
A novel parallel algorithm for near-field computation in N-body problem on GPU

Jianchen Shan

School of Computer Engineering and Science

Shanghai University

Shanghai, China

Yongmei Lei corresponding author

School of Computer Engineering and Science

Shanghai University

Shanghai, China

Abstract—A novel efficient parallel algorithm for the near-field

computation in N-body problem on the Graphics Processing

Unit (GPU) architecture is proposed in this paper. This

algorithm evolved from the BPB algorithm [1] which is

proposed in the author’s previous work. This novel algorithm

is based on the Newton’s third law and Z-order Space Filling

Curve (Z-SFC). Half of the computations are reduced and the

highest speedup of the Compute Unified Device Architecture

(CUDA) implementation compared to the serial CPU

implementation reaches 326. Through the quantitative analysis

of this algorithm, we propose the GPU optimization model of

transformation between data access and computation.

Keywords-parallel algorithm; GPU; CUDA; N-body; near-

field computation; Newton’s third law; Z-SFC

I. INTRODUCTION

Nowadays with the development of the CUDA, the
general-purpose computation on graphics processing units
(GPGPU) has become the hot topic in the field of high
performance computing. More and more typical scientific
applications including N-body simulation have been mapped
on to computational platform of the GPU architecture for its
features of high performance, relatively low-cost and easy to
programming.

In N-body problem, the system is described by a set of N
particles, and the dynamics of the system is the result of the
interactions that occur for every pair of particles. In order to
reduce its O (N

2
) computational complexity, the researchers

proposed the tree algorithms of which the Fast Multipole
Method [2] is the most famous one that reduce the
complexity to O (N). The key idea of tree algorithm is to
classify the force on particles into two types: near-field force
and far-field force. The approximation is applied to far-field
interactions, while the near-field interactions are summed
directly. Although many efforts have been made to map
various algorithm of N-body problem to GPU, in most
reported studies the simple O (N

2
) algorithm was used for

GPGPUs. Therefore, this paper focuses on mapping the near-
field computation which is the important and common
component of various three algorithms on to the GPU.

In our previous work, three mapping strategies (BPT,
PPT and BPB) [1] are proposed of which the BPB algorithm
is the most efficient one, because it optimizes the task
partition to maximize the CUDA threads [3] and take
advantage of the shared memory of GPU for data reuse to
break the performance bottleneck caused by frequent data
access to the global memory. The highest speedup obtained

by BPB compared to the serial CPU implementation is 243.
However, the amount of computation is still huge. According
to the Newton’s third law, the force between two interacting
particles comes in pairs-equal and opposite-which doesn’t
need to be calculated repeatedly. Based on this theory, half
of the amount of computation in near-field force could be
reduced. And this paper tactfully makes use of the Z-SFC to
implement the improved BPB algorithm based on the
Newton’s third law. The highest speedup obtained is 326.
Furthermore, by analyzing the change of the amount of
computation and data access from BPB algorithm to the
improved BPB algorithm, this work introduce a novel GPU
optimization model that enhancing the performance by
transformation between data access and computation.

The paper will be organized as follow: Chapter Ⅱ

describes the algorithm of the near-field computation. And in

chapter Ⅲ, the improved BPB algorithm would be presented

after the description of the data structure used on GPU and
the previous BPB algorithm. In chapter Ⅳ, the theoretical
amount of the computation and data access of the previous
BPB algorithm and the improved BPB algorithm would be
quantitatively analyzed and compared with each other. And
the experiments are executed to demonstrate this quantitative

analysis. Based on the analysis in Chapter Ⅳ, Chapter Ⅴ

proposed a novel GPU optimization model of transformation
between data access and computation. At last the conclusion
of the article and the introduction of the future work are

stated in chapter Ⅵ.

II. THE DESCRIPTION OF NEAR-FIELD COMPUTATION

A. Space Decomposition and Encoding

Figure 1. Space encoding by Z-SFC (K=1,2,3)

The algorithm is discussed in two-dimensional space
which is divided by a quadtree into many small areas of the
same size, and these small areas are called boxes. A box is
defined as the father box of the particles in it, and the boxes
around it are called its neighbor boxes. In order to organize
and sort the initially disordered particles, each box needs to

be set an index, and this process is called space encoding. In
this paper, the Z-SFC [4] is employed to encode the space
into one dimension as shown in Fig. 1. K is the height of the
quadtree.

Figure 2. The principle of Z-SFC (K=2)

If K is 2 and the coordinates origin is in the lower left
corner, the space is encoded as Fig. 2 (left side). Each index
of box contains the location information of the box in the
space as shown in Fig.2 (right side). If the coordinates of the
box is presented by K-digit binaries, then, for example, the
box 3 (310=00112) is the interlaced combination of the
coordinates of it, which is (01, 01).

B. The Outline of Algorithm

The near-field force on each particle consists of two parts:
(1) the force that comes from the other particles in its father
box; (2) the force that comes from the particles in its father
box’s neighbor boxes. Thus the serial algorithm of near-field
computation is to calculate the near-field force that comes
from those two parts on each particle of each box in order of
the boxes’ indexes.

III. THE PARALLEL ALGORITHM FOR THE NEAR-FIELD

COMPUTATION ON GPU

A. Data Structure

There are four liner arrays created in GPU for calculation.
First array contains the data of the particles of all boxes
ordered by their indexes-all data from box 0 is at the start of
the memory block, all data from box 1 follows and so on.
The second liner array called boxIdx is created to store the
indexes of the start position of the particles in every box in
the first liner array. The third liner array is the neighborlist
array that contains the neighborlist of each box. The forth
liner array called acc which stores the near-field force on
each particle.

B. Previous BPB Algorithm

The BPB (box per block) algorithm has the most efficient
CUDA implementation in our previous work. In this strategy,
one CUDA block [3] handles the computation of the
particles in one box. In case the number of particles in a box
is n, the first n threads of the corresponding block handle the
computations of these n particles and other threads of this
block are idle. When each particle’s near-field force that
comes from other particles in its father box is calculated, all
data of this box would be loaded to the shared memory for
data reuse. When each particle’s near-field force that comes

from the particles in its father box’s neighbors is calculated,
the data of each neighbor would be loaded to the shared
memory one after another. Fig. 3 is an overview of the order
of loading data to the shared memory, when the near-field
force on every particle in box A is calculated.

Figure 3. Loading data from global memory to shared memory [1]

The BPB algorithm breaks the performance bottleneck
caused by frequent data access to the global memory. The
highest speedup obtained by BPB compared to the serial
CPU implementation is 243.

C. Improved BPB Algorithm

1) The Principle of the Improvement
Although the BPB algorithm has made great efforts to

optimize the task partition and data access on GPU, the
amount of computation is still huge. Thus a novel improved
BPB algorithm based on the Newton’s third law is proposed.
According to the Newton’s third law, the force between two
interacting particles comes in pairs-equal and opposite-which
doesn’t need to be calculated repeatedly. Based on this
theory, half of the amount of computation in near-field
computation could be reduced. There are two steps of
calculating the near-field force on the particles in a box: (1)
calculating the force that comes from the other particles in
this box; (2) calculating the force that comes from the
particles in this box’s neighbor boxes. Therefore, we would
respectively describe the specific principle of reducing the
amount of computation of each step.

Figure 4. The principle of improvement in the first step (Ti represents the

cuda thread that calculates the near-field force on particlei, Pj represents the
particlej, and the grey suqare represents the calculation of the force between

particlex and particley. (x,y) is the coordinates of this square)

In the first step, Fig.4 (left side) describes the calculation
of one box in which there are eight particles before
improvement. Each particle should calculate the force comes
from all other seven particles, and when calculate the force
of particle i on particle j, Ti only update the near-field force

on particle i. Actually Ti can simultaneously update the near-
field force on particle j with the equal and opposite result.
Under this circumstance, there is no need for Tj to repeatedly
calculate the force of particle i on particle j. Based on this
principle, the calculation of this box in the first step is
improved as shown in Fig.4 (right side).

Figure 5. The principle of improvement in the second step

In the second step, when we calculate the near-field force
on box A’s particles from the particles in one of its neighbors
called box B. The near-field force on the particles in box B
from box A could be updated simultaneously. When we
handle the each box’s calculation of the second step in order
of the index of Z-SFC, as shown in Fig.5, we just need to
calculate the near-field force of the particles in the light grey
boxes on the particles in the dark grey box. Thus the
following rule could be concluded: in the second step, only
the interactions between one box and its neighbors whose
indexes are bigger than that of this box should be handled.

2) The Sequence of the Algorithm
Based on the above principle, the neighborlist array on

GPU should be simplified at first. Each box’s neighborlist
only need to contain the neighbors whose indexes are bigger
than its own index. The improved BPB algorithm also
employs one CUDA block to handle the computation of the
particles in one box. In case the number of particles in a box
is n, the first n threads of the corresponding block handle the
computations of these n particles and other threads of this
block are idle. The sequence of the improved algorithm is as
follow:

Step 1: Each block applies for two liner memory blocks
for creating two arrays, array A and array B, in the shared
memory on GPU. Array A is used for storing the data of the
corresponding box’s particles. Array B is used for storing the
counterforce result of each interaction between a pair of
particles.

Step 2: Each of the first n threads of a block loads the
particles in the corresponding box into array A in the shared
memory respectively and synchronizes to make sure that all
n particles have been loaded.

Step 3: Each of the first n threads of a block applies for a
local variable called d_acc to store the near-field force on the
corresponding particle, and then reads sequentially the other
n-threadIdx.x-1 (threadIdx.x is the index of a CUDA thread)
particles from array A for computing. The results of the force
and the counterforce of each interaction should update d_acc
and array B respectively, and then synchronizes to make sure
that all computations have been completed. For example, if
A[i] is read, the result of counterforce would be used to
update B[i]. At last each of the first n threads utilizes B
[threadIdx.x] to update the acc[j] in the global memory and
synchronizes again to make sure that the data of array B has
been written to the global memory. The j represents the
index of the thread’s corresponding particle.

Step 4: The treads of a block are employed to load the
particles in the first neighbor box of the corresponding box to
array A to overwrite the previous data and synchronize to
make sure that all particles in this neighbor box have been
loaded, and then set each element of array B to zero.

Step 5: Each of the first n threads of a block sequentially
read the particles in array A for computing. The results of the
force and the counterforce of each interaction should update
d_acc and array B respectively, and then synchronizes to
make sure that all computations have been completed. At last
each of the first n threads utilizes B [threadIdx.x] to update
the acc[j] in the global memory and synchronizes again to
make sure that the data of array B has been written to the
global memory. The j represents the index of the
threadIdx.x-th particle in the neighbor box calculated.

Step 6: If all neighbor boxes of a block’s corresponding
box have been once loaded to array A for computation, the
computation is completed. Otherwise the algorithm goes
back to the Step 4 and the particles of the next neighbor box
would be loaded to shared memory to overwrite the previous
data in array A for computation.

Step 7: Each of the first n threads of a block utilizes the
corresponding local variable d_acc in the register to update
acc[j] in the global memory respectively and. The j
represents the index of the thread’s corresponding particle.

Fig.6 and Fig.7 illustrate the data flows of the two
procedures of calculating the near-field force on the 6
particles in box A. Ti represent the CUDA thread i of a block
and this block’s corresponding box is box A. The reason for
creating array B to store the counterforce is to convert the
write operation on the global memory to the write operation
on the low-latency shared memory. And in step 3 and step 5
there exist the situations that many threads simultaneously
updating the same variable, which may lead to an error result.
Thus the atomic function in CUDA C [3] is employed to
solve this problem. Because the atomic operation would
serialize the updating operations of different threads on the
same variable, the performance of this implementation
would be harmfully influenced, which would be
demonstrated in the results of the following numerical
experiments.

Figure 6. Data flow of calculating the particle’s near-field force that

comes from other particles in its father box

Figure 7. Data flow of calculating the particle’s near-field force that

comes from the particles in its father box’s neighbor

IV. THEORETICAL ANALYSIS AND NUMERICAL

EXPERIMENTS

In this section, we first conduct the quantitative analysis
of the amount of the computation and data access of the
previous BPB algorithm and improved BPB algorithm to
show the improvement of the improved BPB algorithm, and
then execute the numerical experiments to demonstrate the
superiority of the improved BPB algorithm based on the
Newton’s third law.

A. Theoretical Analysis

Since the gravitational force between pair of particles is
calculated, each interaction between a pair of particles
contains the same number of floating point operations, which
is 15 (2 subtractions, 4 additions, 7 multiplications, 1
division and 1 square root). The criterion to measure the
amount of computation could be the number of interactions
between a pair of particles. Furthermore, each write or read
operation of the two different algorithms is conducted on a
single-precision floating-point number. Thus the criterion to
measure the amount of data access could be the times of data
access.

TABLE I. COMPARISON OF THE PREVIOUS BPB ALGORITHM AND

THE IMPROVED BPB ALGORITHM FROM THE ASPECTS OF THE AMOUNTS OF

COMPUTATION AND DATA ACCESS

Procedure Father box Neighbor box
Return

d_acc

Previous

BPB

GR(times) 3N 3BP

GW(times) 2N

SR(times) 3N(P-1) 3BP2

SW(times) 3N 3BP

RR(times) 2N

RW(times) 2N(P-1) 2BP2

CP(times) N(P-1) BP2

Improved

BPB

GR(times) 3N 3BP/2

GW(times) 2N BP 2N

SR(times) 3N(P-1)/2+2N 3BP2/2+BP

SW(times) 3N+2N+N(P-1) 3BP/2+BP+BP2

RR(times) 2N

RW(times) 2N(P-1)/2 BP2

CP(times) N(P-1)/2 BP2/2

B is the sum of all boxes’ neighbors, P is the number of particles in each box, and N is the number of

particles in the system. GR (global memory reading) and GW (global memory writing) respectively

represent the number of the read or write operations on the global memory. SR (shared memory

reading) and SW (shared memory writing) respectively represent the number of the read or write

operations on the shared memory. RR (global memory reading) and RW (global memory writing)

respectively represent the number of the read or write operations on the register. CP (computation)

represents the number of interactions between a pair of particles. The procedure Father box is to

calculate the particle’s near-field force that comes from the other particles in its father box. The

procedure Neighbor box is to calculate the particle’s near-field force that comes from the particles in

its father box’s neighbor boxes. The procedure Return d_acc is to utilize the local variable d_acc in

the register to update the array acc in the global memory.

Tab.1 analyzes the amounts of computation and data
access in different procedures of the near-field computation
in the previous BPB algorithm and the improved BPB
algorithm. It shows clearly that the amount of computation is
half reduced in the improved BPB algorithm. The change of
the amount of data access in different procedures is
discussed as follow:

In the procedure Father box, because the array B in the
shared memory is employed in the improved BPB algorithm
to store the counterforce, the number of write operations on
the shared memory is increased. Because the data of array B

is used to update the array acc in the global memory, the
number of the read operation on the shared memory and the
number of the write operation on the global memory are
increased. Furthermore, since the number of interactions
between a pair of particles is half reduced in this procedure,
the write operation on d_acc in register is also half reduced.

In the procedure Neighbor box, because only B/2
neighbor boxes would be loaded from global memory to the
shared memory for computing in the improve BPB algorithm,
the numbers of read operation on global memory and write
operation on the shared memory for loading neighbor boxes
from global memory to the shared memory are half reduced.
In addition, the number of read-write operations on the array
A in the shared memory is also half reduced. However, the
number of the write operations on array B in the shared
memory is increased to store the counterforce. At last the
number of read operation on the shared memory and the
number of write operation on global memory are increased,
for the data of array B in the shared memory is used to
update the array acc in global memory.

In the procedure Return d_acc, the amount of data access
is not changed.

TABLE II. THE MACRO CHANGE OF THE AMOUNT OF COMPUTATION

AND DATA ACCESS IN THE IMPROVED BPB ALGORITHM

Change of the

amount of

computation

Change of the amount of data access

Read-write

operations on

register(times)

Read-write

operations on

shared

memory(times)

Read-write

operations on

global

memory(times)

-N(P-1)/2 -
BP2/2

-N(P-1)-BP2 -N(P-1)-BP2 2N -BP/2

When tree_level=7, N=16384P, B=129540 and P≧1

Reduced by
P(145924P-

16384)/2

Reduced by
P(145924P-

16384)

Reduced by
P(146462P-

89346)

Reduced by

32002P

The above analysis indicates that both increment and
reduction of the amount of data access to multilevel GPU
storage space exits in different procedures of the near-field
computation in the improved BPB algorithm. Therefore, the
macro analysis of the change of the amount of the
computation and data access in the improved BPB algorithm
is presented in the Tab.2. It shows that the amount of
computation and the amount of data access to register are
half reduced. However, the changes of the amounts of data
access to the shared memory and global memory are
determined by the height of the quadtree and the number of
particles in each box. In the real numerical experiments, the
height of the quadtree is set to 7, if there is at least one
particle in each box, the amounts of data access to the shared
memory and global memory are reduced, that is to say, both
the amount of data access and the amount of computation are
reduced, which lead to the superiority of the improved BPB
algorithm. Furthermore, we can conclude that the
improvement would be enhanced with the increment of the
number of the particles in each box.

B. Numerical Experiments

In this section, the numerical experiments are executed
and the experimental results of the implementations of the
previous BPB algorithm and the improved BPB algorithm on

GPU are compared and analyzed to demonstrate the
superiority of the improved BPB algorithm based on the
Newton’s third law. The experiments are executed on a HP
work station that consists of 8 cores (Intel Xeon
E5506/2.13GHz quad-core) with 8GB memory and a single
Tesla C1060. CentOS 5.4 is used as operating system. The
compiler we used for the compilation of our GPU code is the
NVIDIA CUDA compilation tools. The level of the quadtree
is set to 7, thus there are 16384 boxes, and the particle
distribution is uniform. The number of particles in each box
ranges from 8 to 512.

The runtimes of the different implementations on CPU
and GPU are recorded in Tab.3. The highest speedup of the
improved BPB algorithm’s implementation compared to the
serial CPU implementation reaches 326. Fig.8 demonstrates
the conclusion in the theoretical analysis that acceleration of
the improved BPB algorithm is enhanced with the increment
of the number of particles per box. However, the runtime of
the improved BPB algorithm is not half or more reduced for
the half reduced amount of computation and the reduced
amount of data access. The reason is that the usage of the
atomic function harmfully influenced the performance of the
implementation on GPU. Nevertheless, the result of the
experiments still definitely demonstrates the superiority of
the improved BPB algorithm.

TABLE III. THE MACRO CHANGE OF THE AMOUNT OF COMPUTATION

AND DATA ACCESS IN THE IMPROVED BPB ALGORITHM

Number

of

particles

per box

CPU(ms)

GPU(ms) Speedup

Previous

BPB

Improved

BPB

Previous

BPB

Improved

BPB

8 150.846 79.506 79.227 1.90 1.90

16 581.918 82.382 81.446 7.06 7.14

32 2291.87 90.248 88.130 25.40 26.01

64 9106.34 116.69 109.707 78.04 83.01

128 36426.1 234.54 202.768 155.31 179.64

256 145100 644.85 499.495 225.01 290.49

512 579568 2475.9 1774.183 234.08 326.67

8 16 32 64 128 256 512
0

500

1000

1500

2000

2500

Number of particles per box

T
im

e
[m

s
]

Previous BPB algorithm

Improved BPB algorithm

Figure 8. Comparison of the runtime of the previous BPB algorithm and

the improved BPB algorithm on GPU

V. THE NOVEL GPU OPTIMIZATION MODEL OF

TRANSFORMATION BETWEEN DATA ACCESS AND

COMPUTATION.

The Newton’s third law half reduces the amount of
computation in the improved BPB algorithm, and the data
accesses in these reduced computations are also deducted.
However, the remaining computations need to undertake
additional data access to deal with the counterforce, and this
process is the transformation between data access and
computation, which is a novel GPU optimization model.
Through the theoretical analysis and numerical experiments,
we have demonstrated that this GPU optimization model
may optimize the performance of the algorithm mapping on
GPU. Thus we can deep analyze an algorithm to find the
possibility of the transformation between data access and
computation to optimize its algorithm mapping on GPU.
Because the data access always accompany with the
computation, there are four situations of the transformation
between data access and computation:

 If the computation is transformed to data access, the
amount of computation is reduced and the amount of
data access is increased.

 If the computation is transformed to data access, the
amount of computation is reduced and the amount of
data access is not changed or reduced.

 If the data access is transformed to computation, the
amount of computation is increased and the amount
of data access is reduced.

 If the data access is transformed to computation, the
amount of computation is increased and the amount
of data access is not changed or increased.

When the transformation belongs to the first three
situations, the algorithm on GPU could be theoretically
optimized. When the transformation belongs to the last
situation, the performance would be harmfully influenced.
Therefore, before the GPU optimization model of
transformation between data access and computation is used
to improve the algorithm mapping on GPU, the quantitative
analysis of the amount of computation and data access
should be conducted to judge which situation dose the
transformation belong to.

VI. CONCLUSION

We have proposed a novel parallel algorithm for the
near-field computation in N-body problem on GPU. This
algorithm is based on Newton’s third law and evolved from
the BPB algorithm presented in our previous work. The
theoretical analysis shows the improvement of the amount of
the computation and data access in the improved BPB
algorithm. The effect of this improvement is demonstrated
by the numerical experiments. At last the GPU optimization
model of transformation between data access and
computation is proposed on the basis of the principle of the
improvement in the improved BPB algorithm. Four
situations of this model are discussed to help the researcher

to determine whether the transformation in their algorithm
can lead to the improvement of the implementation’s
performance on GPU.

In the future work, the far-field computation in N-body
problem would be mapped on GPU, and the CUDA
implementation would be transplanted to the multi-GPU
computational platform.

ACKNOWLEDGMENT

This work is supported by National High-tech R&D
Program of China under Grant 2009AA012201, Innovation
Research program of Shanghai under Grant 12ZZ094, and
Shanghai Academic Leading Discipline Project J50103.

REFERENCES

[1] Jianchen Shan, Yongmei Lei and Jinshi Zhu, “The algorithm mapping
of the near-field computation in N-body problem on GPU” in
CCCA2011, Hong Kong, China, 2011, pp 326-330

[2] L. Greengard and V. Rokhlin, “A fast algorithm for particle
simulations,” Journal of Computational Physics, vol. 73, pp. 325 -
348, 1987.

[3] “NVIDIA CUDA C Programming Guide Version 3.1.1” 7/21/2010
http://developer.download.nvidia.com/compute/cuda/3_1/toolkit/docs
/NVIDIA_CUDA_C_ProgrammingGuide_3.1.pdf

[4] Theodore Bially, “Space-Filling Curves: Their Generation and Their
Application to Bandwidth Reduction.” IEEE Transactions on
Information Theory, IT-15(6):658-664, Nov 1969.

[5] J. Barnes and P. Hut, “A hierarchical O(N log N) force-calculation
algorithm,” vol. 324, pp. 446-449, 1986.

[6] Lars Nyland, Mark Harris, Jan Prins, “Fast N-Body Simulation with
CUDA” GPU Gems, 2007, 3:677–695

[7] I. Lashuk, A. Chandramowlishwaran, H. Langston, T. Nguyen, R.
Sampath, A. Shringarpure, R. Vuduc, L. Ying, D. Zorin, and G. Biros,
“A massively parallel adaptive fast-multipole method on
heterogeneous architectures,” in SC '09, New York, NY, USA, 2009,
pp. 58:1--58:12.

[8] T. Hamada, K. Nitadori, K. Benkrid, Y. Ohno, G. Morimoto, T.
Masada, Y. Shibata, K. Oguri, and M. Taiji, “A novel multiple-walk
parallel algorithm for the Barnes-Hut treecode on GPUs - towards
cost effective, high performance N-body simulation,” Computer
Science, vol. 24, pp. 21-31, 2009.

[9] R. Beatson and L. Greengard, “A short course on fast multipole
methods,” Oxford University Press, 1997, pp. 1--37.

[10] J. Breitbart, “Case studies on gpu usage and data structure design”
unpublished

[11] Felipe A. Cruz and L. A. Barba, “Characterization of the accuracy of
the fast multipole method in particle simulations” Int. J. Numer. Meth.
Engng., Vol. 79, No. 13. (2009), pp. 1577-1604.

[12] N. A. Gumerov and R. C. C. H. Duraiswami, “Fast multipole methods
on graphics processors” J. Comput. Phys., vol. 227(2008), pp. 8290--
8313.

[13] T. Hamada, T. Narumi, R. Yokota, K. Yasuoka, K. Nitadori, and M.
Taiji, “42 TFlops hierarchical N-body simulations on GPUs with
applications in both astrophysics and turbulence,” in SC '09, New
York, NY, USA, 2009, pp. 62:1--62:12.

[14] A. Kawai, T. Fukushige and J. Makino, “$7.0/Mflops Astrophysical
N-Body Simulation with Treecode on GRAPE-5,” SC Conference,
vol. 0, p. 67, 1999.

[15] F. A. Cruz, M. G. Knepley and L. A. Barba, “PetFMM--A
dynamically load-balancing parallel fast multipole library,” CoRR,
vol. abs/0905.2637, 2009.

