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Abstract—In this paper, a parallel computational model 

and algorithm based on space decomposition is constructed 
and implemented, which supports the dynamically resource 
allocation under cluster environment. The major aim is to 
explore the new space decomposition scheme that can solve 
computation intensive problem. The fast multipole method 
(FMM) is an algorithm for rapid evaluation of the potential 
and force fields in the system involving large numbers of 
particles. Based on the serial FMM algorithm, a parallel 
implementation entitled SDPFMM is presented in the paper. 
The proposed algorithm is characterized by scalability and 
flexibility. We carried out the experiment on the high-
performance computer ZQ3000 with Intel Trace Analyzer and 
Collector integrated into SDPFMM, and analyzed the 
experimental data and MPI performance of SDPFMM. The 
results demonstrate that the proposed algorithm is satisfying in 
both efficiency and solution quality. 

Keywords—space decomposition, FMM, SDPFMM, MPI, 
ZQ3000, Intel Trace Analyser and Collector 

I. INTRODUCTION  
The fast multipole method (FMM) [1] is invented in 

1987 by Greengard and Rokhlin at Yale University, for the 
rapid evaluation of the gravitational or Coulombic 
interactions between all pairs of particles in the system with 
large numbers of particles. The FMM algorithm is widely 
used in various research fields such as astrophysics, 
molecular dynamics and fluid mechanics. The above 
problems are usually referred to as the N-body problem[7]. 
The most direct approach to solve the N-body problem is to 
directly calculate the interactions between particles, but the 
running time of this method grows in quadratic level, and 
therefore people put forward many fast algorithms for 
solving N-body problem. Most of these fast algorithms are 
represented by the Barnes-Hut algorithm [2], and the Fast 
Multipole Method. 

The FMM algorithm is an effective method to solve the 
N-body problem, so it is very necessary to study its parallel 
scheme for the large-scale N-body problem. The FMM 
algorithm has potential in the aspect of parallelization, which 
can be directly parallel itself. And the potential of 
parallelization implicit in the FMM algorithm is enormous. 
This paper presents a parallel strategy based on space 
decomposition, which minimizes the communication data on 
the premise of system load balancing.  The running time and 
communication time under this strategy in the experiment 

are recorded in order to verify the high efficiency of the 
strategy. 

II. THE DESCRIPTION OF FAST MULTIPOLE METHOD  

A. The principle of FMM algorithm 
The N-body problem is a well-known scientific issue, 

which is described in mathematical language as follows: ݂ሺݕሻ ൌ ∑ ܹܭሺݕ, ሻேୀଵݔ , ݅ ൌ 1,2, … , ܰ, 
The time complexity to evaluate ݂ in the N-body system 

is  ܱሺܰଶሻ. In order to speed up the calculation of the N-body 
problem, several fast algorithms have been put forward. 
Among them the typical is the Barnes-Hut algorithm and 
FMM algorithm. The FMM algorithm is used to accelerate 
the computing speed of the N-body problem with ܱሺܰሻ time 
complexity. The idea of the FMM algorithm is that the 
original space is divided into different levels of space, and 
then the computational domain is divided into near-domain 
and far-domain. Near-domain uses direct calculation, while 
the calculation of far computational domain introduces a 
single formula to be gradually solved by approximating the 
impact on space by a cluster of particles. This process is 
described mathematically as:  ݂ሺݕሻ ൌ  ܹܭሺݕ, ሻݔ ேೌೝ

ୀଵ  ܹܭሺݕ, ሻேೌೝݔ
ୀଵ , ݅ ൌ 1,2, … , ܰ 

When computing remote domain, two key expressions 
are introduced as follows: Multipole Expansion (ME), Local 
Expansion (LE). The nature of the two expressions is the 
Taylor series. During calculation, ME will be converted to 
LE, which is referred to as M2L. Additionally there are two 
conversions: M2M and L2L. M2M consists of two steps: 
Translation of a multipole expansion: it is a transfer of 
particle cluster center for obtaining a higher level of ME; 
Sum of MEs: sum of the MEs to obtain a higher level of ME. 
L2L is the translation of a local expansion: it is a transfer of 
particle cluster center for obtaining a lower level of ME, L2L 
and M2L is alternating. 

B. The executing step of FMM algorithm 
The FMM algorithm is essentially a calculation of the 

Taylor expansion of different stages to finally complete the 
evaluation of interactions. The FMM algorithm uses a 
hierarchical spatial decomposition method to break down 
the original space box into a number of levels. The key task 
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flow of the FMM algorithm is divided
decomposition as follows: ①  Initializatio
ME); ③ Translation of a multipole expansio
(called  M2M) ④ M2L ; ⑤ L2L; ⑥ Comp
expansion (referred to as LEC); ⑦  d
(referred to as PP); ⑧ Sum (sum of near-
domain force). The above tasks are carried 
order. They are data-related. 

The complete process of the FMM algor
Figure 1. The FMM algorithm can be d
phases: initialization, upward, downward, 
labels in Figure 1 indicates: ①  tree 
initialization of tree ③ solve neighbor
interaction list ④ P2M ⑤ M2M ⑥ M2L ⑦
PP ⑩ sum. In the Initialization phase, FM
locate the input particles, initialize vario
particles and solve neighbor nodes and in
grid units of different space levels. Init
includes ①②③  shown in Figure 1. 
initialization steps of the algorithm. ②③

parallel, with no data dependence between 
⑦⑧ are key steps of the FMM algorithm. 
data-related, and the order is determined, s
be executed in the sequential order. ⑨ ste
and can be executed in parallel with from ④
 

Figure 1.  Process of the FMM algori

III. FMM ALGORITHM BASED ON SPACE 

A.  Location of particles and Morton encod
In this article, only a two-dimensio

discussed. SDPFMM uses the linear quadtre
tree. In fact, the decomposition of the geo
FMM algorithm and the relation between pa
in the quadtree are the same in natu
conventional quadtree, the linear quadtre
dimensional space to a one-dimensional sp
the disadvantage that the conventional quad
storage space. In addition, in the linear qua
nodes can be generated from child’s encodin
pointers to link them. To sum up, the b
encoding of linear quadtree is: No record
nodes and no use of pointers; only the leaf n
and the location of leaf nodes is denoted w
The input data of FMM algorithm is the pa
various properties of the particles, one o

d by functional 
on; ②  P2M (or: 
on, Sum of MEs; 
putation of Local 
irect calculation 
-domain and far-
out in sequential 

rithm is shown in 
divided into four 

calculation. The 
construction ②

ring nodes and 
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MM is mainly to 
ous attributes of 
nteraction list of 
tialization phase 
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with address code. 
articles, including 
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coordinates of the particles. To use 
location code is needed to iden
location code contains information
level of the quadtree. Such location 
encoding. The following describes h
into a grid, and then to locate the
one-dimensional array. 

Figure 2 shows one number for 
Figure 2 is filled in Z pattern. It
Figure 3 shows the grid coordinate
algorithm finds the correspondin
according to the coordinate of P (a
the particles and that of the corre
relation: P (ܽ, ܾ) א ,ۂܽہሺܤ  .ሻۂܾہ
 

42 43 46 47  58  

40 41 44 45  56  

34 35 38 39  50  

32 33 36 37  48  

10 11 14 15  26  

8 9 12 13  24  

2 3 6 7  18  

0 1 4 5  16  

Figure 2.  Z-SFC for

Figure 3.  Grid coordinate

After locating every particle to it
as leaf nodes in the quadtree
corresponding number in Figure
coordinates of leaf nodes (hereinaft
code). In the above example, the M
is 25. Computer programs can use
hold the correspondence between t
and the Morton codes. For example
use map type or structure, and so on
codes have the following character
all, the (2,5) is turned into a binary
then the binary bits are interleave

a linear representation, a 
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how to locate the particles 
m using Morton-ordered 

level=3. The sequence in 
’s a space filling curve. 
es for level=3. First, the 
ng grid P belongs to 
a, b). The coordinates of 
esponding grid have the 

59  62 63 

57  60 61 

51  54 55 

49  52 53 

27  30 31 

25  28 29 

19  22 23 

17  20 21 

r level=3 

 
es for level=3 

ts owned grid (referred to 
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abscissa is on the odd position, the ordinate is on the even 
position. After interleaving the form of binary bits is changed 
to 00011001, which is precisely the decimal number 25 
corresponding to Figure 2. Finally, The Morton encoding 
process is finished by appending binary code of 
corresponding level 011 in the above encoding to get the 
final encoding 00011001011. 

 
Figure 4.  Morton encoding 

After the leaf nodes are sorted in Morton encoding, the 
algorithm can generate a global array index (the linear 
quadtree) according to Morton ordering; each array element 
is an index and the index points to the corresponding spatial 
cell. The global array index is the foundation of the 
construction of the LET[4] described in the following. 

B. The constrction of LET 
In the SDPFMM, the core part is the construction of the 

locally essential tree (LET). LET is the sets of nodes 
including leaf nodes scheduled to some processor, their 
ancestor nodes and their interaction list nodes. The local tree 
(LT) only includes leaf nodes scheduled to some processor, 
their ancestor nodes. LET is the extension of LT. In Figure 5, 
the space is divided into four regions 1,2,3,4, representing 
the computing area initially allocated by each processor. 
These areas are LT. The cells marked with * are the sets of 
interaction list of area 2. We use LET (i) representing LET 
executed by the i processor. So a conclusion can be drawn 
that LET（2）=LT（2）+{cells marked with *}. This paper 
has mentioned the global array index in Morton ordering. 
Before the construction of LET, the algorithm will create the 
global array index of leaf nodes and their ancestor nodes in 
Morton ordering. The global array index of parent nodes and 
ancestor nodes are dynamically generated from the global 
array index of leaf nodes. When constructing LET, the 
algorithm will specify the k-th level for parallel computing, 
then divide the k-th level global array. The division can be 
equal length or unequal length. The equal length division is 
the simplest method, but it will cause the load imbalance. For 
the unequal length division, the algorithm will estimate in 
advance the total number of the interaction list of local arrays 

of each level, then find a way of division the task of each 
area is more or less be in balance. The figure 5 shows that for 
the LET in area 2, the * cells will send the data from 1,3,4 to 
2 and 1,3,4 will receive corresponding data from other areas. 
But how do areas 1,3,4 determine which cells should be sent 
to area 2 ? Take example for figure 5. The cells be sent to 
area 2 are {cells | cell∈(LET(2) ∩ Ωଵ)∪(LET(2) ∩ Ωଷ) ∪
(LET(2) ∩ Ωସ)}.  

The above description shows that LT is the set of local 
array corresponding to each level in fact while LET is the set 
of local array and its interaction list. The conversion of LT 
into LET requires communication. The communications 
include the communication between the LETs, between LET 
and root Tree, and the communication between the neighbors 
which happens in the interaction between near-domain cells. 

 
Figure 5.   Set of interaction list of area 2 

The following is the description of LET. Before the 
algorithm is described, several variables are introduced. ܮ:  leaf nodes assigned for processor p; ܣ൫ܮ൯: the ancestors of ܮ； ߗᇲ: the region controlled by processor ᇱ; ܫሺߚሻ: the interaction list of β. 

Algorithm description for LET construction: 
Input: the set of particles: x 
Output: LET on each processor p 

ܮ .1 ൌ PointsToQuadtreeሺxሻ 
ܤ .2 ൌ ܮ    ሻܮሺܣ
3. ܱᇲ: ൌ ሼߚ א :ܤ  { ᇲߗ ∩ ሻߚሺܫ
:ᇱ .4 ᇱ ്   ᇱ Send ܱᇲ to processor                  
 ᇱ Receive ܱᇲ from processor        

Put ܱᇲ into ܤ  
5. Return ܤ, the construction of LET is finished. 

C. The description of Parallel FMM algorithm based on 
space decomposition 
According to the foregoing description, one can know 

how to locate the particles, Morton encoding and the 
construction of LET. The following will completely describe 
the parallel FMM algorithm based on space decomposition, 
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which is the theoretical reference of SDPFMM programming 
realization. The SDPFMM algorithm steps are described as 
follows:  
Step 1: Specify the initial parameters: d for the maximum 
depth of space division level, starting from the k-th level to 
carry out parallel computing;  
Step 2: Locate the particles to corresponding grid according 
to the coordinates of the particles, then sort the leaf nodes in 
Morton encoding to generate the global array, and then 
dynamically generate Morton encoding of parent nodes and 
ancestor nodes from Morton encoding of leaf nodes; 
construct a Morton-order sorted array in each space level;  
Step 3: According to the parameter k, divide the arrays of the 
k-th level to some local arrays which are sub-task array 
scheduled to each processors. The task corresponding to the 
arrays above k-th level is done by one appointed processor. 
Step 4: Construct LET on each processor of which the height 
is d െ k ; 
Step 5: Each processor computes MEs, M2Ms in upward 
order starting at the leaves, exchanges data between LETs, 
and sends communication data to the root tree; 
Step 6: Calculate the M2Ms in root tree, and distribute 
communication data to each LET. Each processor calculates 
M2Ls, L2Ls and LEs in downward order, and exchanges 
data between LETs. Finally evaluate local expansion at each 
particle, namely solve the far-domain force of each particle. 
Step 7: Each processor directly computes near-domain 
interaction forces, then sums near-domain and far-domain 
interactions to output the result. 

IV. THE IMPLEMENTATION OF SDPFMM AND 
EXPERIMENTAL RESULTS 

A. The description of  the implementation of SDPFMM 
The implementation of the SDPFMM algorithm uses 

MPI. As the SDPFMM algorithm uses the idea of space area 
division, each area is the parallel processing unit. In 
describing the SDPFMM algorithms, the calculation unit 
indexed by the local arrays sorted by Morton encode is 
essentially each region of decomposed space. As depicted in 

Figure 6, the global array corresponds to undivided area of 
space, then the global array is divided into (which can be 
equal-length or unequal-length) several local arrays 
corresponding to the divided area. In SDPFMM algorithm, 
there is communication among the areas when constructing 
LET, After the construction of LET, the memory in each 
processor acquires the copy of the memory in other 
processors. 

 
Figure 6.  The relation between global array and local arrays 

B. Experimental data and performance analysis 
Runtime environment of our experiments is the high-

performance computer ZQ3000 cluster of Shanghai 
University, which consists of 192 nodes, and each node has 
two 3.06GHZ Intel Xeon CPUs with a 2GB memory. The 
experimental procedures are implemented by C and C++ 
with MPI parallel library and PETSC library[6]. In addition, 
a graph partitioning tool such as Parmetis is introduced to 
create partitions. With the purpose of better understanding 
MPI application behavior, quickly finding bottlenecks and 
achieving high performance for parallel cluster applications, 
a powerful tool named Intel Trace Analyze and Collector is 
integrated into the SDPFMM program. 

 

TABLE 1 EXPERIMENTAL DATA OF SERIAL FMM 

Particles Level Time(s) Minimum. time(s) 

 4 113.61  
62500 5 40.64 40.64 

 6 47.84  

 5 188.24  
140625 6 84.51 84.51 

 7 174.94  

 5 492.76  
250000 6 166.07 166.07 

 7 194.07  
  
In table 1, the number of particles selected is 62500, 

140625, and 250000. Table 1 shows that the executing time 
for the same number of particles differs with each other as 
the value of level changes and there exists an optimal value 

making the time least. In order to facilitate comparison, the 
distribution of particles in the following experiment is well-
proportioned. For each number, when running the FMM 
program we select the different levels of space 
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decomposition to record the running time of the different 
numbers of particles. Before carrying out the SDPFMM 
experiment, it is necessary to run serial FMM, which is 
instructive to SDPFMM. On the one hand the SDPFMM 

parameter selection will be as far as possible consistent with 
the serial program, making the parallel program run under 
the optimal parameters. On the other hand it is used to assess 
the performance of parallel programs. 

TABLE 2  EXPERIMENTAL DATA FOR 2,4,6 PROCESSORS;LEVEL=6; K=3(64 SUB-TASKS) 

Particles Nodes avg. none-com. time(s) avg. com. time(s) avg. time(s) Speedup 

 2 24.73 0.38 25.11 1.00 
62500 4 9.02 1.47 10.49 2.39 

 6 6.35 3.79 10.14 2.48 
 2 44.51 0.66 45.17 1.00 

140625 4 16.28 2.44 18.72 2.41 
 6 18.78 4.23 23.01 1.96 
 2 86.38 0.79 87.17 1.00 

250000 4 23.45 2.49 25.94 3.36 
 6 59.03 8.79 67.82 1.29 

TABLE 3  EXPERIMENTAL DATA FOR 2,4,6 PROCESSORS; LEVEL=6;K=4(256 SUB-TASKS) 

Particles Nodes avg. none-com. time(s) avg. com. time(s) avg. time(s) Speedup 

 2 25.21 1.22 26.43 1.00 
62500 4 8.99 2.80 11.79 2.24 

 6 15.05 5.90 20.95 1.26 
 2 45.8 1.66 47.46 1.00 

140625 4 16.44 4.25 20.69 2.29 
 6 27.41 9.53 36.94 1.28 
 2 89.63 2.14 91.77 1.00 

250000 4 23.66 3.82 27.48 3.34 
 6 54.35 9.85 64.20 1.43 

 
In the table 2 and 3, the non-communication time is the 

sum of running time of each processor's non-MPI code 
while the communication time is the sum of the running 
time of each processor's MPI communication function. 
The analysis of the above two tables show that the average 
none communication time of SDPFMM reduces as the 
number of the processors increases on condition that the 
parameter level and k are fixed, but are not directly 
proportional. The time trendline would be a degressive 
wavy line if we draw a fitting curve when having more 
processors run the parallel program. When the number of 
particles is different, the number of CPUs is same, and the 
parameter level and k are fixed, the average 
communication time of SDPFMM increases as the number 
of the processors increases. On the condition of the same 
number of particles with parameter k fixed, the average 
running time of SDPFMM is least when the number of 
CPUs is 4. This is because it takes less time for SDPFMM 
to deal with the construction of linear quadtree.  The 
parmetis library generates different partitionings according 
to the number of processors. For 2,4 and 6 CPUs, 4 CPUs 
is optimal for parmetis, so the speedup is maximal when 
the number of CPUs is 4. As the number of processors 
increases, four CPUs may be not the optimal choice. 
Additionally, with the size of the N-body problem 
increased, more processing nodes are needed, and the 

different program parameters have great influence on the 
results, so the optimal number of nodes is associated with 
the size of the problem and the parameter selection of the 
program. But it is not the focus of this paper. In general, 
the SDPFMM performance is satisfying. 

V. CONCLUSIONS 
The fast multipole method is a fast algorithm to solve 

the N-body problem. In order to make FMM programs run 
in high-performance parallel computers, many scholars put 
forward some parallel methods of FMM and implement 
them with a variety of parallel programming methods. In 
this paper, we put forward a parallel FMM algorithm 
based on space decomposition, describe the idea and 
implementation method of SDPFMM, and carry out some 
experiments on ZQ3000 cluster. By analyzing the 
experimental data, we come to a conclusion that 
SDPFMM algorithm has good performance, and its design 
is scientific and rational. The future work will focus on 
introducing pipelining to parallelizing communication and 
computation. 
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