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Abstract—With cloud assistance, mobile apps can offload their resource-demanding computation tasks to the cloud. This leads to a

scenario where computation tasks in the sameprogram run concurrently on both themobile device and the cloud. An important challenge

is to ensure that the tasks are able to access and share the files on both themobile and the cloud in amanner that is efficient, consistent,

and transparent to locations. Existing distributed file systems and network file systems do not satisfy these requirements. Current

systems for offloading tasks either do not support file access for offloaded tasks or do not offload taskswith file access. The paper

addresses this issue by designing and implementing an application-level file system calledOverlay File System (OFS). To improve

efficiency, OFSmaintains and buffers local copies of data sets on both the cloud and themobile device. OFS ensures consistency and

guarantees that all the reads get the latest data. It combineswrite-invalidate and write-update policies to effectively reduce the network

traffic incurred by invalidating/updating stale data copies and to reduce the execution delay when the latest data cannot be accessed

locally. To guarantee location transparency, OFS creates a unified view of the data that is location independent and is accessible as local

storage.We overcome the challenges caused by the special features of mobile systems on an application-level file system, like the lack of

root privilege and state losswhen application is killed due to the shortage of resource and implement an easy to deploy prototype of OFS.

The paper tests the OFS prototype on Android OSwith a real mobile app and real mobile user traces. Extensive experiments show that

OFS can effectively support consistent file accesses from computation tasks, nomatter whether they are on amobile device or offloaded

to the cloud. In addition, OFS reduce both file access latency and network traffic incurred by file accesses.

Index Terms—Cloud, mobile devices, task offloading, storage, file system, consistency
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1 INTRODUCTION

VARIOUS systems have been designed to allow mobile
apps to use cloud resources (e.g., public cloud, per-

sonal cloud, or cloudlet) by offloading their resource-
demanding tasks to the cloud in the form of threads, objects,
or procedures [2], [3], [4], [5], [6]. For example, a mobile app
may record video clips on a mobile device, analyze and aug-
ment them in the cloud, and then play back the video clips
on the mobile device. This leads to a scenario where the
computation tasks in the same mobile app can be offloaded
to the cloud and/or run concurrently on both the mobile
device and the cloud. These tasks work collaboratively and
may need to save, read, and overwrite files on both the
mobile device and the cloud.

The decomposition and distribution of tasks and their
memory states have been studied extensively, and a few pro-
gramming models, along with the supporting middleware
and system infrastructure, have been developed, e.g.,
Avatar [3], [7], MAUI [5], CloneCloud [6], Sapphire [2], and
COMET [4]. However, supporting efficient file access, espe-
cially file sharing between the tasks in the same mobile app

running on both the mobile device and the cloud remains a
challenging issue and has received little attention. Due to
this issue, systems such as MAUI and COMET cannot off-
load tasks inmobile apps if the tasks need to access files.

Existing file systems are not effective in handling remote
file access for the offloaded tasks of mobile apps. This seri-
ously limits the capability of mobile systems to freely offload
tasks to the cloud. Network file systems and distributed file
systems, such as NFS [8] and Dropbox [9], only support
remote file access from the platforms where their client soft-
ware is properly set up. However, setting up the client soft-
ware usually requires root privilege, which the mobile user
may not have. It also needs the credentials of the user to
access the file server, which the user may not be willing to
release to the cloud. Moreover, if a task is accessing an open
file saved in a network/distributed file system, it must
reopen the file after the task is offloaded in order to continue
accessing the file. This requires that mobile apps must be
aware of task offloading, which makes programming cum-
bersome and error-prone.

Another issue with existing network file systems and dis-
tributed file systems is that they cannot satisfy the consistency
requirements of cloud-assisted mobile apps at low overhead.
For example, to guarantee correct execution, computation
tasks concurrently running on the cloud and the mobile
device often require strong consistency (i.e., no stale data
returned to the tasks). However, most network/distributed
file systems, especially those designed for mobile devices
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(e.g., Coda [10], [11]), cannot guarantee such consistency.
Some systems even rely on users to manually resolve incon-
sistencies. The inconsistencies caused by such systems will
lead to incorrect results or application crashes. Some other file
systems (e.g., NFS) support strong consistency but at high
costs of network traffic and energy on the mobiles, and thus
are not practical formobile apps.

To address these problems, we propose an application
level file system named Overlay File System (OFS). OFS sup-
ports remote file access by providing the tasks on the mobile
device and the cloud with an efficient, consistent, and trans-
parent view of data that is accessible as local storage. It sup-
ports task offloading in the form of threads, objects, or
procedures. OFS manages file access and file sharing in a
mobile app. It effectively hides the boundary between the
mobile device and the cloud, and provides a unified environ-
ment for the tasks in the mobile app, such that the tasks can
migrate freely between the mobile device and the cloud. By
default, OFS ensures that all tasks whether on the mobile or
offloaded to the cloud read the latest data in the file. OFS uses
an adaptive method named delayed-update, which combines
the conventional write-invalidate and write-update policies,
to reduce file access latency and network traffic overhead,
while ensuring strong consistency. Some applications, e.g.,
health-monitoring apps, may not require strong consistency.
For such applications, OFS also provides a relaxation mecha-
nism that allows applications to use recent but not the latest
copies of file data. This can further reduce file access latency
and network traffic overhead. To guarantee location transpar-
ency, OFS creates a unified view of the data that is indepen-
dent of location and is accessible as local storage.

Compared to conventional network/distributed file sys-
tems, OFS has several advantages for running cloud-
assisted mobile apps. First, the strong consistency model
ensures the correct execution of computation tasks distrib-
uted across the mobile device and the cloud. Second, tasks
accessing files can be moved freely across different devices.
This is because the states of files and file operations are in
the app’s user space, and thus can be duplicated and moved
with the tasks to new locations. Third, at the application-
level, it simplifies application development and system
management. For example, with OFS, root privilege is not
required to set up the system and there is no need to save
the to-be-accessed files into a network/distributed file sys-
tem before the app runs. Programmers do not have to worry
about whether a task is running on the mobile or has been
offloaded to the cloud.

The special features of mobile systems and the require-
ment to run OFS at the application level present a few imple-
mentation challenges. For example, most mobile devices are
not rooted and applications do not have root privilege. In
addition, mobile OSs (e.g., Android) may kill processes and
reclaim their memory spaces, making it challenging to main-
tain OFS system states at the application level. Focusing on
these challenges, the paper has studied the implementation
techniques and built an OFS prototype on Android. The pro-
totype implements major OFS functionalities into a set of
“sticky” application services. An app get OFS services
through the code injected byOFSwith AspectJ [12].

The paper has also implemented a real app, named photo
enhancement app, and has used this app and real mobile user

traces to test the functionalities and performance of OFS. Our
case study with the photo enhancement app shows that OFS
can effectively support consistent file accesses from compu-
tation tasks, no matter whether they run on a mobile device
or has been offloaded to the cloud, and that existing cloud
storage systems, including Dropbox and Google Drive, can-
not provide such support. The experimental results with the
app and real user traces show that the delayed-update policy
used in OFS can effectively reduce file access latency by up
to 21 percent relative to commonly used write-update and
write-invalidate consistency policies. The results also show
that, with the delayed-update policy in OFS, the network
traffic incurred by file accesses is significantly lower (by up
to 67 percent) than that with the write-update policy, and is
comparable to that with the write-invalidate policy, which is
the lower limit to maintain consistency.

To the best of our knowledge, this is the first work that
provides a system solution to support efficient and trans-
parent file access in cloud-assisted mobile apps. We make
the following contributions. First, we determine the require-
ments for a file system to effectively support offloading
tasks to the cloud. Second, we design and implement OFS
as a solution to meet these requirements. Third, we use a
real app and user traces to show that OFS can effectively
support task offloading and efficient execution of offloaded
tasks by significantly decreasing both file access latency and
network traffic incurred by file accesses.

2 BACKGROUND

This section introduces first several approaches to offload
tasks in mobile apps to the cloud. It also presents problem
of using network/distributed file systems or cloud storage
in the current context. Finally, it summarizes the require-
ments on file systems for cloud-assisted mobile apps, which
underpin the design of OFS.

2.1 Approaches to Offload Computation to
the Cloud

To effectively leverage cloud-assistance, a system needs to
support task migration between the mobiles and the cloud. A
few different methods can migrate tasks, including their code
and the required in-memory data sets. Some systems (e.g.,
Sapphire and Avatar) encapsulate and transfer the code and
memory state of a task (e.g., data in heaps) in an object. Other
systems (e.g., COMET) offload tasks in the form of threads.
They use distributed shared memory (DSM) and transfer the
memory state on-demandwhen it is accessed remotely by the
threads. A computation taskmay also be offloaded bymaking
remote procedure calls (RPC) to the cloud. Since a VM is a
complete running environment for an app, from memory
state to storage, Cloud-assistance can also be implemented by
migrating the VM containing the tasks (e.g., Cloudlet [13]).
However, compared to moving a thread/object/procedure,
migrating a VM incursmuch higher overhead.

In this paper, we target the approaches that offload com-
putation tasks in the form of objects, threads, or procedures.
The cost function used by the system to balance the over-
head and the benefit of task offloading is beyond the scope
of the paper. At the current stage, we assume that there is a
cost function that comprehensively considers the overhead
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of both transferring in-memory data and accessing files
remotely for making task offloading decisions.

The tasks in an app run concurrently at the cloud and the
mobile device. They often need to access their data sets
saved in files. The needs cannot be satisfied by transferring
the files to be accessed by a task before offloading the task
to the cloud. It is not easy to identify all these files, espe-
cially when a task needs to access new files that are gener-
ated after it starts. Thus, not all the files can be transferred a
priori. More importantly, tasks on the mobile device and
the cloud may update and read the same set of files concur-
rently. This method cannot guarantee the consistency of the
shared files. Inconsistency leads to incorrect results or appli-
cation crashes. For these reasons, systems supporting task
offloading (e.g., COMET and MAUI) usually cannot migrate
tasks if they need to access files.1

This problem can be mitigated by using networked/dis-
tributed file systems (e.g., NFS) or cloud storage platforms
(e.g., Dropbox). However, existing networked/distributed
file systems and cloud storage systems are not designed for
collaborative tasks on mobile devices. They are designed for
scenarios in which a file is opened, modified, and closed on
one device, and then is opened and accessed elsewhere.
Concurrent reads and writes on different devices to the
same file are not designed or implemented [14]. Thus, their
implementations cannot support consistent file access and
file sharing with low overhead.

2.2 Requirements on File System Design

To support remote file access and file sharing among the
distributed tasks of cloud-assisted mobile apps, a file sys-
tem should be able to locate and transfer data, and to man-
age data sharing. To accommodate features of mobile apps
and hardware characteristics of mobile devices, a file system
must satisfy the following requirements:

� Location transparency: The file system should be able
to provide an app with access to remote files as
though they were local, and should be able to main-
tain file sessions during the location changes of a
task (i.e., task migrations) such that a task does not
need to close all its files before migration. In the
paper, a file session is defined as the set of file opera-
tions between opening and closing a file and the set
of states that are managed by the file system to cor-
rectly handle the operations. Existing file systems
cannot provide enough transparency. For example, a
task can only access the files opened on its current
device and must re-open the files after it moves to
another device.

� Consistency: Reading stale data may lead to incorrect
results or crash an app. Thus, the file system must
guarantee strong consistency by default so that a task
always reads the latest updates. However, in the case

where an app can tolerate relaxed consistency, the file
system should be able to take the opportunity to relax
consistency and improve performance.

� Performance: Mobile devices have limited resources
in terms of energy and network bandwidth. Thus,
cloud-assisted apps often need to pay for the net-
work traffic through cellular networks. It is impor-
tant for the file system to satisfy file access requests
with low latency (for higher performance and power
efficiency) and little network traffic (for lower mone-
tary cost and energy consumption). Existing net-
worked/distributed file systems are not optimized
for cloud-assisted apps.

� Easy deployment: To freely offload tasks, a design that
can simplify the deployment of the file system and
data is highly desirable. Since a mobile user may have
limited privileges on the cloud platform accepting off-
loaded tasks, the deployment of the file system should
requireminimal privileges in addition to those needed
to run the task. At the same time, the file system
should have minimal requirements on data deploy-
ment. Conventional networked/distributed file sys-
tems usually require that files be deployed under
specific directories to enable remote access. However,
it is challenging, if not impossible, to identify all the
files to be accessed remotely bymobile apps and orga-
nize them accordingly, since the files to be accessed by
mobile apps may be determined by user requests. At
the same time, most networked/distributed file sys-
tems require root privilege to deploy and to run,which
ismissing onmostmobile devices.

3 OFS DESIGN

3.1 Overall System Architecture

OFS is a component of the system that offloads and man-
ages computation tasks. Fig. 1 illustrates the position of OFS
on the mobile device and the cloud platform, and explains
how OFS interacts with other components in these plat-
forms. Unlike conventional file systems, which are part of
the operating system, OFS functions at the application level.
Its code is executed in user mode, and its data structures
(e.g., information about the files, file accesses, and the buffer
caching file data) are maintained in user space. However,
OFS relies on the native file systems in the OS to actually
read data from the storage or write data into the storage.

Fig. 1. Overall architecture of offloading ecosystem.

1. The DSMmodel implemented in COMET can be extended to help
accessing memory-mapped files. However, the files must be opened
and memory-mapped on the mobile device before tasks are offloaded
to the cloud. Opening a file and establishing memory mapping in the
cloud require additional system support beyond the DSM mechanism.
The DSM model cannot facilitate file access through a standard file I/O
interface.
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There are several reasons for this application-level design.
First, OFS is solely designed to provide file accesses for the
correct and efficient execution of mobile apps. It does not
provide system-wide management, e.g., user access control,
or a tree of files and directories presented to the user. It does
not manage storage space either. Second, building OFS at the
application level makes it an overlay file system that sits
above all the native file systems, thus allowing it to work
with any native file systems through the standard system
call interface. Third, keeping all the functionality and data
structures within virtual memory spaces at the application
level simplifies deployment. For example, there is no need to
acquire root privilege to set up the file system. Finally, this
design helps to improve efficiency since accessing the data
structures and file data cache in virtual memory space does
not incur costly kernel-application context switches.

The objective of OFS is to provide efficient, transparent,
and consistent file access and file sharing for tasks in a
cloud-assisted mobile app. For this purpose, OFS intercepts
and monitors the file access requests from the tasks in the
app. These requests can be intercepted without modifying
existing apps using techniques such as code injection and
byte code manipulation. How this is achieved in our OFS
prototype will be introduced in Section 4.2. OFS fulfills the
requests for accessing local files by passing them to the OS
and then to the corresponding native file systems holding
the files. For the requests accessing remote files, OFS main-
tains a buffer named block buffer to cache the blocks read
from remote files through the network. To fulfill the
requests, OFS looks up the block buffer and serves the
requests if the desired file blocks are cached there. Other-
wise, it redirects the unsatisfied requests to the platform
storing the files. Note that a file may be stored on the mobile
and requested by a task from the cloud or vice versa.

OFS maintains consistency between the blocks in the
block buffer and their counterparts saved in remote files,
such that a task can always access the latest updates no mat-
ter where it runs. To handle other file related requests (e.g.,
opening files and creating files), OFS forwards these
requests to the platform storing the files and updates the
related metadata.

3.2 OFS Architecture and Design

Fig. 2 shows the major components of OFS. The native/OFS
switch intercepts file I/O requests before they reach the OS
and decides for each request whether it should be handled
by a native file system or by OFS. Generally, OFS handles
all the requests to the files that are currently accessed by

offloaded tasks, and forwards other requests to native file
systems. Thus, in the cloud, all the requests made by off-
loaded tasks are handled by OFS. On the mobile device, if a
file is not currently accessed by offloaded tasks, the accesses
to the file should be forwarded to the corresponding native
file system; otherwise, they are handled by OFS. To improve
performance, read-only files (e.g., libraries) can be distrib-
uted on both sides and accessed locally without the inter-
vention of OFS.

The native/OFS switch needs to notify the consistency
manager about all the accesses before it passes the requests
to either a local file system or the buffer management com-
ponent. When handling a write request, it only proceeds
after the consistency manager confirms that the write will
not cause inconsistency. When handling a read request, it
just notifies the consistency manager, since the access infor-
mation is needed there to detect access patterns.

The buffer management is in charge of managing the block
buffer. To look up the buffer, we maintain a mapping table
for each file and save the mapping table in the data struc-
ture of the file. We also maintain the status of the blocks in
the mapping table. Thus, when the file is accessed, OFS can
quickly locate the mapping table, from which it determines
whether the requested block is buffered, and, if it is,
whether the buffered block is up-to-date.

We use an LRU-like algorithm to evict blocks to keep the
buffer size within a pre-set limit, which is selected by the
user during installation based on the memory capacity of
the devices. Due to the high network overhead, it is not cost-
effective to offload tasks accessing a large amount of data.
Thus, a small size limit (e.g., 1/32 of memory capacity as the
default limit) shouldworkwell for most of the workloads.

We create the block buffer in the virtual address space.
This is not only for fast access and ease of deployment, but
also to simplify the system design, since the management
of the physical space of the buffer (e.g., space allocation/
deallocation and swapping) can be done with by the mem-
ory management of the operating system. At the same time,
it puts the physical memory space occupied by the block
buffer under unified management with other system com-
ponents and apps. This helps the operating system balance
system memory usage for the overall benefit of system per-
formance. For space efficiency, the block buffer only caches
the content of remote files. It does not buffer the content in
local files to avoid double buffering in both the block buffer
and the OS buffer cache.

The session management component maintains file ses-
sions and prevents them from being interrupted by task
migrations. Specifically, when a task is migrated, the session
management component is notified. On the destination plat-
form, the session management component must correctly
set up the state required by the unfinished file sessions in
the task. For example, it must copy file states, such as the
current offset in each file and the opening mode of the file,
from the source platform.

Though buffering data improves efficiency, it incurs
consistency issues. The consistency management component
provides the consistency guarantee that is required by
concurrent programs. For this purpose, it monitors all the
accesses to the shared files, as well as the blocks cached in
the block buffer. Enforcing consistency usually incurs a

Fig. 2. Overlay File System (OFS) architecture.
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large amount of network traffic (e.g., when write-update
policy is used) or increased read access latency due to
increased misses in the buffer (e.g., when write-invalidate
policy is used). Both long access latency and increased
network traffic are not desirable for task offloading in
mobile apps. Thus, we use an adaptive algorithm named
delayed-update combining write-invalidate and write-update
(Section 3.3) to reduce both latency and network traffic.

3.3 Consistency Management in OFS

3.3.1 Consistency Management Design Objectives

OFS aims to provide an environment in which the tasks of a
mobile app can access and share their files concurrently
from both the mobile device and the cloud in the same way
as they do when they run on the same device, where they
share the OS buffer cache and can always see the latest
updates. This will not only guarantee the correct execution
of mobile apps, but will also simplify app development,
because programmers will not be concerned with getting
stale data in apps. Therefore, the first design objective is to
ensure strong consistency.

Enforcing strong consistency may incur high overhead.
There are two common policies for keeping consistency.
Write-invalidate policy invalidates all the duplicates of a file
block before writing the block locally. Write-update policy
ensures that a write operation does not complete until all
the duplicates are updated. The write-invalidate policy min-
imizes the amount of data transferred over the network (i.e.,
network overhead) but increases the latency for read opera-
tions because invalidating duplicates reduces the number of
local accesses. The write-update policy helps to keep the
duplicates valid and, thus, read access latency low, but
incurs a large amount of network traffic for broadcasting all
updates and high overhead for write accesses. Therefore,
the second design objective is to reduce the network traffic
incurred by enforcing strong consistency and, at the same
time, keep the access latency low.

Strong consistency may not be always desirable. There are
situations in which enforcing strong consistency is not neces-
sary or the overhead incurred by enforcing strong consistency
is too high. Thus, the third design objective is to satisfy consis-
tency demands other than strong consistency. For example, a
health monitoring app collects wellness data of a user every
second using the sensors on a mobile device and analyzes the
data in the cloud. While the latest data is preferred by the
analysis in the cloud, using the data collected a few seconds
ago still generates sensible results. If themobile device is short
of resources (e.g., low power level), updating the data lazily is
a better choice than enforcing strong consistency.

3.3.2 Delayed-Update Algorithm

To achieve the strong consistency, we design a hybrid
approach named delayed-update, which combines the write-
invalidate and write-update policies. This new policy gives
better file latency and reduces network traffic. On a write
operation, it invalidates duplicates first to ensure consis-
tency. Then, instead of waiting for a read operation to trig-
ger an update of a duplicate, it predicts when a duplicate is
about to be read and it updates this duplicate just before the
read. The delayed-update approach reduces network traffic

because it does not transfer the updates that have been over-
written before a read. It keeps the access latency low
because duplicates are validated and updated before reads.
A challenging issue with delayed-update is to predict when
the duplicates should be validated and updated. We
address this issue by monitoring the file access patterns of
of mobile apps, as described later in this section.

In some scenarios, accessing the latest data is not
required. For example, in a health-monitoring app, health
related data, such as body temperatures and heart rates, is
collected and saved periodically. The values of the data
may not change rapidly over time. Thus, it may not cause
problems if the health-monitoring app uses the data col-
lected recently, e.g., 5 seconds ago. For such scenarios, OFS
provides a relaxation mechanism that allows an app to use
recent but not the latest copies of file data. The mechanism
extends the delayed-update approach with a knob named
relaxation to relax the requirement on enforcing consistency.
Using the same health monitoring app as an example, if the
app can use the data generated 5 seconds ago, the relaxation
is set to 5. A suitable relaxation value is application-depen-
dent and data-dependent. By default, OFS sets relaxation to
0 in order to enforce strong consistency. In the cases where
relaxation can be applied, OFS relies on application devel-
opers and users to decide suitable relaxation values and
adjusts the values through an API provided by OFS. With a
large relaxation value, delayed-update can update dupli-
cates even less frequently to reduce resource consumption.

To reflect the current status of a block, the delayed-
update algorithm keeps the following information on both
the mobile device and the cloud, for each block that has
been accessed by the app.

� A shared flag indicates if there are duplicates of the
block cached in block buffers or saved in storage.

� A valid flag indicates if the block content is up-to-
date.

� For each valid block, we also attach an expiration time
to implement the relaxation feature. A valid block
with a non-zero expiration time indicates that the
block content is not up-to-date, but can still be used
by the app until the expiration time. The block is
invalidated when the expiration time is reached.

� The location of the latest update.
� An overwritten threshold indicates when remote

duplicates should be updated.
� An overwritten counter counts how many times a

block has been overwritten.
When a block is being read, its content is returned imme-

diately if the block is valid; otherwise, the latest update is
fetched remotely, and the status of the block is updated to
valid and shared. When a block is being written, the block is
updated immediately if it is not shared; otherwise, a mes-
sage is sent to invalidate the duplicates before the block is
updated and the “shared” flag is reset. When such an invali-
dation message is received on either the mobile device or
the cloud, the corresponding block is invalidated (when the
relaxation is zero) or marked with an expiration time (when
the relaxation is greater than zero); at the same time, the
location of the latest update is recorded in the mapping
table maintained by the buffer management component.
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The delayed-update algorithm tries to update remote
duplicates when they are about to be read. To achieve this
goal, the algorithm updates and uses the overwritten thresh-
old as an indicator. When the number of block overwrites
reaches this threshold, the remote duplicates are updated.
The threshold is dynamically updated based on the history
of accesses. Specifically, every timewhen a block is overwrit-
ten, the overwritten counter is incremented. When the con-
tent updated in the block is accessed somewhere else (i.e.,
the platform other than the one generating the content), the
overwritten threshold is updated with the value of the over-
written counter, and the overwritten counter is reset. Thus,
the threshold reflects howmany times a block is overwritten
before the content is used, and can be used to predict when
remote duplicates should be updated.

In order to describe the basic idea of the delayed-update
algorithm, we use an illustrative example with a series of
reads (R1 � R7) and writes (W1 � W15) on the same block,
as shown in Fig. 3. Writes are on the mobile device, and
reads are in the cloud. The states of the valid flag, shared
flag, overwritten threshold, and overwritten counter used
in the algorithm are marked with v, s, t, and c in the figure.

When the block is being written for the first time on the
mobile device (W1 in Fig. 3), the shared flag shows that it has
a duplicated copy, thus an invalidation message is sent to
the cloud to invalidate the copy. On receiving the message,
OFS in the cloud sets the valid flag to false and acknowl-
edges the message. On receiving the acknowledgement, OFS
in mobile device sets the shared flag to false. Subsequent
updates to the block, W2 and W3, can be performed directly
since there is no duplicated copy. When the cloud tries to
read the block, it checks the valid flag first. If the block is
invalid (e.g.,R1 in Fig. 3), amiss occurs and the block is prop-
agated. Thus, the shared flag on themobile device is changed
to true, and further updates (W4) will result in an invalida-
tion message. Until now, the algorithm performs exactly as a
write-invalidation algorithm, except that the algorithm
maintains an overwritten counter and an overwritten thresh-
old for the block on each side (c and t in the figure for the
mobile device). The counter is reset every time the block is
propagated (e.g., R1), and incremented every time the block
is overwritten. The value of the overwritten counter is saved
into the overwritten threshold before it is reset (e.g., the
change of the t value corresponding to R1). With more

updates performed on the block (W5 and W6), the overwrit-
ten counter keeps increasing. When the value of the over-
written counter reaches the value of the overwritten
threshold (3 whenW6 is performed), the mobile device prop-
agates the new content in the block to the cloud before a read
is issued in the cloud (R2). This reduces the latency. This part
shares a similar idea with the write-update algorithm. How-
ever, it only performs updates when it predicts that the
updates are necessary. The prediction relies on the program
maintaining a regular access pattern (e.g., the time period
from W1 to R3). Misprediction occurs when the program
changes its access pattern (e.g.,W10,W11, and R4). However,
the algorithm can quickly adapt and adjust the prediction
based on the new pattern, as it does forW12,W13, andR5.

4 OFS IMPLEMENTATION

OFS sits between mobile apps and the offloading middle-
ware and it is implemented at the application level rather
than the OS level. This presents several challenges to the
implementation, including the lack of root privilege and
state loss when application is killed due to the short of
resource. This section introduces the implementation details
of OFS, particularly how these challenges are addressed.

4.1 Implementation Details

We have implemented an OFS prototype with Java on
Android. Though the implementation is Android-based, the
techniques used are generic and can be adapted to imple-
ment OFS on other mobile OSs.

At the application level, OFS can be implemented in
two ways: as a library that is dynamically linked into each
app, or as a set of services, which are independent threads
running in the background without interaction with users.
With the library implementation, the OFS code, system
states, and block buffer are in the memory space of each
app. Thus, the app can directly access OFS functionalities
and data with high efficiency. However, this implementa-
tion incurs consistency issues, since mobile OSs, such as
Android and iOS, may kill an app and reclaim its memory
space when it is switched to the background. Inconsis-
tency is caused if there are unsynchronized OFS system
states or file data in the memory space, which are lost
when the memory space is reclaimed. The other issue is
that the library implementation does not support file shar-
ing between apps.

We choose to implement OFS into a set of application
services (named OFS middleware) and keep application-spe-
cific states inside each app. The services start automatically
when the system is on. They are marked as “sticky” serv-
ices, so that they are less likely to be killed by the OS than
normal application threads and other services. In some rare
cases when these “sticky” services are killed by the OS, they
will be restarted automatically by the OS, at a later time,
before other services and apps. OFS has a simple check-
pointing mechanism implemented to back-up OFS system
states into storage before the services are killed. The check-
pointing mechanism can also be used to handle network
disconnection problems of offloaded tasks. If an offloaded
task was disconnected due to network issues, OFS can roll
back to the state before the task was offloaded.

Fig. 3. Workflow of delayed-update algorithm.
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To facilitate the accesses to OFS services, we provide a
component, named OFS stub, which is linked into each app
process as the interface between the app process and OFS.

Fig. 4 shows the architecture of the implementation,
which has two layers. The upper layer, named OFS stub, is
mainly in charge of intercepting file I/O requests, maintain-
ing app-specific information, and interacting with OFS mid-
dleware to satisfy file I/O requests. It consists of two major
components, the native/OFS switch and the session regis-
try. The native/OFS switch is as introduced in Section 3.
The session registry, as a part of session management in
Fig. 2, is in charge of maintaining file sessions by managing
and updating the data structures used by the app for access-
ing open files, such as status of the file (location, open mode,
etc), current offset, length and so on.

For the tasks offloaded into the cloud, the session registry
provides the data structures for accessing files. For the tasks
on the mobile device, the session registry mainly serves as a
registration list of all the files that are currently accessed by
offloaded tasks. The list is used by the native/OFS switch
on the mobile device to filter requests.2 The session regis-
tries in the cloud and on the mobile device are updated con-
sistently when a file is accessed by an offloaded task and the
information of the file cannot be found in the session regis-
tries. Specifically, before a task is offloaded, the session reg-
istry on the mobile device is empty, and thus all the file
accesses of the app are handled by native file systems on the
mobile device. Later, when a task is offloaded into the cloud
and the task starts to access a file, the session registry in the
cloud is searched. Since the required data structure for
accessing the file cannot be found there, the access cannot
proceed before the data structures are set up and registered
as a file session. To set up and register the data structures,
the OFS stub in the cloud generates a reopening request,
which is forwarded to the OFS stub in the mobile device.
On receiving the re-opening request, the OFS stub in the
mobile device registers the file in its session registry. In this
way, the file is marked as being accessed by an offloaded

task, and later accesses to the file are forwarded to OFS by
the native/OFS switch. Then, the OFS stub in the mobile
device sends back the information required for accessing
the file (e.g., file offset and open mode) to the OFS stub in
the cloud, which then uses the information to update the
session registry in the cloud. With the information, later
accesses can be handled by OFS.

Using Filesystem in Userspace (FUSE) [15] may simplify
the implementation. However, FUSE requires root permis-
sion and rooted systems. Android needs to be recompiled
in order to implement OFS in the existing FUSE daemon.
Thus, rather than using FUSE, we implemented the OFS
middleware using app services, which run on both mobile
device and the cloud. The main service, middleware service,
implements the other three major components of OFS
described in Section 3.2. Two supporting services assist the
main service to interact with other system components.
Specifically, the app service interacts with apps to receive
requests and deliver responses; and the network service
maintains the interaction between the OFS instances run-
ning in the cloud component and the mobile device.

In OFS, a large amount of data may be exchanged over
network or locally across different OFS components, and
some messages (e.g., events and updates on staled data)
must be processed promptly. Thus, OFS must handle data
communication with high efficiency. For network commu-
nication, we adopted a NIO-based TCP library named Kryo-
net [16], which is usually used by online games for high
network throughput and low latency. For local communica-
tion, we used Android’s Binder IPC mechanism. Broadcas-
tReceiver mechanism is not used since it may reduce the
communication throughput between the OFS stub and the
OFS middleware by up to 3x based on our experiments.

We used the offloading service of the Avatar platform
[17] as the offloading platform for our implementation. Ava-
tar is a distributed mobile-cloud platform where each
mobile device has a surrogate in the cloud. It also supports
offloading Plain Old Java Objects (POJO) to the cloud. POJO
is a software engineering term used to describe a Java object
not bound by any special restriction or external class path.
As the Avatar platform supports multi-threading program-
ming, offloading an object only blocks the relevant threads
in the mobile device instead of all of them. Unlike a regular
offloading platform, offloading in Avatar aims to improve
battery consumption, network bandwidth and latency for a
group of users. It uses annotations to intercept the targeted
code segment and uses a profiler to decide whether to off-
load based on QoS defined by the targeted user group. For
the experiments conducted in Section 6, we hardcoded
which operations are being offloaded to the cloud in order
to ensure the intended task is always offloaded.

4.2 Implementation Challenges and Solutions

To implement OFS in userspace, we solve several issues.
One issue is how OFS can interact with different apps to
intercept their file I/O requests and satisfy them. To address
this issue, our implementation intercepts library calls,
instead of system calls. The interception of library calls does
not require a system-level privilege and can be imple-
mented with various approaches, e.g., manipulating symbol
tables or binary weaving [12], [18]. Our current prototype

Fig. 4. Architecture of OFS implementation.

2. The native/OFS switch in the cloud determines that all the file
accesses should be handled by OFS, except for the accesses to the files
pre-configured to be accessed locally (e.g., read-only library files).
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uses AspectJ [12] in the OFS stub to automatically link the
required code to interact with the existing code of the app
without additional effort from the app programmer. In this
way, an app can be automatically enhanced with OFS sup-
port; and the app developers do not need to be aware of
task offloading or implement the code that handles file I/O
issues for offloaded tasks.

Specifically, the method interception mechanism in
AspectJ is used to capture the calls related with file I/O
requests. Then, the code to analyze the requests and to call
the methods in OFS stub is injected using the weaving
mechanism. While the capturing of file I/O requests and
the injection of OFS code can be performed when the app is
compiled or after the app is compiled (e.g., when the app is
being loaded), the current prototype finishes this process at
compile time to minimize runtime overhead.3

Another issue with a user-level implementation on
Android is how tomanage the accesses to app-private files. In
android, an app can have two types of files. Private files are
saved in the internal (private) storage space, and are only
accessible from the apps that created the files. Public files are
saved in the external (public) storage space, and can be
accessed by any apps. Since OFSmiddleware runs as applica-
tion services and cannot access private files of any app, if an
offloaded task needs to access a private file saved on the
mobile device, the accesses to the private file are forwarded
back fromOFSmiddleware to theOFS stub in the correspond-
ing app and performed by the OFS stub. OFS does not buffer
the data in private files. This rarely degrades performance,
since private files are usually small files, such as settings, con-
figurations, and cached data, and are infrequently accessed.

4.3 Interface with Task Offloading Systems

OFS must work synergistically with task offloading sys-
tems. However, it is challenging for an OFS implementation
to be compatible to different offloading systems, which may
be implemented in different ways at different system levels.
As explained in Section 2, computation tasks may be off-
loaded in the form of objects, threads, or procedures. These
different methods correspond to different ways of system
implementation. If OFS is built inside an offloading system
as a component, different OFS implementations are needed
for different task offloading systems.

To increase compatibility and reduce development efforts,
we decouple the implementation from specific task offload-
ing systems, and keep a narrow interface between OFS and
task offloading systems. With our implementation, the mid-
dleware service and the OFS stubs do not interact directly
with task offloading systems. A simple utility, named offload-
ing service, is developed to accept notifications from task off-
loading middlewares. The offloading service is notified
when a cloud-assisted app is launched, when there is a task
newly offloaded to the cloud, or when an offloaded task is
about to be migrated back to the mobile device. Based on the
notification, the offloading service instructs the OFS middle-
ware to update system states and the related app threads to
update application-specific states.

For example, when an object is migrated into the cloud
by the Avatar offloading platform, the OFS offloading
service in the cloud is notified about the migration with
information, such as the ID of the offloaded object. The off-
loading service contacts the application thread responsible
for the offloaded object in the cloud, such that the injected
OFS code in the thread can re-establish existing file sessions
by re-opening files and moving file pointers. Then, it notifies
the OFS middleware about the offloaded object, such that
subsequent file I/O requests from the offloaded thread can
be serviced by the OFS middleware. Such interactions
induce a one-time overhead which is included in the perfor-
mance results presented in Section 6.

5 CASE STUDY WITH A REAL APP

We implemented a photo enhancement app as a case study.
It illustrates the demand for transparently supporting file
accesses of cloud-assisted apps, and demonstrates the
advantages of OFS. With the app, we explain how our OFS
implementation efficiently supports the file accesses of the
tasks distributed across the mobile device and the cloud.

The photo enhancement app processes the photos
selected by the user. For each photo, it performs a few photo
enhancement operations, including applying color reduc-
tion, adding salt noise, applying sharpening filters, and
adding a watermark. The app displays the photo to the user
after the operations. We implemented each photo enhance-
ment operation in a Java class using OpenCV [21].

Based on the same source code implementation, we have
built three versions of the app: 1) a conventional mobile app
named PE-Mobile that executes all the operations locally on
the mobile device, including the enhancement operations,
2) a cloud-assisted app named PE-Offload that can offload
photo enhancement operations to the cloud and access the
photos using a cloud storage system, and 3) a cloud-assisted
app named PE-OFS that can offload photo enhancement
operations to the cloud and access the photos using OFS.

For fair comparison, we hard-coded the task offloading
part in the app to offload all the photo enhancement opera-
tions to the VM. We did not link PE-Offload with OFS stub,
in order to test whether a cloud storage system (e.g., Drop-
box or Google Drive) can be used to support the file accesses
of the app. The last version, PE-OFS, was built with OFS
support. Compared to PE-Offload, the enhancement with
the OFS support in PE-OFS only requires the linking of OFS
supporting library with the app, and does not incur addi-
tional efforts on programming or annotation.

Before running the app, we deployed the OFS middle-
ware on a mobile device and an Android-x86 VM (detailed
configuration in Section 6). Though OFS can be distributed
and deployed through app stores, such as Google Play
Store, currently the middleware is packed in Android appli-
cation packages. Thus, we copied the packages (the apk
files) into the mobile device and the virtual machine, and
side-loaded the packages. Root privilege was not requested
during the installation. However, we performed some sim-
ple configuration before PE-OFS could run: pair the mobile
device and the VM, and allow access to library files.

We first run PE-Mobile to process a set of photos with dif-
ferent sizes to verify the functionalities of the app. Then, we

3. An alternate approach that does not need recompilation is to
interpose the library function call paths. This can be done by instru-
menting the binaries of the app with tools such as PIN [19] or
ProbeDroid [20].
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run PE-Offload to process the same set of photos. We want
to justify the necessity to design a system to transparently
support the file accesses of a cloud-assisted application. To
make the photos accessible to the tasks offloaded to the VM,
we installed the Dropbox client app on both the mobile
device and the VM. Before the execution, we must first
upload the photos into a Dropbox directory on the mobile
device and mark them available for offline accesses in order
to download them into the device. Only after the download-
ing is finished, can we launch PE-Offload. Even though the
photos were accessible from the VM, we found that the
photo enhancement tasks offloaded to the VM crashed dur-
ing execution. This is because these tasks access each photo
using the file handle created on the mobile device when the
photo file is opened before any enhancement operations
start, and the file handle is invalid in the VM. To solve the
problem, we have to change the source code of the app,
such that a photo must be re-opened before each enhance-
ment operation and closed after the operation. With this
improvement, the enhancement operations can be finished
on the VM without crashing. But we find that the app may
display the old versions of the photos on the mobiles,
despite the fact that newer versions with enhancements
exist in the cloud. This is caused by Dropbox being unable
to promptly update the copies on the mobile device. Thus,
we have to re-examine the photos after both the Dropbox
instance on the VM and the instance on the mobile device
finish the synchronization with Dropbox server. We have
also tested PE-Offload by saving the photos into a Google
Drive and experienced similar problems.

Despite the increased management and programming
efforts, with existing cloud storage systems, a cloud-assisted
program still may not be able to deliver correct results. This
clearly shows that existing cloud storage systems cannot
meet the requirements of cloud-assisted apps and a system
must be designed to support the file accesses of these apps
transparently and consistently.

We have also tested PE-OFS with the same set of photos.
We run PE-OFS for two times. We first run PE-OFS
completely on the mobile device without offloading any
enhancement operations. Then we run it with the enhance-
ment operations offloaded to the VM. With PE-OFS, the
photos can be enhanced and correctly displayed after the
enhancements no matter whether the enhancement opera-
tions are offloaded to the cloud or not. When the enhance-
ment operations are performed on the mobile device, PE-
OFS shows similar performance as PE-Mobile. The end-to-
end latency for the enhancement operations on each photo
is less than 0.6 percent higher than PE-Mobile. When the
enhancement operations are offloaded to the cloud, com-
pared to PE-Mobile, the end-to-end latency is reduced by 43
percent on average with PE-OFS, and the combined energy
consumption of both the app and OFS middleware running
on the mobile device is reduced by on average 3 percent.

The above experiments show that OFS has low overhead
and can effectively support the seamless execution of cloud-
assisted apps on the mobile device and in the cloud. We
will present the detailed performance results in Section 6. In
this section, we focus on explaining how OFS transparently
supports the consistent file accesses of PE-OFS on both
mobile device and in the cloud.

6 PERFORMANCE EVALUATION

This section assesses the performance of OFS and evaluates
its delayed-update consistency policy by comparing the
performance with other consistency policies. We use the fol-
lowing metrics: 1) Execution time and average file I/O latency
measure the performance of OFS and comparison solutions.
2) Network overhead quantifies the network overhead intro-
duced by each solution. It practically represents the cost of
achieving lower I/O latency. 3) Number of overwrites per data
transfer measures how many overwrites are performed on a
file block until it is transferred. Practically, it helps us esti-
mate the benefits of delayed-update policy. The higher the
values of this metric, the more reduction in network over-
head. 4) Power consumption quantifies the power consumed
by the OFS middleware and the app using OFS.

6.1 Experiment Setup

The experiments were conducted on a Nexus 6 mobile
phone running Android 7 and a x86 VM running Android
6. The VM was hosted on an OpenStack-based cloud. It has
2 virtual CPUs, 3 GB memory, and 16 GB storage. The phys-
ical machine hosting the VM has an Intel Xeon (E5-2630)
processor, 78 GB memory, and 2TB storage. We installed
the OFS middleware on both the mobile phone and the VM.
In the middleware, in addition to the delayed-update pol-
icy, we also implemented the write-invalidate and the
write-update policies, which can replace the default
delayed-update policy through OFS configuration. For our
experiments, we set the block buffer size to be 64 MB. The
replacement algorithm is run when block buffer is full and
new data needs to be saved. With this size, hit ratios are
above 95 percent for all workloads.

We first tested our implementation by running the afore-
mentioned photo enhancement app. We use the app to
enhance three sets of photos, 15 photos in each set. The reso-
lutions of these three sets of photos are 2.1, 5.0 and 9.7
megapixel, respectively. For each photo, the app first dis-
plays the original photo. Then, it enhances the photo on the
VM. When the enhancements finish, it displays the
enhanced photo on the phone immediately.

Then, we tested OFS with the traces collected on the
PhoneLab testbed [22] from six real mobile users, one trace
for each user. The traces include the file I/O system calls cap-
tured on Android phones using boinic [23] when the users
were actively using these phones for different amounts of
time and executing different apps with different I/O pat-
terns. To replay the traces, we first developed an app. The
app creates some threads on the phone and some other
threads on the VM. These threads read the records of file I/O
operations in a trace and perform the corresponding opera-
tions on the corresponding files. To support the execution,
we created a set of files based on the file names and paths in
the traces. The contents in the files are randomly generated,
since no computation is carried out on the contents.

To imitate the concurrent execution of the tasks offloaded
to the cloud and the tasks on the phone, we divided the file
operations in each trace into two sets, and re-played one set
of operations with the threads on the phone and the other
set with the threads on the VM. We divided the operations
in two ways to imitate two different task offloading
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schemes: 1) thread offloading, and 2) procedure offloading.
The traces have the IDs of the threads performing I/O oper-
ations. For thread offloading, we sorted the threads based on
the number of I/O operations performed by them, then
divided the threads into two sets, each set of threads having
approximately 50 percent of the I/O operations. We
replayed the I/O operations of one set of threads in the VM
and the rest of the file operations one the phone. In the case
of procedure offloading, for each thread, we first replayed
30 percent of its file operations on the phone, then
replayed 50 percent of its file operations in the cloud, and
finally replayed the rest (20 percent) of its file operations
on the phone again. The 50 percent file operations
replayed in the VM imitate those caused by procedure
offloading. Thus, we obtained 12 workloads: one set of
six traces for thread offloading, and one set of six traces
for procedure offloading.

6.2 Results with Photo Enhancement App

This section evaluates the performance of the photo enhance-
ment app PE-OFS we built for the case study (Section 5) to
understand the advantages and overhead of OFS.

For each set of photos, we first run PE-Mobile on the
phone; then we run PE-OFS under four scenarios: 1) PE-
OFS (mobile only): only on the phone without task offload-
ing, 2) PE-OFS (write-invalidate): on the phone with photo
enhancement operations offloaded to the VM and the write-
invalidate policy used to maintain consistency, 3) PE-OFS
(write-update): on the phone with photo enhancement opera-
tions offloaded to the VM and the write-update policy used
to maintain consistency, and 4) PE-OFS (delayed update): on
the phone with photo enhancement operations offloaded to
the VM and the delayed-update policy used to maintain
consistency. When PE-OFS is launched, the photos are
saved on the mobile device only.

Fig. 5 compares the end-to-end processing time for the
above scenarios. First, it shows that, when running on the
phone without task offloading, PE-OFS has similar perfor-
mance with PE-Mobile, indicating the low overhead of OFS.
On the VM, photo processing can be finished much faster
than on the phone. Based on our measurement, the process-
ing time is reduced by 86 percent on the VM on average for
all the photos than on the phone. Therefore, despite that
large network latency can offset the benefits of task offload-
ing, when PE-OFS run on the phone with photo processing
tasks offloaded to the VM, the average processing time with
PE-OFS is still shorter than that with PE-Mobile by at least

31 percent. As shown in the figure, the performance advan-
tage of PE-OFS is more prominent with larger photos. As
shown with the last three bars in each group, for PE-OFS the
average processing time is the longest with the write-update
policy, and is the shortest with the delayed-update policy.
Compared to the delayed update policy, the average proc-
essing times with write-invalidate and write-update policies
are 5 and 20 percent higher than that with delayed-update.

To better understand the performance difference, we
measure latencies of file read operations and the latencies of
file write operations, and show the average latencies of
reads, writes, and all the file operations in Fig. 6a. Generally,
average latencies are higher with bigger photos than with
smaller photos, because the app reads/writes a whole photo
in one I/O operation. As shown in the figure, among three
policies, the write-invalidate policy incurs the highest aver-
age read latency due to the long latencies caused by reading
invalidated duplicates; and the write-update policy incurs
the highest write latency, since it must update all the dupli-
cates on each write. The delayed-update policy updates
duplicates only when they are predicted to be read soon.
Compared to write-update, the average write latency with
delayed-update is 23 percent lower, since it does not need
to update duplicate on every write with delayed-update.
Compared to write-invalidate, the average read latency is
29 percent lower with delayed-update, which may have val-
idate duplicates before they are read. On average, the aver-
age latency of file I/O operations are 8 and 12 percent lower
with delayed-update policy than with write-invalidate and
write-update policies, respectively.

The last experiment measures the power consumption
(i.e., energy consumed every second) incurred by the app
using Trepn Power Profiler [24]. For PE-OFS, the power con-
sumption consists of two parts: the power consumption of
the app itself and the power consumption of OFS middle-
ware. Fig. 6b shows the average power consumption. From
the figure, it is clear that with the increase of image size, the
average power consumption increases. For small photos, the
average power consumption with PE-Mobile is lower than
that with PE-OFS. For medium and large photos, the average
power consumption with PE-Mobile is higher than that with
PE-OFS if write-invalidate or delayed update policy is used.
When write-update is used, due to the large amount of
energy consumed for updating duplicates frequently, the
power consumption with PE-OFS is higher than PE-Mobile.
With similar or lower power consumption to PE-Mobile, the

Fig. 5. Average processing time of the photo enhancement app. Fig. 6. Average read latency, average write latency, average I/O, and
average power consumption for photo enhancement app.
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reduced processing time with PE-OFS is also translated into
reduced energy consumption, particularly when the consis-
tency policy used in OFS is properly chosen.

6.3 Results with the Real Mobile User Traces

This section tests the performance of OFS using the file opera-
tions in the traces. We compare the performance of delayed-
update policy with three alternative consistency policies:
write invalidate, write update, and optimal delayed-update.
The original delayed-update policy relies on the prediction
of future accesses to make decision onwhether remote dupli-
cates should be updated. The optimal delayed-update policy
can be considered as an improved delayed-update policy, in
which the prediction is 100 percent correct, with the knowl-
edge on the file accesses issued in the future. Though it is not
possible to make 100 percent correct prediction in practice,
by comparing the performance between the delayed update
policy and the optimal delayed-update policy, we can esti-
mate the potential to further improve the delayedupdate pol-
icy. We implemented the optimal delayed-update policy by
modifying the OFS middleware to accept the hints passed
from the trace-replaying app.

Fig. 7 compares the average latency of file I/O operations
with these policies for thread offloading and procedure off-
loading. The I/O latency mainly consists of network latency,
the time to access the local storage, and the time spent on IPC
between the user app and the OFS middleware. As shown in
the figure, the average I/O latency with delayed-update pol-
icy is lower than that with the write-update policy across all
the workloads. Compared to the write-update policy, with
the delayed-update policy, OFS can reduce I/O latency by
3�28 percent for different workloads (21 percent on aver-
age). The delayed-update policy also incurs lower I/O
latency than the write-invalidate policy for these workloads
(6�33 percent lower), except for the trace of user 1 in the

thread offloading scenario (4 percent higher). Compared to
the delayed-update policy, with the optimal delayed-update
policy, the average I/O latency can be reduced by 7�24 per-
cent. This shows that the performance of delayed-update
policy can be further improved if sophisticated algorithms
can be used to improve prediction accuracy.

The results also show that, in general, procedure offload-
ing benefits more from OFS than thread offloading. This is
because in procedure offloading, a bulk of I/O operations
are migrated to the cloud together, where in thread offload-
ing, different threads can run on mobile device and cloud
simultaneously while accessing same file. This causes
thread offloading to be more expensive in order to maintain
consistency. Therefore, we conclude that offloading systems
should implement procedure offloading in order to take full
advantage of OFS.

To gain further insights into the behavior of OFS, Fig. 8
shows the average latency for read operations and write
operations for the two sets of workloads. As expected,
write-update achieves the lowest read latency and the high-
est write latency due to its design of updating blocks for
every write, while write-invalidate achieves the lowest
write latency and the highest read latency due to its design
of updating blocks upon read operations. The optimal
delayed-update policy combines the advantage of write-
update on low read latency and the advantage of write-
invalidate on low write latency, with read latency and write
latency close to those of write-update and write-invalidate
respectively. Though the delayed-update policy cannot
achieve such low latency limited by its prediction accuracy,
it balances read latency and write latency well to improve
overall performance. For these workloads, compared to
write-update, on average it reduces write latency by 34 per-
cent, at the cost of 18 percent higher read latency; compared
to write-invalidate, on average it reduces read latency by 38
percent, at the cost of slightly increased write latency (11
percent higher). Relative to the optimal delayed-update pol-
icy, the write latency with the current delay-update policy
is 7 percent higher and the read latency is 19 percent higher,
indicating that the delayed-update policy tends to over-pre-
dict the arrival time of read operations.

We also measured the amount of network traffic with the
two sets of workloads. Fig. 9 shows that, as expected,
the write-update policy incurs the most network traffic,
while the write-invalidate policy incurs the least. Generally,
the network traffic incurred by OFS (the delayed-update
policy) is much less than that of write-update (67 percent
less on average), and only slightly higher (3�14 percent)

Fig. 7. Average I/O latency for six mobile users.

Fig. 8. Average latency of read operations and write operations.
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than that of write-invalidate. Note that, with write-invali-
date, updates are transferred only when they must be prop-
agated to satisfy the requests for data. Thus, the network
overhead can hardly be further reduced. This is mirrored
by the network traffic incurred by the optimal delayed-
update policy, which is also slightly higher than that with
the write-invalidate policy by 1.2 percent. Let us also note
that similar to the results for file I/O latency, procedure off-
loading leads to lower network overhead.

The results with file I/O latency and network traffic
clearly demonstrate the advantages of OFS. It reduces the
file I/O latency substantially compared to the write-invali-
date policy, while maintaining a similar network overhead.
The write-update policy performs poorly in terms of both
average file I/O latency and network overhead.

To gain insights into the factors that lead to the OFS
benefits, we collected the number of overwrites per trans-
ferred data block. As shown in Fig. 10, a block may be
overwritten multiple times before it is transferred. This is
the reason why the policies except for write-update can
effectively reduce the latency of write operations (Fig. 8)
and network overhead (Fig. 9). The figure also shows that
with OFS the average number of overwrites per transfer
(4�37 times across different users) is only slightly lower
that with the write-invalidate policy and the optimal
delayed-update (5�43 times across different users). This
explains why the latency and network traffic of write
operations with OFS is slightly higher to that with the
write-invalidate and the optimal delayed-update policy
(Figs. 8 and 9).

Fig. 10 also shows that the number of overwrites is signif-
icantly higher for procedure offloading than for thread off-
loading. This result explains why procedure offloading
performs better than thread offloading in terms of write
latency and network overhead.

To understand the impact of relaxation time on perfor-
mance, we changed the length of relaxation time from

0 seconds (i.e., regular delayed-update with no relaxation)
to 5 seconds, and measured the average I/O latency and
total network overhead. Figs. 11 and 12 show the decrease
of I/O latency and network overhead with relaxation time
for different workloads. Since the network overhead varies
significantly for different users, we normalized the over-
head to the one without relaxation for each user, and show
in Fig. 12 the normalized network overhead. When the
relaxation time is increased to 5 seconds, the average I/O
latency is reduced by 36 percent on average for the traces of
the 6 users with thread offloading and 43 percent on aver-
age with procedure offloading; the amount of network
overhead is reduced by 25 percent on average with thread
offloading and 32 percent on average with procedure off-
loading. The average I/O latency is reduced because the
overhead associated with the latest update to each block
across the Internet is amortized by a larger number of read
operations before the relaxation time expires. The amount
of network overhead is reduced because multiple updates
to the same file block on a device can be consolidated and
propagated together with one network transfer when the
relaxation time expires.

The figures also show that, with the increase of relaxation
time, though average I/O latency and the amount of net-
work overhead keep getting reduced, the reduction
becomes less prominent. The reasons are as follows. With
the increase of relaxation time, the cost of propagating an
update is amortized by an increasingly larger number of
read operations, and thus the benefit of amortization dimin-
ishes. At the same time, there are a limited number of
updates to the same file block in a period; thus, the number
of updates that can be consolidated before the relaxation
time expires may not keep increasing.

Fig. 9. The amount of network overhead incurred by the workloads.

Fig. 10. The average number of overwrites per data transfer.

Fig. 11. Average I/O latency when the value of relaxation time is
increased from 0 to 5 sec.

Fig. 12. Normalized network overhead incurred when the value of relaxa-
tion time is increased from 0 to 5 sec.
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7 RELATED WORK

OFS is an easily deployable file system that supports seam-
less, transparent, consistent file I/O of mobile apps with con-
current tasks running on mobile devices and in the cloud.
This section first presents methods used by existing mobile-
to-cloud offloading systems to handle file I/O. Then it com-
pares existing distributed and network file systemswith OFS.
Finally, the section discusses existing consistency policies.

7.1 File I/O in Existing Cloud Offloading Systems

A few systems that offload computation from the mobile to
the cloud have been developed [2], [4], [5], [6], [13], [25],
[26]. However, none of them is able to handle the file I/O of
offloaded tasks efficiently, if at all. Some of them, such as
MAUI [5], and ThinkAir [25] assume that the to-be-accessed
files are already available in the cloud when tasks are
migrated. They do not have mechanisms to support consis-
tent remote file accesses. On the other hand, the offloading
tool for Android applications based on autonomous method
selection [26] does not offload methods with file I/O. It
should be noted that all of these offloading systems, like
OFS, work at user-level.

CloneCloud [6] migrates threads in application-level
VMs. It supports access to local files. But, accessing and
updating the same file from both the mobile device and the
cloud simultaneously is not supported. COMET [4] provides
distributed shared memory support for migrating threads
between mobile devices and cloud. However, it does not
support offloading threads that perform file operations.
Sapphire [2] is a distributed programming platform for
developing and deploying apps spanning mobile devices
and clouds. Tasks are distributed using Sapphire Objects
(SO) that encapsulate both data and code. Sapphire SOs may
access remote files with a simple RPC-basedmechanism. But
the design lacks transparency and efficiency. For example,
SOs accessing files cannot move, and all the file accesses
have to go through network. Just-in-time (JIT) provisioning
in cloudlets [13] uses a synthesis server to help prepare vir-
tual disks for the tasks offloaded to cloudlets. Since the files
to be accessed by the tasks are included in the virtual disks,
JIT provisioning and cloudlets can satisfy file I/O requests of
offloaded tasks. This design is for VM-based task offloading,
which usually incurs a high overhead. OFS targets offloading
tasks in the context of threads, objects, or procedures.

7.2 Distributed and Network File Systems

Various distributed and network file systems were devel-
oped for different purposes [8], [10], [11], [27], [28], [29],
[30], [31]. Most distributed and network file systems (e.g.,
NFS [8], AFS [32], Coda [10], [11], and BlueFS [31]) are for
users accessing their files from different devices or sharing
files. Some of them (e.g., Coda and BlueFS) target mobile
users and take into consideration the characteristics of
mobile devices (e.g., limited resources and network connec-
tion). OFS is designed mainly to support the file accesses of
the tasks offloaded to the cloud from mobile devices.

OFS differs from existing distributed and network file
systems from the following perspectives. First, conventional
distributed and network file systems usually require that
the client software be installed and configured before they

can access files, making them cumbersome to use in task-
offloading scenarios. OFS works at the application level and
can be established on demand when a task in an app is off-
loaded to the cloud. Second, unlike OFS, conventional dis-
tributed and network file systems do not provide support
for tasks that have opened files at the time of offloading.
Last but not least, OFS supports efficient and consistent file
sharing in task-offloading scenarios, as we will explain in
detail in the next subsection.

7.3 Consistency Policies

Different policies are adopted in distributed and network
file systems to enforce consistency. For example, Coda [10],
[11] supports disconnected operations, which allow users to
update files when network is disconnected. However, this
leads to consistency issues that need to be solved by users.
BlueFS [31] cannot avoid conflicts either, and it requires
users to manually resolve conflicts. This is not practical for
mobile apps that offload tasks to the cloud—any benefits in
performance will be lost if the users are asked to help solve
consistency issues through conflict resolution.

NFS [8] supports close-to-open consistency. To guarantee
file consistency, applications need to use either file locks or
shared reservations to avoid interleaving file sessions. This
model does not fit task-offloading scenarios, where tasks
running in parallel at the mobile and the cloud may need to
update/read a file concurrently.

Mobile File System (MFS) [30] is a cache manager for
adapting data accesses in collaborative applications to net-
work variability when they access a distributed file system.
MFS supports consistent accesses to shared files. But the
consistency scheme is designed to target network band-
width variation and network latency is not a major concern.
The scheme may cause high file I/O latency, which is not
desirable in task-offloading scenarios.

Raindrop File System (RFS) [27] aims at mobile devices
accessing files saved in cloud. It implements a client-centric
management scheme, in which clients decide synchroniza-
tion points to manage consistency. However, how to select
appropriate synchronization points is a challenging and
unsolved problem. When used in task-offloading scenarios,
RFS increases the difficulty of programming and cannot
guarantee the required file consistency.

Simba [28], [29] provides a reliable and consistent syn-
chronization service for mobile devices. With Simba, mobile
apps can always see a consistent view of their data, and the
data can be stored locally on the mobile device, in the cloud,
and/or on other mobile devices. In addition to calling
Simba API to access/update data, it is also the app’s respon-
sibility to call Simba API to register data, synchronize
updates, and resolve conflicts. OFS, on the other hand, does
not require apps to handle these operations, and can be
used when apps do not have offloading logic.

8 CONCLUSION AND FUTURE WORK

Research described in this paper has been driven by the
demand for offloading mobile app tasks to the cloud. The
paper has identified one major obstacle to satisfying this
demand, namely the lack of effective support to allow the
offloaded tasks to access and share files with the rest of the
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app on the mobile device. To remove this obstacle, we have
presented and implemented an overlay file system (OFS),
which provides efficient, consistent, and location transpar-
ent access to files in a mobile cloud environment where app
tasks could be executed at either platform. The experimental
results based on real app and real mobile user traces have
demonstrated that OFS can effectively support consistent
file accesses from both the mobile device and the cloud
and achieve substantially lower file access latency than
competing methods. Furthermore, OFS is able to reduce the
response time and energy consumption of mobile apps by
speeding up the app execution through offloading support.
As a result, the battery life of the mobile devices can be
extended. Finally, we have learned that OFS works best for
read-intensive apps, with few writes, and for systems that
implement procedure offloading.

OFS has two limitations. First, due to the application
level implementation, OFS is not aware of the physical loca-
tions of the files. Thus, even if a file is physically saved in a
cloud storage, OFS still needs to fetch the file data from the
mobile device before the data can be accessed by the tasks
offloaded in the cloud. This increases the overhead of
accessing files in a cloud storage. Second, OFS only supports
the scenario, in which the mobile app on a single mobile
device offloads tasks to the cloud. It cannot support mobile
distributed apps offloading tasks from multiple mobile
devices. Our future work on OFS will focus on removing
these limitations.
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