
Parallel FMM algorithm based on space
decomposition

Jinshi Zhu, Yongmei lei1, Jianchen Shan
School of Computer Engineering and Science, Shanghai University, Shanghai 200072, China

{jinshi, lei}@shu.edu.cn, shu.vagabond@gmail.com, 1Corresponding author

Abstract—In this paper, a parallel computational model

and algorithm based on space decomposition is constructed
and implemented, which supports the dynamically resource
allocation under cluster environment. The major aim is to
explore the new space decomposition scheme that can solve
computation intensive problem. The fast multipole method
(FMM) is an algorithm for rapid evaluation of the potential
and force fields in the system involving large numbers of
particles. Based on the serial FMM algorithm, a parallel
implementation entitled SDPFMM is presented in the paper.
The proposed algorithm is characterized by scalability and
flexibility. We carried out the experiment on the high-
performance computer ZQ3000 with Intel Trace Analyzer and
Collector integrated into SDPFMM, and analyzed the
experimental data and MPI performance of SDPFMM. The
results demonstrate that the proposed algorithm is satisfying in
both efficiency and solution quality.

Keywords—space decomposition, FMM, SDPFMM, MPI,
ZQ3000, Intel Trace Analyser and Collector

I. INTRODUCTION
The fast multipole method (FMM) [1] is invented in

1987 by Greengard and Rokhlin at Yale University, for the
rapid evaluation of the gravitational or Coulombic
interactions between all pairs of particles in the system with
large numbers of particles. The FMM algorithm is widely
used in various research fields such as astrophysics,
molecular dynamics and fluid mechanics. The above
problems are usually referred to as the N-body problem[7].
The most direct approach to solve the N-body problem is to
directly calculate the interactions between particles, but the
running time of this method grows in quadratic level, and
therefore people put forward many fast algorithms for
solving N-body problem. Most of these fast algorithms are
represented by the Barnes-Hut algorithm [2], and the Fast
Multipole Method.

The FMM algorithm is an effective method to solve the
N-body problem, so it is very necessary to study its parallel
scheme for the large-scale N-body problem. The FMM
algorithm has potential in the aspect of parallelization, which
can be directly parallel itself. And the potential of
parallelization implicit in the FMM algorithm is enormous.
This paper presents a parallel strategy based on space
decomposition, which minimizes the communication data on
the premise of system load balancing. The running time and
communication time under this strategy in the experiment

are recorded in order to verify the high efficiency of the
strategy.

II. THE DESCRIPTION OF FAST MULTIPOLE METHOD

A. The principle of FMM algorithm
The N-body problem is a well-known scientific issue,

which is described in mathematical language as follows: ݂ሺݕሻ ൌ ∑ ܹܭሺݕ, ሻேୀଵݔ , ݅ ൌ 1,2, … , ܰ,
The time complexity to evaluate ݂ in the N-body system

is ܱሺܰଶሻ. In order to speed up the calculation of the N-body
problem, several fast algorithms have been put forward.
Among them the typical is the Barnes-Hut algorithm and
FMM algorithm. The FMM algorithm is used to accelerate
the computing speed of the N-body problem with ܱሺܰሻ time
complexity. The idea of the FMM algorithm is that the
original space is divided into different levels of space, and
then the computational domain is divided into near-domain
and far-domain. Near-domain uses direct calculation, while
the calculation of far computational domain introduces a
single formula to be gradually solved by approximating the
impact on space by a cluster of particles. This process is
described mathematically as: ݂ሺݕሻ ൌ ܹܭሺݕ, ሻݔ ேೌೝ

ୀଵ ܹܭሺݕ, ሻேೌೝݔ
ୀଵ , ݅ ൌ 1,2, … , ܰ

When computing remote domain, two key expressions
are introduced as follows: Multipole Expansion (ME), Local
Expansion (LE). The nature of the two expressions is the
Taylor series. During calculation, ME will be converted to
LE, which is referred to as M2L. Additionally there are two
conversions: M2M and L2L. M2M consists of two steps:
Translation of a multipole expansion: it is a transfer of
particle cluster center for obtaining a higher level of ME;
Sum of MEs: sum of the MEs to obtain a higher level of ME.
L2L is the translation of a local expansion: it is a transfer of
particle cluster center for obtaining a lower level of ME, L2L
and M2L is alternating.

B. The executing step of FMM algorithm
The FMM algorithm is essentially a calculation of the

Taylor expansion of different stages to finally complete the
evaluation of interactions. The FMM algorithm uses a
hierarchical spatial decomposition method to break down
the original space box into a number of levels. The key task

2010 Ninth International Conference on Grid and Cloud Computing

978-0-7695-4313-0/10 $26.00 © 2010 IEEE

DOI 10.1109/GCC.2010.43

168

Authorized licensed use limited to: Hofstra University. Downloaded on March 18,2023 at 20:52:30 UTC from IEEE Xplore. Restrictions apply.

flow of the FMM algorithm is divided
decomposition as follows: ① Initializatio
ME); ③ Translation of a multipole expansio
(called M2M) ④ M2L ; ⑤ L2L; ⑥ Comp
expansion (referred to as LEC); ⑦ d
(referred to as PP); ⑧ Sum (sum of near-
domain force). The above tasks are carried
order. They are data-related.

The complete process of the FMM algor
Figure 1. The FMM algorithm can be d
phases: initialization, upward, downward,
labels in Figure 1 indicates: ① tree
initialization of tree ③ solve neighbor
interaction list ④ P2M ⑤ M2M ⑥ M2L ⑦
PP ⑩ sum. In the Initialization phase, FM
locate the input particles, initialize vario
particles and solve neighbor nodes and in
grid units of different space levels. Init
includes ①②③ shown in Figure 1.
initialization steps of the algorithm. ②③

parallel, with no data dependence between
⑦⑧ are key steps of the FMM algorithm.
data-related, and the order is determined, s
be executed in the sequential order. ⑨ ste
and can be executed in parallel with from ④

Figure 1. Process of the FMM algori

III. FMM ALGORITHM BASED ON SPACE

A. Location of particles and Morton encod
In this article, only a two-dimensio

discussed. SDPFMM uses the linear quadtre
tree. In fact, the decomposition of the geo
FMM algorithm and the relation between pa
in the quadtree are the same in natu
conventional quadtree, the linear quadtre
dimensional space to a one-dimensional sp
the disadvantage that the conventional quad
storage space. In addition, in the linear qua
nodes can be generated from child’s encodin
pointers to link them. To sum up, the b
encoding of linear quadtree is: No record
nodes and no use of pointers; only the leaf n
and the location of leaf nodes is denoted w
The input data of FMM algorithm is the pa
various properties of the particles, one o

d by functional
on; ② P2M (or:
on, Sum of MEs;
putation of Local
irect calculation
-domain and far-
out in sequential

rithm is shown in
divided into four

calculation. The
construction ②

ring nodes and
⑦ L2L ⑧ L2P ⑨
MM is mainly to
ous attributes of
nteraction list of
tialization phase
①②③ is the
③ can work in
the two. ④⑤⑥

The six steps are
so they can only

ep is independent
④ to ⑧.

ithm

DECOMPOSITION

ding
onal situation is
ee to construct the
ometric space of
arent-child nodes
ure. Unlike the
ee maps a two-
pace to overcome
dtree needs more
adtree, the parent
ng to avoid using

basic idea of the
d of intermediate
node is recorded,

with address code.
articles, including
of which is the

coordinates of the particles. To use
location code is needed to iden
location code contains information
level of the quadtree. Such location
encoding. The following describes h
into a grid, and then to locate the
one-dimensional array.

Figure 2 shows one number for
Figure 2 is filled in Z pattern. It
Figure 3 shows the grid coordinate
algorithm finds the correspondin
according to the coordinate of P (a
the particles and that of the corre
relation: P (ܽ, ܾ) א ,ۂܽہሺܤ .ሻۂܾہ

42 43 46 47 58

40 41 44 45 56

34 35 38 39 50

32 33 36 37 48

10 11 14 15 26

8 9 12 13 24

2 3 6 7 18

0 1 4 5 16

Figure 2. Z-SFC for

Figure 3. Grid coordinate

After locating every particle to it
as leaf nodes in the quadtree
corresponding number in Figure
coordinates of leaf nodes (hereinaft
code). In the above example, the M
is 25. Computer programs can use
hold the correspondence between t
and the Morton codes. For example
use map type or structure, and so on
codes have the following character
all, the (2,5) is turned into a binary
then the binary bits are interleave

a linear representation, a
ntify the quartrees. The
n about the position and
code is known as Morton

how to locate the particles
m using Morton-ordered

level=3. The sequence in
’s a space filling curve.
es for level=3. First, the
ng grid P belongs to
a, b). The coordinates of
esponding grid have the

59 62 63

57 60 61

51 54 55

49 52 53

27 30 31

25 28 29

19 22 23

17 20 21

r level=3

es for level=3

ts owned grid (referred to
e), you can find the
e 2 according to the

fter referred to as Morton
Morton code of P (2.6,5,8)

e some data structure to
the leaf node coordinates
e, in C++ language, it can
n. But after study Morton
ristics (figure 4). First of
y form (0010,0101), and
d: from left to right the

169

Authorized licensed use limited to: Hofstra University. Downloaded on March 18,2023 at 20:52:30 UTC from IEEE Xplore. Restrictions apply.

abscissa is on the odd position, the ordinate is on the even
position. After interleaving the form of binary bits is changed
to 00011001, which is precisely the decimal number 25
corresponding to Figure 2. Finally, The Morton encoding
process is finished by appending binary code of
corresponding level 011 in the above encoding to get the
final encoding 00011001011.

Figure 4. Morton encoding

After the leaf nodes are sorted in Morton encoding, the
algorithm can generate a global array index (the linear
quadtree) according to Morton ordering; each array element
is an index and the index points to the corresponding spatial
cell. The global array index is the foundation of the
construction of the LET[4] described in the following.

B. The constrction of LET
In the SDPFMM, the core part is the construction of the

locally essential tree (LET). LET is the sets of nodes
including leaf nodes scheduled to some processor, their
ancestor nodes and their interaction list nodes. The local tree
(LT) only includes leaf nodes scheduled to some processor,
their ancestor nodes. LET is the extension of LT. In Figure 5,
the space is divided into four regions 1,2,3,4, representing
the computing area initially allocated by each processor.
These areas are LT. The cells marked with * are the sets of
interaction list of area 2. We use LET (i) representing LET
executed by the i processor. So a conclusion can be drawn
that LET（2）=LT（2）+{cells marked with *}. This paper
has mentioned the global array index in Morton ordering.
Before the construction of LET, the algorithm will create the
global array index of leaf nodes and their ancestor nodes in
Morton ordering. The global array index of parent nodes and
ancestor nodes are dynamically generated from the global
array index of leaf nodes. When constructing LET, the
algorithm will specify the k-th level for parallel computing,
then divide the k-th level global array. The division can be
equal length or unequal length. The equal length division is
the simplest method, but it will cause the load imbalance. For
the unequal length division, the algorithm will estimate in
advance the total number of the interaction list of local arrays

of each level, then find a way of division the task of each
area is more or less be in balance. The figure 5 shows that for
the LET in area 2, the * cells will send the data from 1,3,4 to
2 and 1,3,4 will receive corresponding data from other areas.
But how do areas 1,3,4 determine which cells should be sent
to area 2 ? Take example for figure 5. The cells be sent to
area 2 are {cells | cell∈(LET(2) ∩ Ωଵ)∪(LET(2) ∩ Ωଷ) ∪
(LET(2) ∩ Ωସ)}.

The above description shows that LT is the set of local
array corresponding to each level in fact while LET is the set
of local array and its interaction list. The conversion of LT
into LET requires communication. The communications
include the communication between the LETs, between LET
and root Tree, and the communication between the neighbors
which happens in the interaction between near-domain cells.

Figure 5. Set of interaction list of area 2

The following is the description of LET. Before the
algorithm is described, several variables are introduced. ܮ: leaf nodes assigned for processor p; ܣ൫ܮ൯: the ancestors of ܮ； ߗᇲ: the region controlled by processor ᇱ; ܫሺߚሻ: the interaction list of β.

Algorithm description for LET construction:
Input: the set of particles: x
Output: LET on each processor p

ܮ .1 ൌ PointsToQuadtreeሺxሻ
ܤ .2 ൌ ܮ ሻܮሺܣ
3. ܱᇲ: ൌ ሼߚ א :ܤ { ᇲߗ ∩ ሻߚሺܫ
:ᇱ .4 ᇱ ് ᇱ Send ܱᇲ to processor
 ᇱ Receive ܱᇲ from processor

Put ܱᇲ into ܤ
5. Return ܤ, the construction of LET is finished.

C. The description of Parallel FMM algorithm based on
space decomposition
According to the foregoing description, one can know

how to locate the particles, Morton encoding and the
construction of LET. The following will completely describe
the parallel FMM algorithm based on space decomposition,

170

Authorized licensed use limited to: Hofstra University. Downloaded on March 18,2023 at 20:52:30 UTC from IEEE Xplore. Restrictions apply.

which is the theoretical reference of SDPFMM programming
realization. The SDPFMM algorithm steps are described as
follows:
Step 1: Specify the initial parameters: d for the maximum
depth of space division level, starting from the k-th level to
carry out parallel computing;
Step 2: Locate the particles to corresponding grid according
to the coordinates of the particles, then sort the leaf nodes in
Morton encoding to generate the global array, and then
dynamically generate Morton encoding of parent nodes and
ancestor nodes from Morton encoding of leaf nodes;
construct a Morton-order sorted array in each space level;
Step 3: According to the parameter k, divide the arrays of the
k-th level to some local arrays which are sub-task array
scheduled to each processors. The task corresponding to the
arrays above k-th level is done by one appointed processor.
Step 4: Construct LET on each processor of which the height
is d െ k ;
Step 5: Each processor computes MEs, M2Ms in upward
order starting at the leaves, exchanges data between LETs,
and sends communication data to the root tree;
Step 6: Calculate the M2Ms in root tree, and distribute
communication data to each LET. Each processor calculates
M2Ls, L2Ls and LEs in downward order, and exchanges
data between LETs. Finally evaluate local expansion at each
particle, namely solve the far-domain force of each particle.
Step 7: Each processor directly computes near-domain
interaction forces, then sums near-domain and far-domain
interactions to output the result.

IV. THE IMPLEMENTATION OF SDPFMM AND
EXPERIMENTAL RESULTS

A. The description of the implementation of SDPFMM
The implementation of the SDPFMM algorithm uses

MPI. As the SDPFMM algorithm uses the idea of space area
division, each area is the parallel processing unit. In
describing the SDPFMM algorithms, the calculation unit
indexed by the local arrays sorted by Morton encode is
essentially each region of decomposed space. As depicted in

Figure 6, the global array corresponds to undivided area of
space, then the global array is divided into (which can be
equal-length or unequal-length) several local arrays
corresponding to the divided area. In SDPFMM algorithm,
there is communication among the areas when constructing
LET, After the construction of LET, the memory in each
processor acquires the copy of the memory in other
processors.

Figure 6. The relation between global array and local arrays

B. Experimental data and performance analysis
Runtime environment of our experiments is the high-

performance computer ZQ3000 cluster of Shanghai
University, which consists of 192 nodes, and each node has
two 3.06GHZ Intel Xeon CPUs with a 2GB memory. The
experimental procedures are implemented by C and C++
with MPI parallel library and PETSC library[6]. In addition,
a graph partitioning tool such as Parmetis is introduced to
create partitions. With the purpose of better understanding
MPI application behavior, quickly finding bottlenecks and
achieving high performance for parallel cluster applications,
a powerful tool named Intel Trace Analyze and Collector is
integrated into the SDPFMM program.

TABLE 1 EXPERIMENTAL DATA OF SERIAL FMM

Particles Level Time(s) Minimum. time(s)

 4 113.61
62500 5 40.64 40.64

 6 47.84

 5 188.24
140625 6 84.51 84.51

 7 174.94

 5 492.76
250000 6 166.07 166.07

 7 194.07

In table 1, the number of particles selected is 62500,

140625, and 250000. Table 1 shows that the executing time
for the same number of particles differs with each other as
the value of level changes and there exists an optimal value

making the time least. In order to facilitate comparison, the
distribution of particles in the following experiment is well-
proportioned. For each number, when running the FMM
program we select the different levels of space

171

Authorized licensed use limited to: Hofstra University. Downloaded on March 18,2023 at 20:52:30 UTC from IEEE Xplore. Restrictions apply.

decomposition to record the running time of the different
numbers of particles. Before carrying out the SDPFMM
experiment, it is necessary to run serial FMM, which is
instructive to SDPFMM. On the one hand the SDPFMM

parameter selection will be as far as possible consistent with
the serial program, making the parallel program run under
the optimal parameters. On the other hand it is used to assess
the performance of parallel programs.

TABLE 2 EXPERIMENTAL DATA FOR 2,4,6 PROCESSORS;LEVEL=6; K=3(64 SUB-TASKS)

Particles Nodes avg. none-com. time(s) avg. com. time(s) avg. time(s) Speedup

 2 24.73 0.38 25.11 1.00
62500 4 9.02 1.47 10.49 2.39

 6 6.35 3.79 10.14 2.48
 2 44.51 0.66 45.17 1.00

140625 4 16.28 2.44 18.72 2.41
 6 18.78 4.23 23.01 1.96
 2 86.38 0.79 87.17 1.00

250000 4 23.45 2.49 25.94 3.36
 6 59.03 8.79 67.82 1.29

TABLE 3 EXPERIMENTAL DATA FOR 2,4,6 PROCESSORS; LEVEL=6;K=4(256 SUB-TASKS)

Particles Nodes avg. none-com. time(s) avg. com. time(s) avg. time(s) Speedup

 2 25.21 1.22 26.43 1.00
62500 4 8.99 2.80 11.79 2.24

 6 15.05 5.90 20.95 1.26
 2 45.8 1.66 47.46 1.00

140625 4 16.44 4.25 20.69 2.29
 6 27.41 9.53 36.94 1.28
 2 89.63 2.14 91.77 1.00

250000 4 23.66 3.82 27.48 3.34
 6 54.35 9.85 64.20 1.43

In the table 2 and 3, the non-communication time is the

sum of running time of each processor's non-MPI code
while the communication time is the sum of the running
time of each processor's MPI communication function.
The analysis of the above two tables show that the average
none communication time of SDPFMM reduces as the
number of the processors increases on condition that the
parameter level and k are fixed, but are not directly
proportional. The time trendline would be a degressive
wavy line if we draw a fitting curve when having more
processors run the parallel program. When the number of
particles is different, the number of CPUs is same, and the
parameter level and k are fixed, the average
communication time of SDPFMM increases as the number
of the processors increases. On the condition of the same
number of particles with parameter k fixed, the average
running time of SDPFMM is least when the number of
CPUs is 4. This is because it takes less time for SDPFMM
to deal with the construction of linear quadtree. The
parmetis library generates different partitionings according
to the number of processors. For 2,4 and 6 CPUs, 4 CPUs
is optimal for parmetis, so the speedup is maximal when
the number of CPUs is 4. As the number of processors
increases, four CPUs may be not the optimal choice.
Additionally, with the size of the N-body problem
increased, more processing nodes are needed, and the

different program parameters have great influence on the
results, so the optimal number of nodes is associated with
the size of the problem and the parameter selection of the
program. But it is not the focus of this paper. In general,
the SDPFMM performance is satisfying.

V. CONCLUSIONS
The fast multipole method is a fast algorithm to solve

the N-body problem. In order to make FMM programs run
in high-performance parallel computers, many scholars put
forward some parallel methods of FMM and implement
them with a variety of parallel programming methods. In
this paper, we put forward a parallel FMM algorithm
based on space decomposition, describe the idea and
implementation method of SDPFMM, and carry out some
experiments on ZQ3000 cluster. By analyzing the
experimental data, we come to a conclusion that
SDPFMM algorithm has good performance, and its design
is scientific and rational. The future work will focus on
introducing pipelining to parallelizing communication and
computation.

VI. ACKNOWLEDGEMENT
This work is supported by National High-tech R&D

Program of China under Grant 2009AA012201, Major
Technology R&D program of Shanghai under Grant

172

Authorized licensed use limited to: Hofstra University. Downloaded on March 18,2023 at 20:52:30 UTC from IEEE Xplore. Restrictions apply.

08dz501600, and Shanghai Academic Leading Discipline
Project J50103.

REFERENCES
[1] L. Greengard and V. Rokhlin. A Fast Algorithm for Particle

Simulations. Journal of computational physics 73,325-348(1987)
[2] J. Barnes and P. Hut. A Hierarchical O(N logN) Force-Calculation

Algorithm. Nature 324, 446–449 (1986).
[3] Felipe A. Cruz and L. A. Barba. Characterization of the errors of

the Fast Multipole Method approximation in particle simulations.
[4] Ilya Lashuk, Aparna Chandramowlishwarn and Harper Larper

Langston. A massively parallel adaptive fast-multipole method on
heterogeneous architectures. Proceedings of the Conference on
High Performance Computing Networking, Storage and Analysis.
Nov.2009

[5] Rick Beatson and Leslie Greengard. A short course on fast
multipole methods. http://math.nyu.edu/faculty/greengar/

[6] S. BALAY, K. BUSCHELMAN, W. D. GROPP, D. KAUSHIK,
M. KNEPLEY, L. C. MCINNES, B. F. SMITH, AND H. ZHANG,
PETSc home page, 2001. http://www.mcs.anl.gov/petsc

[7] Pangfeng Liu. Experiences with Parallel N-Body Simulation. IEEE
TRANSACTIONS ON PARALLEL AND DISTRIBUTED
SYSTEMS, VOL. 11, NO. 12, DECEMBER 2000

[8] B. K. Alpert and V. Rokhlin. A Fast Algorithm for the Evaluation
of Legendre Expansions. SIAM J. Sci. Stat. Comput. 12, 158–179
(1991).

[9] Jakub Kurzaka and Montgomery Pettitta. Massively parallel
implementation of a fast multipole method for distributed memory
machines. J. Parallel Distrib. Comput. 65 (2005) 870–881.

[10] Xiaobai Sun and Nikos P.Pitsianis. A Matrix Version of the Fast
Multipole Method. SIAM Review Vol.43 No.2.pp.289-300

[11] Jakub Kurzak and B.Montgomery Pettitt. Communication
overlapping in fast multipole pariicle dynamics methods. Journal
of Computational Physics 203(2005) 731-743

[12] C. R. Anderson. An Implementation of the Fast Multipole Method
Without Multipoles. SIAM J. Sci. Stat. Comput. 13, 923–947
(1992).

[13] Andrew W. Appel. An effcient program for many-body simulation.
SIAM Journal on Scientific and Statistical Computing, 6(1):85-
103,1985.

[14] C. R. Anderson. An Implementation of the Fast Multipole Method
Without Multipoles. SIAM J. Sci. Stat. Comput. 13, 923–947
(1992).

[15] R. K. Beatson and W. A. Light (1996). Fast evaluation of Radial
Basis Functions: Methods for 2–dimensional Polyharmonic
Splines. Toappear in IMA J. Numer. Anal.

173

Authorized licensed use limited to: Hofstra University. Downloaded on March 18,2023 at 20:52:30 UTC from IEEE Xplore. Restrictions apply.

