalability on VMs, we introduce a new method,
which measures scalability base on the utilization efficiency
of CPU resource. Specifically, the scalability of an application
is determined by how efficiently the increased resource is
utilized during the execution of the application. The higher
the efficiency (i.e., less waste) is, the more the application can
be accelerated, and the higher the scalability is.

Scalability is how much an application can be accelerated
if allocated with more resource, with speedup being a mea-
surement. For CPU resource, the speedup of the execution on
N processing unit (PU, i.e., cores in PMs or VCPUs in VMs)
against that on 1 processing unit is as follows.

Speedup =
execution speed on N PUs
execution speed on 1 PU

=
work finished on N PUs in an unit of time
work finished on 1 PU in an unit of time

Without loss of generality, the paper assumes that the
amount of work finished is proportional to the CPU time
utilized for effective computation. Since the total CPU time

1Most multicore processors have equipped with mechanisms, such as Intel
PLE and AMD PF, to detect and interrupt busy-waiting.

available on N PUs is N times of that on 1 PU, the above
equation can be rewritten as follows.

Speedup

=
total CPU time utilized on N PUs in an unit of time

CPU time utilized on 1 PU in an unit of time

= N ×
total CPU time utilized on N PUs in an unit of time

total CPU time available on N PUs in an unit of time
CPU time utilized on 1 PU in an unit of time

CPU time available on 1 PUs in an unit of time

= N × overall utilization efficiency with N PUs
utilization efficiency with 1 PU

In the above equation, utilization efficiency is the ratio
between the amount of utilized CPU time and the amount
of available CPU time, and the utilized CPU time is that
consumed for effective computation. The CPU time spent on
busy-waiting does not count. Assume the utilization efficiency
of 1 PU (i.e., serial execution) is 100%. The speedup with N
PUs can be simplified as follows.

Speedup = N × overall utilization efficiency with N PUs

= N × CPU time utilized by computation
available CPU time during computation

= N −N × unutilized CPU time
available CPU time during computation

In the equation, unutilized CPU time refers to the CPU time
that is not utilized by the application to make progress.

The above definition of speedup is consistent with that
based on execution time. For example, based on Amdahl’s
law, if in an application 20% of computation can only be
executed sequentially and 80% of computation can be fully
parallelized without overhead, when executed on a 4-core
machine, the speedup against the execution on a single core
machine is 1/(0.2 + 0.8/4) = 2.5. The performance does not
scale linearly. This is because, when the sequential portion
is executed on one core, other cores are idle. This reduces
the utilization efficiency to 50% on these cores. The overall
utilization of the 4 cores is (100%+3×50%)/4 = 62.5%, and
the speedup based on the above definition is 4× 0.625 = 2.5.

The above definition of speedup can be used to understand
both the scalability on physical machines with dedicated
resources and the scalability on VMs with shared resources.
To highlight the reasons causing different scalabilities on
these platforms, we adapt the speedup calculation for physical
machines and virtual machines respectively as follows.

For the executions on a physical machine, unutilized CPU
time is the CPU time wasted on idling and busy-waiting
during the execution. Thus, the speedup of an application on a
physical machine with N cores can be calculated as follows.

Speedup PM = N −N × time on idling and busy-waiting
N × execution time

= N − time on idling and busy-waiting
execution time

The CPU resource for a virtual machine is its timeslice.
For the executions on a virtual machine, unutilized CPU
time consists of two parts. The first part, unused timeslice,
is the timeslice that cannot be depleted by the VCPUs in an



allocation period and cannot be rolled over to later allocation
periods (Section II-A). The second part is the CPU time used
to handle idle VCPUs and spinning VCPUs. Due to resource
sharing, idleness and spinning are handled in a substantially
different way on VMs than on PMs. To improve the utilization
of shared CPU resource, hardware and the VMM usually try
their best to detect and deschedule VCPUs that are not making
progress, including idle VCPUs and spinning VCPUs. Thus,
CPU time is not wasted on idling and busy-waiting. However,
time must be spent to switch out these VCPUs. Therefore, the
speedup of the execution on a VM with N VCPUs (against that
on a VM with a single VCPU) can be calculated as follows2.

Speedup VM = N −N×

(
overhead of switching out idle/spinning VCPUs

timeslice allocated to the VM

+
unused timeslice of the VM

timeslice allocated to the VM
)

C. Virtualization’s Impact on Scalability

The impact of virtualization and CPU resource sharing on
scalability can be identified by comparing the equations for
calculating Speedup PM and Speedup VM. On a dedicated
physical machine, resource provisioning is static. The scala-
bility is mainly determined by the behavior of the application,
i.e., whether the application can engage all the cores in useful
work. Any idleness and busy-waiting are translated into lower
resource utilization and then lower scalability. The reduction
of scalability is proportional to the durations of idleness and
busy-waiting. This also explains Amdahl’s law and other mod-
els for analyzing execution scalability on dedicated hardware,
which co-relate scalability with the operations causing idleness
and busy-waiting, such as sequential computation, tasks on
critical path, and synchronizations.

Virtualization affects scalability in two ways. On one hand,
dynamic resource allocation helps improving scalability. For
VCPUs, resource is not consumed if there is not useful work
on them. Thus, even if an application cannot always engage the
VCPUs in useful work, high scalability may still be achieved,
as long as the overhead incurred by VCPU switches is low and
most of the timeslice of the VM is eventually consumed by the
end of resource allocation periods. An execution on VM may
achieve linear scalability even if there is substantial sequential
computation. Thus, conventional methods and models (e.g.,
Amdahl’s law) become inapplicable when used to understand
application scalability on VMs.

On the other hand, scalability on VMs is limited by new
factors — VCPU switch overhead and unused timeslice of the
VM. These factors are determined not only by the natures
of the computation in applications but also the resource

2With existing system designs, spinning that is very brief or at the user-
level of VMs may not be detected. Such spinning still consumes CPU time.
The paper chooses to neglect the CPU time used by such spinning because
1) minimal CPU time is used by brief spinning and 2) excessive spinning at
the user-level should be prevented using co-scheduling or interrupted using
hardware facilities similar to Intel PLE and AMD PF.

management at the system level. Specifically, VCPU switch
overhead is proportional to the frequency of VCPU switches,
which are usually incurred by the synchronizations on VCPUs.
The more frequent the synchronizations are, the lower the
scalability is. A few factors affect the amount of unused times-
lice. First, the amount of unused timeslice is determined by
whether there is enough workload in each resource allocation
period to consume timeslice. Second, timeslice and workload
are distributed to each VCPU. Thus, the amount of unused
timeslice is also determined by the distribution of workload
and the distribution of timeslice to VCPUs. When a VCPU is
allocated with more timeslice than needed by the workload on
it, some timeslice will not be used. Finally, VCPU scheduling
may also significantly affect the amount of unused timeslice.
If a VCPU is scheduled late, the workload on it may not have
enough time to consume the timeslice available to the VCPU
by the end of a resource allocation period, increasing unused
timeslice.

In Section III, we identify and experimentally verify the
application features affecting the scalability on VMs, and in
Section IV, we investigate CPU resource management in the
VMM and identify system-level factors affecting execution
scalability.

III. APPLICATION FEATURES AFFECTING SCALABILITY

This section identifies two key application features for
scalability and shows how these features affect application
scalability on VMs.

A. Key Application Features and Scalability Indications

Based on the analysis in Section II, we have identified
two key scalability features of applications. One feature is
workload parallelism, which describes to what degree an
application can parallelize its workload in order to utilize in-
creased CPU resource. During the execution of an application,
its workload parallelism can be measured by the number of
threads in the application that are active and making progress.
In a time period, the higher the workload parallelism is, the
more progress the application can make if provided with more
resource. An application with higher workload parallelism
tends to show higher execution scalability on both physical
machines (because of less idle time) and virtual machines
(because of less unused CPU time).

The other feature is the frequency of blocking synchroniza-
tions (referred to as synchronization frequency for brevity).
Blocking synchronizations can incur the switches of VCPUs,
which reduce scalability in two ways. First, when the threads
on a VCPU are blocked, the VCPU is descheduled, and
another VCPU (probably from another VM) is scheduled. The
switch of VCPU incurs high overhead. Second, when a thread
on the descheduled VCPU is unblocked and becomes ready to
make progress, the VCPU may not be able to be rescheduled
immediately. Due to this rescheduling delay, the VCPU may
not be able to fully utilize the timeslice allocated to it by the
end of allocation periods, increasing unutilized timeslice.



TABLE I
A SUMMARY OF FOUR TYPES OF APPLICATIONS BASED ON THEIR KEY SCALABILITY FEATURES ON VMS

Type Work. Para. Sync. Freq. Scalability Benchmarks
1 high low high p.freqmine, p.swaption, p.x264, p.ferret, p.vips, s.water nsquared, s.barnes, s.lu ncb, s.raytrace, s.radix
2 low high low p.bodytrack, p.dedup, p.facesim, s.ocean cp, s.volrend, s.cholesky
3 high high mediocre p.fluidanimate, p.streamcluster, s.ocean ncp
4 low low mediocre p.canneal, p.raytrace, p.blackschole, s.fmm, s.radiosity, s.water spatial s.fft, s.lu cb

Based on these features, multicore applications can be
categorized into four types, as summarized in Table I. Applica-
tions with high workload parallelism and low synchronization
frequencies (type 1) usually show high scalability on VMs;
applications with low workload parallelism and high synchro-
nization frequencies (type 2) usually show low scalability on
VMs; applications with high workload parallelism and high
synchronization frequencies (type 3) and applications with
low workload parallelism and low synchronization frequencies
(type 4) show mediocre scalability.

B. Experimental Verification

To verify the scalability indications of the aforementioned
application features through experiments, we select the bench-
marks in PARSEC 3.0 suite [4], including native PARSEC
benchmarks and SPLASH2X benchmarks. We attach a prefix
‘p.’ before the name of each native PARSEC benchmark, and
attach a prefix ‘s.’ before the name of each SPLASH2X bench-
mark, in order to differentiate these two sets of benchmarks.
We also refer to native PARSEC benchmarks as PARSEC
benchmarks for brevity. We used the parsecmgmt tool in the
PARSEC package to run the benchmarks with native input and
to control the number of concurrent threads in each execution.

Experiments were conducted a Dell PowerEdge R720 server
with 64GB of DRAM and two 2.40GHz Intel Xeon E5-2665
processors. Each processor has 8 cores. On the server, we
created 4 VMs. Each VM has 16GB of memory and 16
VCPUs. The VMM is KVM. The host OS and the guest OS are
Ubuntu version 14.04 with the Linux kernel version updated
to 3.19.8. The VCPUs in each VM were laid out on the cores
in a way to prevent VCPU stacking for better performance [2].

We first profiled the benchmarks to obtain their scalability
features when we run them on the physical server. The number
of thread in each execution is 16. During the execution of
each benchmark, we collected the number of active CPU
cores involved in the benchmark computation periodically and
the number of voluntary context switches3. The workload
parallelism of the benchmark is the average number of active
cores during its execution, and its synchronization frequency
is the number of voluntary context switches per second.

Figure 1 shows the categorization of the benchmarks based
on their scalability features. If a benchmark keeps at least 75%
of the cores (i.e., 12 cores in our system) active on average
during its execution, it is considered to have high workload
parallelism. If the time period between two consecutive syn-
chronizations is shorter than the timeslice allocated to a thread
in an allocation period (i.e., a thread is blocked at least once

3Voluntary context switches are context switches caused by threads block-
ing their execution voluntarily, i.e., blocking synchronizations.
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Fig. 1. The types of the PARSEC benchmark and their scalability fea-
tures. The numbers are the indexes of the benchmarks, which are indexed
as follows. 1: p.freqmine, 2: s.water nsquared, 3: s.barnes, 4: s.lu ncb,
5: p.swaption, 6: p.x264, 7: p.ferret, 8: p.vips, 9: s.raytrace, 10: s.radix,
11: p.bodytrack, 12: p.dedup, 13: p.facesim, 14: s.ocean cp, 15: s.volrend,
16: s.cholesky, 17: s.ocean ncp, 18: p.streamcluster, 19: p.fluidanimate, 20:
s.lu cb, 21: s.water spatial, 22: s.fmm, 23: p.canneal, 24: s.fft, 25: p.raytrace,
26: p.blackschole, 27: s.radiosity

before it uses up its timeslice), the benchmark is considered
to have high synchronization frequency.

The benchmarks of each type are summarized in Table I.
Note that an application with low workload parallelism only
means that the application lacks enough active threads to keep
all the cores/VCPUs busy. As we will show later that an
application with low workload parallelism may still achieve
decent scalability on a VM. At the same time, the workload
parallelism is relative to the scale of the system (e.g., the
number of cores/VCPUs in a server/VM). An application with
high workload parallelism may become one with low workload
parallelism on a larger system.

Then, we run the benchmarks in a VM consolidated with
three other VMs on the same physical server. To obtain stable
measurement, we run a CPU-bound program in each of three
VMs, which keeps increasing a counter on all the VCPUs
of the VM. We show the speedups of the benchmarks in
Figure 2. The concurrency level (i.e., the number of threads
in the benchmark, the number of VCPUs in each VM, and
the number of cores used in the PM) is 16. The speedup is
relative to the performance with concurrency level equal to 1.

The benchmarks of the first type show the highest scala-
bility, and the speedups are similar on the PM and the VM.
The average speedups are both 13.9. Their high speedups are
achieved for two reasons: 1) high workload parallelism ensures
that CPU resource is fully utilized; and 2) there are no factors
reducing the utilization of CPU resource.

Other benchmarks show different scalability behaviors on
the VM than on the PM. On the PM, the speedups are mainly
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Fig. 2. Speedups of PARSEC and SPLASH2X benchmarks.

determined by the workload parallelism. The benchmarks of
the third type also show high scalability, because they have
high workload parallelism. The average speedup is lower than
that of the first type, because their workload parallelism is
lower (Figure 1). The benchmarks of the second type and the
benchmarks of the fourth type show similar scalability. The
average speedups are similar (6.5 and 6.3), despite the differ-
ences in synchronization frequency. The average speedups are
lower than those of the first and the third types.

Speedups are determined by both workload parallelism and
synchronization frequencies on the VM. Though benchmarks
with higher workload parallelism still achieve higher speedups
than those with lower workload parallelism (e.g., the bench-
marks of the first type show higher scalability than those of
the fourth type), synchronization frequencies tend to have a
larger impact on scalability than workload parallelism. This
is evidenced by the benchmarks of the fourth type achieving
higher speedups (9.7 on average) than those of the third type (5
on average), though the benchmarks of the fourth type have
lower workload parallelism. Synchronizations also make the
benchmarks show lower scalability on the VM than on the
PM. The average speedups of the benchmarks of the second
and the third types are 6.5 and 8.7 on the PM, respectively,
and are 3 and 5 on the VM, respectively.
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Fig. 3. Impact of virtualization on scalability for applications with different
workload parallelism.

Interestingly, the benchmarks of the last type achieve better
scalability on the VM than on the PM. The average speedups
are 9.7 on the VM and 6.3 on the PM. This confirms that vir-
tualization inherently improves scalability when synchroniza-
tions are infrequent. To better understand how virtualization
improves scalability for these benchmarks. We collected the

resource utilization efficiencies during their executions on the
PM and the VM. Then, for each benchmark, we calculate the
ratio between its speedup on the VM and its speedup on the
PM, and the ratio between the efficiencies. Figure 3 shows that,
for the benchmarks with different workload parallelism, their
efficiency ratios are always greater than 1, and the speedup
ratios change consistently with the efficiency ratios. This
indicates that the scalability improvements are through making
more efficient utilization of resources. Figure 3 also shows
that the speedup ratios decrease with the growth of workload
parallelism. This is because, with the growth of workload
parallelism, the space for increasing scalability decreases.

IV. IMPROVING SCALABILITY AT THE SYSTEM LEVEL

At the system level, the management of CPU resource
has great impact on application scalability on VMs. For best
scalability, the system should allocate CPU time in a way
that each VM can maximize the utilization of its timeslice.
In this section, we first show that there is still much space
for improving the existing system design to achieve better
scalability. Then, we identify two system factors that can be
leveraged to improve scalability.

A. Potential for Improving Scalability on VMs

To understand the potential for achieving better scalability
with improved system designs, we estimated the resource
utilization efficiencies that the benchmarks could possibly
achieve if the VMM could support the VM to utilize its
timeslice as fully as possible. We selected the benchmarks
of the fourth type, because 1) we want to focus on improving
the allocation of CPU time, instead of reducing the overhead
of VCPU switches, and 2) there is space to further improve
their scalability.

The estimation is based on profiling the benchmarks on the
physical server. For each allocation period during the execution
of a benchmark, we collect the CPU time utilization of the
benchmark. If the utilization u is higher than the portion p of
the CPU time that a VM can obtain (e.g., a 60% utilization
vs. 25% of CPU time that a VM can obtain when it is co-
located with another 3 VMs), we expect that, with a well-
designed VMM, the VM can deplete the timeslice allocated
to it and achieve an efficiency of 100% when the computation
is executed on the VM. Otherwise, the benchmark does not



have enough computation to deplete the timeslice allocated
to the VM. Thus, in the period, the efficiency is the ratio
between u (utilization) and p (portion of CPU time allocated
to a VM). The estimated resource utilization efficiency is the
average efficiency during the execution.
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Figure 4 shows the actual resource utilization efficiency
and the estimated maximal efficiency of the benchmarks with
a concurrency level of 16. On average, the actual resource
utilization efficiency is 62.1% (average speedup is 9.7), and
the estimated maximal efficiency is 87.5% (corresponding
to a speedup of 16*87.5%=14). The benchmark p.canneal
shows the largest potential (from 43% to 100%). This clearly
shows that there is still much space to further improve the
management of CPU resource to achieve higher scalability.

B. Possible Optimizations on CPU Time Allocation

Based on the analysis in Section II, application scalability
on a VM can be improved by reducing the overhead incurred
by VCPU switches and reducing unused timeslice. Extensive
research has been conducted on the techniques reducing the
impact of VCPU switches on application performance and
scalability, such as improving VCPU scheduling at the VMM
level and improving task scheduling at the guest OS level [2],
[3], [5]–[8], or reducing scheduling latencies [9]–[11]. Thus,
the paper focuses on investigating the factors in CPU time
allocation to reduce unused timeslice.
•Longer allocation periods: A VCPU is allowed to use
its timeslice within each allocation period. If a VCPU has
light workload in an allocation period, it may not deplete its
timeslice by the end of the period. The unused timeslice may
not be rolled over for the VCPU to handle possibly heavy
workload later. Increasing allocation period length can tolerate
such workload fluctuation on VCPUs, and reduce unused
timeslice of the VCPUs when they have light workload.

To verify the impact of allocation period length on scal-
ability, we repeated the experiments described in section III
for different allocation period lengths from 24ms (i.e., system
default value) to 192ms, and show the speedups of benchmarks
of the fourth type in Figure 5. Increasing allocation period
length does significantly improve execution scalability for
p.canneal and s.lu cb and slightly improve execution scalabil-
ity for s.radiosity, p.blackscholes, s.fmm, and s.water spatial.
We also notice that s.lu cb even achieves linear scalability
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when allocation period length is increased to 192ms. Increas-
ing allocation period length has different impact for different
benchmarks because the workloads may fluctuate on different
time scales and with different intensity. Though increasing
allocation period length cannot increase scalability for s.fft
and p.raytrace, the average speedup of these benchmarks is
increased from 9.6 to 11.0 when the allocation period length
is increased to 192ms.

These results confirm that longer allocation periods can
really improve the execution scalability of multicore applica-
tions on VMs. However, increased allocation periods lengthen
responding latencies, which may not be desirable for inter-
active workloads. Thus, long allocation periods may only be
applicable to throughput-oriented workloads.
•Matching resource allocation and workload distribution:
In a VM, workload is distributed to VCPUs for concurrent
execution, utilizing the CPU resource (i.e., timeslice) allocated
to the VCPUs. Desirable performance can only be achieved
when the allocation of timeslice matches the distribution of
workload. Allocating more timeslice to a VCPU than what
is needed by the workload on the VCPU will cause some
timeslice unused by the end of allocation periods. Allocating
insufficient timeslice to a VCPU with heavy workload delays
the computing tasks on the VCPU.

Matching workload distribution and CPU resource alloca-
tion can be done by task scheduling either in guest OSs or
applications. Existing VMM designs try to allocate timeslice
evenly to VCPUs within each VM. As we will show with an
illustrative example in Figure 6, task schedulers can evenly
distribute workload on the time scale of allocation periods to
improve application scalability.

In the example, a program executes a loop, in which each
iteration has 2 units of sequential tasks followed by 4 units
of parallel tasks. If the program runs on a 4-core PM, the
speed-up is 2 based on Amdahl’s law. Figure 6 shows the
executions of the program on a 4-VCPU SMP VM co-located
with another VM, and compares the executions with different
methods of distributing workloads to VCPUs. We assume that
the length of an allocation period is 12 time units and each
time unit can finish one unit of task. Two VMs have the same
weight. Thus, in an allocation period, each VM is assigned
with 50% of CPU time (i.e., 12*4/2=24 units of CPU time),
and each VCPU receives 6 units of CPU time.

Subfigure (A) shows the execution of the program on one
VCPU. In an allocation period, 6 units of tasks are finished
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Fig. 6. An illustrative example to explain the benefit of evenly distributing
workload and how even workload distribution can be achieved.

since the VCPU has 6 units of CPU time. Subfigure (B)
shows the execution on four VCPUs with a conventional task
scheduler. Though parallel tasks can be evenly distributed to
the VCPUs, sequential tasks cannot, and are assigned to the
same VCPU (VCPU0 in the figure). Thus, only two iterations
can be finished within an allocation period. After the second
iteration, VCPU0 consumes up its 6 units of CPU time, though
other VCPUs only consume 2 units of CPU time each and still
have unused timeslice. These VCPUs finish only 12 units of
tasks in total in the allocation period, which are 2 times as
many as those finished with one VCPU. Thus, the speedup is
2, the same as that on the PM.

Subfigure (C) shows the execution on four VCPUs with
an improved task scheduler assigning sequential tasks onto
different VCPUs in different iterations. Though the workload
is not evenly distributed at every moment, the workload on
the VCPUs is balanced on the time scale of allocation periods.
With such workload distribution, every VCPU can consume its
6 units of CPU time and finish 6 units of tasks (four iterations)
in an allocation period. With the improved task scheduler,
linear speed-up can be achieved, i.e., a speed-up of 4 with
4 VCPUs.

Matching workload distribution and CPU resource alloca-
tion can also be done by adjusting the CPU time allocated
to VCPUs based on the workload on them. The benefits can
be illustrated with the execution shown in Figure 6(B). If the
VMM can allocate 12 units of CPU time to VCPU0 and 4
units of CPU time to each of the other three VCPUs in each
allocation period, the program can still finish 4 iterations in
the period, achieving linear scalability (the figure only shows
the first two iterations). Note that the amount of CPU time
received by the VM is not increased. The increased scalability
comes from distributing more CPU time to VCPU0, which has
heavier workload than other VCPUs.

We tested the above approaches using a synthetic bench-
mark, which generates the workload of typical fork-join mul-
ticore programs. Specifically, the benchmark executes a loop,
in which each iteration finishes eight units of computation
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Fig. 7. Speedups of the synthetic benchmark.

that can be fully parallelized and one unit of computation that
can only be executed sequentially. Each unit of computation
takes about 1ms to finish. We developed two versions of the
synthetic benchmark. In the imbalanced version, sequential
tasks are executed by the same thread, as that shown in
Figure 6(B). In the balanced version, sequential tasks in
different iterations are assigned to threads in a round-robin
manner. This is to emulate the execution with a task scheduler
trying to balance the workload on VCPUs.

We first run both versions on a VM managed by the vanilla
KVM, which tries to allocate CPU time evenly to VCPUs,
and compare their performance. The VM is co-located with
three other VMs, each of which runs an instance of the CPU-
bound program incrementing a counter. Then, specifically for
the imbalanced version, we tuned KVM settings to allocating
CPU time to VCPUs proportionally to the workload on them,
and rerun the imbalanced version on the VM.

Figure 7 shows the speedups of the benchmark when the
concurrency level is increased from 1 to 16. The balanced
version on vanilla KVM and the imbalanced version on tuned
KVM show higher scalability than the imbalanced version
on vanilla KVM. When the concurrency level is 16, the
speedups are 5.9, 6.1, and 4.8, respectively. This shows that
both approaches to match resource allocation and workload
distribution are effective to improve scalability. The bench-
mark cannot achieve linear scalability mainly because there
are frequent synchronizations incurred at the beginning and
the end of the sequential computation in each iteration.

V. RELATED WORK

To understand scalability, analytical models have been de-
veloped based on various workload characteristics, such as
synchronization and communication [12], critical path [13],
memory accessing traffic [14], and the amount of sequential
computation. These models target physical machines with
dedicated hardware resource, and cannot be directly applied
to understand the execution scalability on virtual machines.
Various models have been developed in computer architecture
area to study how to distribute hardware resource, such as
transistors and chip area, to the functional units in multicore
processors to maximize application performance and scalabil-
ity [15]–[18]. They are remotely related with our work.

Targeting application performance on VMs, existing work
mainly focuses on characterizing the interference caused by
the contention of the shared hardware resource on memory



hierarchy (e.g., processor cache and memory bandwidth) be-
tween co-located VMs [19]–[24]. The main purpose is to
understand and alleviate the performance degradation incurred
by the interference. This paper is to identify the application
features and system factors affecting the execution scalability
of applications on VMs. Existing research on application
performance on VMs is orthogonal to our research.

To improve the execution scalability of multicore applica-
tions on VMs, various techniques have been attempted at all
the system layers, from hardware support (e.g., PLE) [25]–
[27], VMM [2], [5]–[7], guest OSs [3], [28], [29], to pro-
gramming framework [30]. These techniques only target the
virtualization overhead on communication/synchronizations
between application threads. The paper discusses applica-
tion scalability on VMs in a wider scope, with communica-
tion/synchronization being one of the scalability factors.

VI. CONCLUSION

The paper aims to understand how virtualization and CPU
resource sharing affect the execution scalability of multicore
applications. It does not mean to exhaustively investigate all
the factors affecting application scalability (e.g., memory la-
tency, I/O operations). It focuses only on the factors related to
CPU time, which is the most important resource for achieving
high performance. With analysis and experiments, the paper
shows that application scalability on VMs is mainly affected
by a few application features, including workload parallelism
and synchronization frequencies, and a few system factors
in CPU resource management, including allocation period
lengths and the matching between workload distribution and
CPU resource allocation. We hope the findings of the paper
can help cloud computing users gain better understand on the
performance of their programs in the cloud and make better
choices between physical machines and different types of VM
instances. We also hope the paper help motivating system
researchers and developers to consider the factors limiting
scalability and explore practical solutions ameliorating the
impact of these factors.
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