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Abstract—The cost of TLB consistency is steadily increasing as

we evolve towards ever more parallel and consolidated systems.

In many cases the application memory allocator is responsible

for much of this cost. Existing allocators to our knowledge

universally address this issue by sacrificing memory efficiency.

This paper shows that such trade-offs are not necessary by pre-

senting a novel memory allocator that exhibits both excellent

memory efficiency and (TLB) scalability: ptlbmalloc2.

First, we show that TLB consistency is becoming a major

scalability bottleneck on modern systems. Next, we describe

why existing memory allocators are unsatisfactory regarding

this issue. Finally, we present and evaluate ptlbmalloc2, which

has been implemeted as a library on top of glibc.

Ptlbmalloc2 outperforms glibc by up to 70% in terms of

cycles and execution time with a negligible impact on memory

efficiency for real-world workloads. These results provide a

strong incentive to rethink memory allocator scalability in the

current era of many-core NUMA systems and cloud computing.

1. Introduction

In x86, the translation lookaside buffer (TLB) is a per-
core cache for page table entries (PTEs), allowing rapid
translation of virtual to physical memory addresses. In con-
trast to regular caches, TLB consistency is implemented by
the operating system (OS), using a mechanism based on
inter-processor interrupts (IPIs); called a TLB shootdown.
In contrast to historical dogma, recent work shows that this
mechanism can be very costly, in particular in parallel or
virtualized contexts [1]–[4]. Given that such environments
are becoming ever more ubiquitous, reducing TLB shoot-
down overhead is paramount.

Improving TLB performance has been extensively stud-
ied, as discussed in §8. Solutions have been proposed at both
hardware and system software levels. However, the former
are expensive and have long adoption intervals, while the
effectiveness of the latter is limited due to the semantic
gap between the system and application, requiring efficiency
to be sacrificed to guarantee correctness [5]. It is therefore
evident that system-level solutions alone are insufficient.

While system software can optimize TLB-sensitive op-
erations to a certain degree, their root cause often lies at
application level. For multithreaded applications in partic-
ular memory management is often the main cause of TLB
shootdowns [4]. Moreover, optimizations at application level
may be much more efficient than those at system-level, since
only there the exact contents of the virtual memory space
are known. This is underpinned by the fact that many mem-
ory allocators in fact do not send many TLB shootdowns.
However, this is merely a side effect of sacrificing memory
efficiency in favor of other design goals such as efficient
garbage collection, upon which we elaborate in §4.4. To
our knowledge, no existing memory allocator combines high
memory efficiency with excellent (TLB) scalability.

Given the above, it is evident that the balance between
memory efficiency and (TLB) performance should be recon-
sidered in modern memory allocator design at a conceptual
level. The main goal of this paper is to do exactly that,
supported by pragmatic evidence. To achieve this, we first
quantify the performance overhead of TLB consistency in
modern systems, emphasizing how certain system properties
impact said overhead. Next, we show how existing memory
allocators (fail to) deal with this growing problem. From
this knowledge we derive how this problem can be dealt
with conceptually, based on a handful of heuristics. Next, we
apply our concept in C, in the form of a novel memory man-
ager implemented as a library on top of glibc: ptlbmalloc2.
We conclude by evaluating the performance of ptlbmalloc2
compared to glibc’s ptmalloc2 for real-life workloads.

1.1. Contributions

• We quantify TLB shootdown overhead with respect to
several system properties and show this is a growing issue;
• We identify the arena imbalance issue, which may cause
excessive TLB shootdowns in efficient memory allocators;
• We introduce an allocator design concept combining TLB
scalability with memory efficiency: global hysteresis;
• We present and evaluate ptlbmalloc2: an implementation
of our memory management concept as a C library.
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2. Background: TLB Consistency

As described in §1, the TLB is a cache for PTEs.
Thus, whenever a PTE changes, the TLB must be updated.
Many operations on virtual memory may result in said
PTE changes. Some of these operations are initiated by
the system (e.g. page migrations, memory compaction,. . . ),
while others are initiated by applications via system calls
(munmap, madvise, mprotect,. . . ) [6]. These system
calls usually encompass returning virtual memory to the
system or changing memory page permissions.

Because modern CPUs often use physically-tagged
caches, the TLB is consulted on every memory access. It is
thus performance-critical, and therefore local to each core.
This means that TLB consistency issues arise in multi-core
(SMP) systems. When a PTE changes, all cores buffering
it in their TLB must be notified. The majority of CPU
architectures, including x86, rely on the OS for this for
apparently mainly historical reasons [7]. In Linux, this is
done by flushing the PTE from the local TLB through
a dedicated instruction and sending an IPI to all CPUs
that use the virtual memory space containing the altered
PTE, instructing them to do the same. On modern Intel
CPUs (utilizing x2apic), each IPI is sent by writing the
destination CPU and interrupt vector to the ICR MSR [8].
The local APIC then sends the IPI to the receiving CPU. The
latter processes it and acknowledges its receipt by writing
to the EOI MSR. The sending CPU synchronizes with all
recipients by means of a spin-lock before proceeding. This
entire process constitutes a TLB shootdown.

In virtualized systems, performing a TLB shootdown
is significantly more complicated. Firstly, IPIs are in this
context sent between virtual CPUs (vCPUs). Since the vCPU
the guest OS sees is not guaranteed to be running on the
corresponding physical CPU, the hypervisor (VMM) must
intercept all guest IPIs. In systems employing hardware-
assisted virtualization -the standard virtualization method
today- the CPU itself intercepts IPIs by triggering a VM exit

when the guest attempts to write to the ICR MSR, handing
control to the VMM [8]. The latter will then reroute the IPI
to the correct CPU. VM exits are expensive operations. Be-
sides the direct execution of VMM code, their cost includes
time to save/restore the guest state, as well as increased
cache pressure [9]. On older systems, VM exits are required
on the receiving CPU as well to process the interrupt. Recent
Intel Xeon CPUs however contain an optimization (APICv)
that eliminates these recipient-side VM exits [8]. Secondly,
virtualization often abstracts the host system’s NUMA lay-
out from the guest, leading to an increase in slow cross-
socket IPIs on NUMA systems since the guest scheduler can
not optimize thread/memory placement. Thirdly, if multiple
VMs share the same physical CPU set, a vCPU may send an
IPI to a vCPU that is currently preempted. It must then wait
until the receiving vCPU is re-scheduled and acknowledges
receipt of the interrupt. This is known as TLB shootdown

preemption [10]. Several optimizations exist to limit the
impact of this problem [3], [8]. However, many systems
are not yet equipped with these recent optimizations.

3. Rising TLB Shootdown Cost

Previous studies have already quantified the cost of TLB
shootdowns at a low level [2], [11]. However, from these
studies the real-world cost in realistic environments remains
unclear. From a pragmatic perspective, this insight is crucial.
In this section, we aim to provide such insight by evaluating
TLB shootdown overhead in a variety of realistic scenarios,
in function of several common system properties.

3.1. Experimental Setup

From system source code and literature, we find that
three system properties may significantly influence the cost
of TLB shootdowns: CPU count used by the workload,
system NUMA architecture and virtualization [11], [12]. We
will thus focus on these properties in our analysis.

Our test system is an Ubuntu 18.04 (kernel 4.15) Linux
server with 4 Intel Xeon CPUs (20 cores, 40 threads each)
and 256GB of RAM. For experiments requiring virtualiza-
tion, we use KVM. We use taskset1 to pin threads to the
desired cores. We record the number of TLB shootdown
IPIs, the number of CPU cycles consumed by the program,
and wall-clock time using perf2.

The test workload is a C program that creates 16 threads
that each call madvise(MADV_DONTNEED) 1,000,000
times in a loop. As noted in §2, this is one of the system
calls known to induce TLB shootdown IPIs. The source code
of our test program is available on GitHub3.

3.2. Results

3.2.1. CPU Count. To analyze the impact of CPU count
on TLB shootdown overhead, we run our test program with
core counts varying between 1 and 20 on a single socket on
our test system. Fig. 1a shows the results.

For 1 core, no TLB shootdown IPIs are sent as intuitively
expected. From 2 to 16 cores, the number of IPIs grows
linearly. This illuatrates the limitations of system-level so-
lutions: the OS has no knowledge of TLB contents and must
send IPIs to all the cores using the virtual address space to
guarantee correctness. Above 16 cores, the number of TLB
shootdown IPIs no longer increases, as the program can not
use more than 16 CPUs. The execution time and number
of cycles in fig. 1a reflect the increase in IPIs, indicating a
linear relationship between CPUs used by the program and
the cost of TLB shootdowns.

3.2.2. NUMA. We assess the impact of NUMA on TLB
shootdown overhead by executing our test program pinned
to 12 cores, spread over 1 to 4 sockets on our test system.
Fig. 1b shows that indeed both execution time and cycles
rise with the number of sockets. Combining the results from
fig. 1a and fig. 1b enables us to estimate just how much more

1. https://linux.die.net/man/1/taskset

2. https://linux.die.net/man/1/perf

3. https://github.com/StijnSchildermans/tlb shootdown mitigation.git
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Figure 1. Impact of several system properties on TLB shootdown overhead.

expensive remote IPIs are. Given that the total number of
cycles required to execute the workload is the sum of the
cycles spent on IPIs to the same socket, IPIs to a different
socket, and a constant representing the remainder of the
code, we can derive the following:

cycles = a×IPIs
sockets

+ (n× a)× IPIs(1− 1
sockets

) + C

a = cycles(IPIlocal)

n = cycles(IPIremote)
cycles(IPIlocal)

C = cycles(remaining code)
When we substitute C for the amount of cycles spent

on the one CPU variant from fig. 1a, and IPIs for the
number of IPIs sent by the 12-CPU variant of the test
program, we can determine a and n by curve fitting the
above formula to the results from fig. 1b. We find a near-
perfect fit for a = 3200 and n = 3. This indicates that
IPIs sent to a remote socket are approximately 3 times
as expensive as those sent to CPUs on the local socket.
The solid lines on figure 1b represent the determined curve
(adjusted accordingly for execution time).

3.2.3. Virtualization. As stated in §2, virtualization can
increase the cost of TLB shootdowns in 3 ways: VM
exits, system architecture abstraction and TLB shootdown
preemption. To test the impact of these issues, we ran our
test program on a VM with 16 vCPUs, and compare the
cycles and time used to native execution. We experiment
with APICv turned on and off, with multiple corunners
(other VMs competing for the same CPUs) to induce TLB
shootdown preemption, and with the vCPUs spread over
multiple sockets. Fig. 1c shows the results.

The results from fig. 1c indicate that even basic use of
virtualization decreases application performance by a factor
of roughly 3. When additionally TLB shootdown preemp-
tion and NUMA abstraction occur, an order of magnitude
of performance degradation is observed relative to native
execution. Keep in mind that for each of the scenarios in
fig. 1c, the system is identical from the perspective of the
guest! Truly concerning is the fact that in the current era
of cloud computing virtualized and overcommitted NUMA
systems, represented by the worst-case scenario in fig. 1c,
are becoming the standard application deployment platform.
This clearly illustrates that now more than ever is the time to
tackle the long-standing issue of TLB shootdown overhead.

4. Memory Management & TLB Shootdowns

As noted in §1, memory management may induce high
TLB shootdown overhead. Throughout the years many dif-
ferent memory allocators have been developed. While the
internals of these allocators may vary wildly, concerning
TLB shootdowns we are only interested in how they interact
with the system. In this regard, only a handful of principles
are commonly applied. We discuss each of these below.

4.1. Hysteresis-Based Arenas

Early memory allocators were poorly scalable since they
used a global lock, serializing any heap modification. To
alleviate thread contention, the heap was divided in au-
tonomous arenas, each protected by their own lock. Arenas
are strictly isolated. As such, OS-interaction is fine-grained
and happens on a per-arena basis. To avoid excessive system
interaction when the memory footprint of an arena changes
hysteresis is employed in the form of padding when the heap
is expanded and a trim threshold which must be exceeded
before it is shrunk. Many memory allocators are based on
this concept, most notably glibc’s ptmalloc2 [13].

While resizing arenas aggressively on a per-thread basis
is efficient, many resizing operations induce increasingly
costly TLB shootdowns, as described in §3. Moreover, the
global memory efficiency gained by resizing an arena may
be minor as individual arenas may only hold a fraction
of the application memory and multiple arenas expanding
and shrinking simultaneously may balance each other out.
There may thus be an imbalance between the rate at which
the (relative) memory footprints of individual arenas and
the application change, suggesting that aggressively resizing
arenas may not be worth the cost from an application-wide
perspective. We call this the arena imbalance issue. Listing
1 shows a workload suffering from this issue if executed by
multiple threads in parallel using ptmalloc2.

vo id * work ( vo id * a r g ) {
vo id * m[ 1 0 0 0 ] ;
f o r ( i n t i = 0 ; i < 1000 ; i ++){

f o r ( i n t j =0 ; j <1000; j ++)m[ j ]= ma l l oc ( 1 3 0 0 4 8 ) ;
f o r ( i n t j =0 ; j <1000; j ++) f r e e (m[999 − j ] ) ;

}}

Listing 1. Minimal program causing many TLB shootdowns in ptmalloc2.
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The workload from listing 1 allocates 1000 chunks of
127kB of memory. Then, all the memory is deallocated in
reverse order. This process is contained in a loop. When 16
threads execute this workload in parallel on our test system
described in §3.1, this results in 230 million TLB shootdown
IPIs. Interestingly, if the order of freeing the chunks is
reversed in listing 1, TLB shootdowns and program runtime
are reduced by resp. 99.8% and 87% since heaps can not be
shrunk when the top chunk is in use. This indicates that the
arena imbalance issue can be introduced by minor changes
to source code and have a severe performance impact.

4.2. Decay-Based Purging

Some arena-based allocators do not use hysteresis to
determine when memory should be returned to the sys-
tem, but employ decay-based purging. Freed memory is
gradually released to the OS after a set amount of real
time has elapsed (typically seconds). While this largely
mitigates the arena imbalance issue, a capacitive effect is
introduced. For applications with a rapidly and strongly
varying memory footprint throughout their execution, decay-
based purging is significantly less efficient than hysteresis-
based trimming. The most popular decay-based memory
allocator is FreeBSD’s jemalloc [14].

4.3. Size-Class-Based Memory Management

Some allocators do not use arenas at all. Instead, they
use per-thread caches which consist of a series of bins
containing a list of chunks of fixed size classes, which are
replenished in batches from a central heap. Memory is very
coarsely returned to the system (based on hysteresis) since
each size class must retain some padding. While this concept
exhibits excellent performance, it is known to be especially
susceptible to fragmentation since freed chunks can only be
recycled by allocations of the same size class, leading to low
memory efficiency [15]. Many high-performance allocators
use this concept, such as tcmalloc [16] and memcached [17].

4.4. Garbage Collection

Today, most allocators employ garbage collection. In
contrast to the allocation mechanisms described above,
memory management is entirely performed by an algorithm,
without programmer intervention. Because this algorithm
is very expensive, it is deferred as long as possible. For
example, in Java, a large amount of memory is reserved
when the program starts and the garbage collector is only
run when (a generation of) the heap is full [18].

While deferring garbage collection may minimize per-
formance overhead -including TLB shootdowns-, memory
efficiency suffers greatly since heap sizes are altered only
sporadically and coarsely. Many studies have found that
garbage collection has a detrimental impact on memory
efficiency [19]–[21]. Thus, when efficiency is a concern,
allocators employing garbage collection are not an option.
Examples of memory allocators employing garbage collec-
tion include those used by Java, .NET, Python, etc.

5. Rethinking Memory Allocator Scalability

§4 has shown that no memory allocator combines ex-
cellent memory efficiency with negligible TLB shootdown
overhead. This thus appears to be a fundamental design
trade-off. However, when studying relevant literature (see
§8), we found that this trade-off is never explicitly consid-
ered. Rather, the main trade-off is relieving thread contention
(favored by high-performance allocators) versus maximizing
memory efficiency (favored by high-efficiency allocators).
The low TLB shootdown overhead many allocators exhibit
is thus a side effect of other design decisions rather than a
design goal. Notwithstanding, the results from §3 demand
design priorities to be reconsidered.

An explicit focus on the trade-off between memory ef-
ficiency and TLB shootdown overhead promises to yield an
allocator that balances these traits better than any other. This
can even be achieved without sacrificing other important
characteristics by starting from an existing concept and
refining it. To this end, we devised the concept of global

hysteresis, which is based on that of hysteresis-based arenas
(see §4.1). We describe this concept below.

5.1. Global Hysteresis

Balancing efficiency and scalability for hysteresis-based
arenas equates to eliminating the arena imbalance issue de-
scribed in §4.1 with a minimal impact on memory efficiency.
To come up with a viable concept, we asked ourselves the
following fundamental question:

Does the change to the memory footprint of the application

justify the performance overhead of resizing the arena?

To answer this question, we must know the benefits of a
pending arena resizing operation regarding an application’s
memory usage as well as the cost of a TLB shootdown.
Knowing these, we may allow for low memory efficiency
in individual arenas when the global impact thereof is minor
relative to the cost of resizing the arena. This mandates a
global notion of the application state, in contrast to classic
hysteresis which only considers the arena to be resized.
We must thus partially break the strict isolation between
arenas, allowing basic usage statistics to be exchanged in
order to determine appropriate hysteresis thresholds. We
thus introduce global hysteresis.

The TLB shootdown cost of resizing an arena can be
estimated from the number of CPUs the application is
using, as described in §3.2.1. The global memory usage
implications thereof can be known by iterating over all
arenas and calculating their cumulative memory usage. From
this, a suitable top padding and trim threshold can be
determined. These values may be much larger than those
we would have chosen if only the arena to be resized were
taken into account. Arenas are only trimmed if the total
trimmable space of the application exceeds the determined
threshold. We thus mitigate the arena imbalance issue at
the cost of some memory efficiency and thread contention.
If the hysteresis thresholds are chosen intelligently, we are
confident the benefits of this approach outweigh the cost.
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Figure 3. Comparison of TLB shootdowns for the Parsec benchmarks using
ptmalloc2 and ptlbmalloc2; run natively with 16 CPUs on 1 socket.

7. Evaluation

We evaluate ptlbmalloc2 by comparing it to ptmalloc2
using a variety of system configurations and multithreaded
workloads. All experiments are performed on the system
described in §3.1. For the workloads we choose the PARSEC

3.0 benchmark suite, which is widely used and covers a
broad application domain [22]. A large body of existing
work compares ptmalloc2 to other memory allocators, fa-
cilitating extrapolation of our results [15], [23].

7.1. Conceptual Effectiveness

We first evaluate to what extent the main goal of global
hysteresis embodied in ptlbmalloc2 has been achieved:
eliminating the arena imbalance issue. To that end, fig. 3
compares the number of TLB shootdowns for all PARSEC
benchmarks using resp. ptmalloc2 and ptlbmalloc2, run
natively using 16 CPUs on one socket on a logarithmic scale.

Fig. 3 shows that for most benchmarks, the number
of TLB shootdowns is low using ptmalloc2. This is to be
expected, since the arena imbalance issue is only induced
by specific allocation patterns. However, dedup and vips do
exhibit many TLB shootdowns. These are highly likely to be
induced by the arena imbalance issue since page migrations
and I/O can be eliminated as causes due to the nature of the
workloads and the system. Ptlbmalloc2 eliminates almost all
TLB shootdowns for these benchmarks without significantly
affecting others. This indicates that global hysteresis is a
viable concept to eliminate the arena imbalance issue.

7.2. Side Effects

While §7.1 indicates that ptlbmalloc2 achieves its main
goal, it may have undesirable side effects such as increased
resource usage. To gain insight into this, we analyzed three
principal memory allocator performance metrics: execution
time, memory efficiency and CPU cycles. We asses ptlb-
malloc2 relative to ptmalloc2 regarding these metrics for
all PARSEC benchmarks with CPU counts varying from 4
to 64, spread over 1 to 4 sockets. Fig. 4 shows the results
at the extremes of the tested system configurations. Other
configurations reliably yield results between these extremes.

Globally, the results in fig. 4 align with expectations.
In fig. 4b, both dedup and vips show a noticeable speedup.
In fig. 4a however vips consumes slightly more cycles and
time, while memory efficiency is 5% better compared to
ptmalloc2. This is possible when a benchmark allocates
many large chunks. In ptmalloc2, the trim threshold keeps
increasing as the mmap threshold increases. Ptlbmalloc2
on the other hand bases its thresholds on the application
state and may shrink them accordingly. It can thus be more
memory efficient than glibc at a minor cost in performance.

Curiously, fluidanimate consistently shows a perfor-
mance improvement of ± 5% despite not suffering from the
arena imbalance issue, as indicated by fig. 3. Closer analysis
reveals that that this is not a direct consequence of the design
considerations of ptlbmalloc2, as the number of system calls
performed by this benchmark is identical for ptlbmalloc2
and ptmalloc2. Rather, improved cache performance causes
this result. Because cache behavior is very complicated, not
a focus of ptlbmalloc2’s design and out of scope of the
paper, we refrain from attributing this result to hypothetical
superior design of ptlbmalloc2. For the same reasons we
leave a deeper analysis of this finding for future work.

Other benchmarks show performance very close to pt-
malloc2. None show a consistent significant performance
degradation across system configurations. Moreover, after
carefully analyzing the benchmarks exhibiting a mild slow-
down in ptlbmalloc2, we found that the main cause is in-
creased thread contention for arenas. This is partly by design
as explained in §6, and partly because we did not integrate
our code into ptmalloc2 itself, requiring us to contend with
ptmalloc2 code for arena locks. By integrating ptlbmalloc2
directly in glibc, we could eliminate the majority of this
contention at the cost of reduced flexibility.

Memory efficiency is overall much better than we ex-
pected. Only bodytrack and swaptions show notably in-
creased memory usage, which never exceeds 15%. After an-
alyzing the memory profile we found that these benchmarks
consume very little memory (30MB for bodytrack and 4MB
for swaptions). These results are thus very acceptable.

We finalize our analysis of side effects by studying
ptlbmalloc2’s performance in a virtualized scenario. Fig. 5
shows the results in terms of cycles. We omit the other
metrics as execution time is in line with cycles in fig. 5
and memory efficiency is in line with that shown in fig. 4.

As expected, fig. 5 shows that performance improve-
ments are greater in virtualized scenarios for the benchmarks
suffering from the arena imbalance issue. All other bench-
marks, with the exception of swaptions, perform nearly iden-
tical to or better than ptmalloc2. Moreover, several outliers
can be seen where ptlbmalloc2 performs much better than
ptmalloc2 for specific configurations (e.g. canneal, 64 CPUs
and streamcluster, 4 CPUs, 4 sockets). These benchmarks
induce many TLB shootdowns only in specific scenarios.
This shows that ptmalloc2 is also susceptible to platform
specifics, thus providing strong evidence that occasional
limited relative performance variations between ptlbmalloc2
and ptmalloc2 are bidirectional.
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Figure 4. Average memory usage, execution time and cycles for the PARSEC benchmarks using ptlbmalloc2 relative to ptmalloc2 in various scenarios.
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Figure 5. Cycles used by ptlbmalloc2 relative to glibc for the Parsec
workloads in a virtualized environment.

Env. CPUs Sockets Speedup

native 4 1 0%
native 4 4 -1%

native 16 1 1%
native 16 4 2%

native 64 4 5%

virt 4 1 1%
virt 4 4 2%

virt 16 1 4%
virt 16 4 4%

virt 64 4 7%

TABLE 2. AVERAGE PERFORMANCE IMPROVEMENT OF PTLBMALLOC2
ACCROSS ALL PARSEC BENCHMARKS IN ALL TESTED SCENARIOS.

7.3. Performance

Distilling the results from §7.2 we find that ptlbmal-
loc2 greatly improves performance for benchmarks suffer-
ing from the arena imbalance issue in ptmalloc2. Most
other benchmarks behave nearly identical to ptmalloc2, with
minor exceptions in both directions. To gain a conclusive
insight into the performance of ptlbmalloc2, we summarize
the cycles used relative to ptmalloc2 in table 2 as an average
of all benchmarks for all studied system configurations.

Table 2 shows that on average, ptlbmalloc2 almost
always outperforms glibc. Performance improvement rises

drastically with CPU count. In virtualized environments the
impact is even greater. To our surprise, NUMA configuration
has only a limited effect. The average of all results in
table 2 is 3%. We thus conclude that ptlbmalloc2 boasts
modest performance improvements on average, with some
benchmarks benefiting greatly, while most other benchmarks
are at most mildly affected. Ptlbmalloc2 thus succeeds in its
goal of eliminating the arena imbalance issue, while having
a minimal impact on other aspects of the memory allocator.

8. Related Work

TLB performance has been studied extensively in litera-
ture. However, most studies focus on increasing TLB hit rate
or reducing TLB miss latency without directly addressing
TLB shootdowns [24]. The ones that do address the latter
explicitly provide solutions at hardware [1], [11], [25] or
system [2], [6] level. This poses real challenges to their
applicability since at such at a low level many side effects
must be considered and adoption may take many years.

A few proposals argue for a radically different OS
design to tackle a wide range of problems arising from the
current trend of ever-growing core counts in shared-memory
systems [26], [27]. Such OS designs view every CPU as
a discrete entity. Each CPU runs its own microkernel and
communication between CPUs is explicit. This reduces or
even eliminates the need for OS-managed TLB consistency,
among many other benefits. Although experimental imple-
mentations of such systems exist, it is unlikely that any will
be widely adopted in the foreseeable future.

A limited body of work studies the impact of virtual-
ization on TLB performance [4], [9], [10]. Most of these
studies however fail to provide a generally applicable and
readily adoptable solution. The few studies that do propose
a tenable solution are highly specific in scope and focus on
the system and hardware level, suffering the same drawbacks
as mentioned above [3].

At application level, many memory allocators with a
focus on scalability and efficiency have been developed.
Some of these have had a significant impact on mainstream
systems [14], [16]. However, in §4 we have shown that
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no memory allocator combines excellent memory efficiency
and (TLB) scalability because TLB shootdown overhead has
never been an explicit design consideration. While many al-
locators exhibit low TLB shootdown overhead, this is a side
effect of other design decisions trading memory efficiency
for performance in a broader sense. Research efforts to
improve these existing allocators are plentiful and ongoing,
e.g. by ameliorating synchronization mechanisms [28] or
data locality [29]. Such work is orthogonal to ours.

9. Conclusion & Future Work

Due to several evolutions in the nature of contemporary
computing platforms TLB shootdown cost is steadily rising.
Since for multithreaded applications many of these TLB
shootdowns are caused by memory management at appli-
cation level, optimizing memory allocators is a promising
method to address this issue. Existing allocators either ex-
hibit poor TLB performance due to the arena imbalance
issue or poor memory efficiency due to a focus on perfor-
mance aspects distinct from TLB consistency. By explicitly
focussing on the trade-off between (TLB) scalability and
memory efficiency a memory allocator design concept and
implementation exhibiting excellent performance in both
these metrics with minimal side effects have been introduced
in this work: resp. global hysteresis and ptlbmalloc2.

While global hysteresis achieves its objectives, it is
tightly bound to a specific legacy allocator design concept.
We believe the core issue is much broader: the trade-off
between memory efficiency and performance. Given the
recent increase in TLB shootdown cost, memory allocators
in general must reconsider how they interpret the metric
’performance’. We aim to address this abstract issue in
future work and plan to devise a general conceptual solution,
of which global hysteresis is one possible incarnation.
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