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Abstract—A novel efficient parallel algorithm for the near-field 

computation in N-body problem on the Graphics Processing 

Unit (GPU) architecture is proposed in this paper. This 

algorithm evolved from the BPB algorithm [1] which is 

proposed in the author’s previous work. This novel algorithm 

is based on the Newton’s third law and Z-order Space Filling 

Curve (Z-SFC). Half of the computations are reduced and the 

highest speedup of the Compute Unified Device Architecture 

(CUDA) implementation compared to the serial CPU 

implementation reaches 326. Through the quantitative analysis 

of this algorithm, we propose the GPU optimization model of 

transformation between data access and computation. 

Keywords-parallel algorithm; GPU; CUDA; N-body; near-
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I.  INTRODUCTION 

Nowadays with the development of the CUDA, the 
general-purpose computation on graphics processing units 
(GPGPU) has become the hot topic in the field of high 
performance computing. More and more typical scientific 
applications including N-body simulation have been mapped 
on to computational platform of the GPU architecture for its 
features of high performance, relatively low-cost and easy to 
programming.  

In N-body problem, the system is described by a set of N 
particles, and the dynamics of the system is the result of the 
interactions that occur for every pair of particles. In order to 
reduce its O (N

2
) computational complexity, the researchers 

proposed the tree algorithms of which the Fast Multipole 
Method [2] is the most famous one that reduce the 
complexity to O (N). The key idea of tree algorithm is to 
classify the force on particles into two types: near-field force 
and far-field force. The approximation is applied to far-field 
interactions, while the near-field interactions are summed 
directly. Although many efforts have been made to map 
various algorithm of N-body problem to GPU, in most 
reported studies the simple O (N

2
) algorithm was used for 

GPGPUs. Therefore, this paper focuses on mapping the near-
field computation which is the important and common 
component of various three algorithms on to the GPU. 

In our previous work, three mapping strategies (BPT, 
PPT and BPB) [1] are proposed of which the BPB algorithm 
is the most efficient one, because it optimizes the task 
partition to maximize the CUDA threads [3] and take 
advantage of the shared memory of GPU for data reuse to 
break the performance bottleneck caused by frequent data 
access to the global memory. The highest speedup obtained 

by BPB compared to the serial CPU implementation is 243. 
However, the amount of computation is still huge. According 
to the Newton’s third law, the force between two interacting 
particles comes in pairs-equal and opposite-which doesn’t 
need to be calculated repeatedly. Based on this theory, half 
of the amount of computation in near-field force could be 
reduced. And this paper tactfully makes use of the Z-SFC to 
implement the improved BPB algorithm based on the 
Newton’s third law. The highest speedup obtained is 326. 
Furthermore, by analyzing the change of the amount of 
computation and data access from BPB algorithm to the 
improved BPB algorithm, this work introduce a novel GPU 
optimization model that enhancing the performance by 
transformation between data access and computation. 

The paper will be organized as follow: Chapter Ⅱ 

describes the algorithm of the near-field computation. And in 

chapter Ⅲ, the improved BPB algorithm would be presented 

after the description of the data structure used on GPU and 
the previous BPB algorithm. In chapter Ⅳ, the theoretical 
amount of the computation and data access of the previous 
BPB algorithm and the improved BPB algorithm would be 
quantitatively analyzed and compared with each other. And 
the experiments are executed to demonstrate this quantitative 

analysis. Based on the analysis in Chapter Ⅳ, Chapter Ⅴ 

proposed a novel GPU optimization model of transformation 
between data access and computation. At last the conclusion 
of the article and the introduction of the future work are 

stated in chapter Ⅵ. 

II. THE DESCRIPTION OF NEAR-FIELD COMPUTATION 

A. Space Decomposition and Encoding 

 
Figure 1.  Space encoding by Z-SFC (K=1,2,3) 

The algorithm is discussed in two-dimensional space 
which is divided by a quadtree into many small areas of the 
same size, and these small areas are called boxes. A box is 
defined as the father box of the particles in it, and the boxes 
around it are called its neighbor boxes. In order to organize 
and sort the initially disordered particles, each box needs to 



be set an index, and this process is called space encoding. In 
this paper, the Z-SFC [4] is employed to encode the space 
into one dimension as shown in Fig. 1. K is the height of the 
quadtree.  

 
Figure 2.  The principle of Z-SFC (K=2) 

If K is 2 and the coordinates origin is in the lower left 
corner, the space is encoded as Fig. 2 (left side). Each index 
of box contains the location information of the box in the 
space as shown in Fig.2 (right side). If the coordinates of the 
box is presented by K-digit binaries, then, for example, the 
box 3 (310=00112) is the interlaced combination of the 
coordinates of it, which is (01, 01). 

B. The Outline of Algorithm 

The near-field force on each particle consists of two parts: 
(1) the force that comes from the other particles in its father 
box; (2) the force that comes from the particles in its father 
box’s neighbor boxes. Thus the serial algorithm of near-field 
computation is to calculate the near-field force that comes 
from those two parts on each particle of each box in order of 
the boxes’ indexes. 

III. THE PARALLEL ALGORITHM FOR THE NEAR-FIELD 

COMPUTATION ON GPU 

A. Data Structure 

There are four liner arrays created in GPU for calculation. 
First array contains the data of the particles of all boxes 
ordered by their indexes-all data from box 0 is at the start of 
the memory block, all data from box 1 follows and so on. 
The second liner array called boxIdx is created to store the 
indexes of the start position of the particles in every box in 
the first liner array. The third liner array is the neighborlist 
array that contains the neighborlist of each box. The forth 
liner array called acc which stores the near-field force on 
each particle. 

B. Previous BPB Algorithm 

The BPB (box per block) algorithm has the most efficient 
CUDA implementation in our previous work. In this strategy, 
one CUDA block [3] handles the computation of the 
particles in one box. In case the number of particles in a box 
is n, the first n threads of the corresponding block handle the 
computations of these n particles and other threads of this 
block are idle. When each particle’s near-field force that 
comes from other particles in its father box is calculated, all 
data of this box would be loaded to the shared memory for 
data reuse. When each particle’s near-field force that comes 

from the particles in its father box’s neighbors is calculated, 
the data of each neighbor would be loaded to the shared 
memory one after another. Fig. 3 is an overview of the order 
of loading data to the shared memory, when the near-field 
force on every particle in box A is calculated. 

 
Figure 3.  Loading data from global memory to shared memory [1] 

The BPB algorithm breaks the performance bottleneck 
caused by frequent data access to the global memory. The 
highest speedup obtained by BPB compared to the serial 
CPU implementation is 243. 

C. Improved BPB Algorithm  

1) The Principle of the Improvement  
Although the BPB algorithm has made great efforts to 

optimize the task partition and data access on GPU, the 
amount of computation is still huge. Thus a novel improved 
BPB algorithm based on the Newton’s third law is proposed. 
According to the Newton’s third law, the force between two 
interacting particles comes in pairs-equal and opposite-which 
doesn’t need to be calculated repeatedly. Based on this 
theory, half of the amount of computation in near-field 
computation could be reduced. There are two steps of 
calculating the near-field force on the particles in a box: (1) 
calculating the force that comes from the other particles in 
this box; (2) calculating the force that comes from the 
particles in this box’s neighbor boxes. Therefore, we would 
respectively describe the specific principle of reducing the 
amount of computation of each step. 

 
Figure 4.  The principle of improvement in the first step (Ti represents the 

cuda thread that calculates the near-field force on particlei, Pj represents the 
particlej, and the grey suqare represents the calculation of the force between 

particlex and particley. (x,y) is the coordinates of this square) 

In the first step, Fig.4 (left side) describes the calculation 
of one box in which there are eight particles before 
improvement. Each particle should calculate the force comes 
from all other seven particles, and when calculate the force 
of particle i on particle j, Ti only update the near-field force 



on particle i. Actually Ti can simultaneously update the near-
field force on particle j with the equal and opposite result. 
Under this circumstance, there is no need for Tj to repeatedly 
calculate the force of particle i on particle j. Based on this 
principle, the calculation of this box in the first step is 
improved as shown in Fig.4 (right side). 

 
Figure 5.  The principle of improvement in the second step 

In the second step, when we calculate the near-field force 
on box A’s particles from the particles in one of its neighbors 
called box B. The near-field force on the particles in box B 
from box A could be updated simultaneously. When we 
handle the each box’s calculation of the second step in order 
of the index of Z-SFC, as shown in Fig.5, we just need to 
calculate the near-field force of the particles in the light grey 
boxes on the particles in the dark grey box. Thus the 
following rule could be concluded: in the second step, only 
the interactions between one box and its neighbors whose 
indexes are bigger than that of this box should be handled.  

2) The Sequence of the Algorithm 
Based on the above principle, the neighborlist array on 

GPU should be simplified at first. Each box’s neighborlist 
only need to contain the neighbors whose indexes are bigger 
than its own index. The improved BPB algorithm also 
employs one CUDA block to handle the computation of the 
particles in one box. In case the number of particles in a box 
is n, the first n threads of the corresponding block handle the 
computations of these n particles and other threads of this 
block are idle. The sequence of the improved algorithm is as 
follow: 

Step 1: Each block applies for two liner memory blocks 
for creating two arrays, array A and array B, in the shared 
memory on GPU. Array A is used for storing the data of the 
corresponding box’s particles. Array B is used for storing the 
counterforce result of each interaction between a pair of 
particles. 

Step 2: Each of the first n threads of a block loads the 
particles in the corresponding box into array A in the shared 
memory respectively and synchronizes to make sure that all 
n particles have been loaded. 

Step 3: Each of the first n threads of a block applies for a 
local variable called d_acc to store the near-field force on the 
corresponding particle, and then reads sequentially the other 
n-threadIdx.x-1 (threadIdx.x is the index of a CUDA thread) 
particles from array A for computing. The results of the force 
and the counterforce of each interaction should update d_acc 
and array B respectively, and then synchronizes to make sure 
that all computations have been completed. For example, if 
A[i] is read, the result of counterforce would be used to 
update B[i]. At last each of the first n threads utilizes B 
[threadIdx.x] to update the acc[j] in the global memory and 
synchronizes again to make sure that the data of array B has 
been written to the global memory. The j represents the 
index of the thread’s corresponding particle. 

Step 4: The treads of a block are employed to load the 
particles in the first neighbor box of the corresponding box to 
array A to overwrite the previous data and synchronize to 
make sure that all particles in this neighbor box have been 
loaded, and then set each element of array B to zero. 

Step 5: Each of the first n threads of a block sequentially 
read the particles in array A for computing. The results of the 
force and the counterforce of each interaction should update 
d_acc and array B respectively, and then synchronizes to 
make sure that all computations have been completed. At last 
each of the first n threads utilizes B [threadIdx.x] to update 
the acc[j] in the global memory and synchronizes again to 
make sure that the data of array B has been written to the 
global memory. The j represents the index of the 
threadIdx.x-th particle in the neighbor box calculated. 

Step 6: If all neighbor boxes of a block’s corresponding 
box have been once loaded to array A for computation, the 
computation is completed. Otherwise the algorithm goes 
back to the Step 4 and the particles of the next neighbor box 
would be loaded to shared memory to overwrite the previous 
data in array A for computation. 

Step 7: Each of the first n threads of a block utilizes the 
corresponding local variable d_acc in the register to update 
acc[j] in the global memory respectively and. The j 
represents the index of the thread’s corresponding particle. 

Fig.6 and Fig.7 illustrate the data flows of the two 
procedures of calculating the near-field force on the 6 
particles in box A. Ti represent the CUDA thread i of a block 
and this block’s corresponding box is box A. The reason for 
creating array B to store the counterforce is to convert the 
write operation on the global memory to the write operation 
on the low-latency shared memory. And in step 3 and step 5 
there exist the situations that many threads simultaneously 
updating the same variable, which may lead to an error result. 
Thus the atomic function in CUDA C [3] is employed to 
solve this problem. Because the atomic operation would 
serialize the updating operations of different threads on the 
same variable, the performance of this implementation 
would be harmfully influenced, which would be 
demonstrated in the results of the following numerical 
experiments. 



 
Figure 6.  Data flow of calculating the particle’s near-field force that 

comes from other particles in its father box 

 
Figure 7.  Data flow of calculating the particle’s near-field force that 

comes from the particles in its father box’s neighbor 

IV. THEORETICAL ANALYSIS AND NUMERICAL 

EXPERIMENTS 

In this section, we first conduct the quantitative analysis 
of the amount of the computation and data access of the 
previous BPB algorithm and improved BPB algorithm to 
show the improvement of the improved BPB algorithm, and 
then execute the numerical experiments to demonstrate the 
superiority of the improved BPB algorithm based on the 
Newton’s third law. 

A. Theoretical Analysis 

Since the gravitational force between pair of particles is 
calculated, each interaction between a pair of particles 
contains the same number of floating point operations, which 
is 15 (2 subtractions, 4 additions, 7 multiplications, 1 
division and 1 square root). The criterion to measure the 
amount of computation could be the number of interactions 
between a pair of particles. Furthermore, each write or read 
operation of the two different algorithms is conducted on a 
single-precision floating-point number. Thus the criterion to 
measure the amount of data access could be the times of data 
access.  

TABLE I.  COMPARISON OF THE PREVIOUS BPB ALGORITHM AND 

THE IMPROVED BPB ALGORITHM FROM THE ASPECTS OF THE AMOUNTS OF 

COMPUTATION AND DATA ACCESS 

Procedure Father box Neighbor box 
Return 

d_acc 

Previous 

BPB 

GR(times) 3N 3BP  

GW(times)   2N 

SR(times) 3N(P-1) 3BP2  

SW(times) 3N 3BP  

RR(times)   2N 

RW(times) 2N(P-1) 2BP2  

CP(times) N(P-1) BP2  

Improved 

BPB 

GR(times) 3N 3BP/2  

GW(times) 2N BP 2N 

SR(times) 3N(P-1)/2+2N 3BP2/2+BP  

SW(times) 3N+2N+N(P-1) 3BP/2+BP+BP2  

RR(times)   2N 

RW(times) 2N(P-1)/2 BP2  

CP(times) N(P-1)/2 BP2/2  

B is the sum of all boxes’ neighbors, P is the number of particles in each box, and N is the number of 

particles in the system. GR (global memory reading) and GW (global memory writing) respectively 

represent the number of the read or write operations on the global memory. SR (shared memory 

reading) and SW (shared memory writing) respectively represent the number of the read or write 

operations on the shared memory. RR (global memory reading) and RW (global memory writing) 

respectively represent the number of the read or write operations on the register. CP (computation) 

represents the number of interactions between a pair of particles. The procedure Father box is to 

calculate the particle’s near-field force that comes from the other particles in its father box. The 

procedure Neighbor box is to calculate the particle’s near-field force that comes from the particles in 

its father box’s neighbor boxes. The procedure Return d_acc is to utilize the local variable d_acc in 

the register to update the array acc in the global memory. 

Tab.1 analyzes the amounts of computation and data 
access in different procedures of the near-field computation 
in the previous BPB algorithm and the improved BPB 
algorithm. It shows clearly that the amount of computation is 
half reduced in the improved BPB algorithm. The change of 
the amount of data access in different procedures is 
discussed as follow: 

In the procedure Father box, because the array B in the 
shared memory is employed in the improved BPB algorithm 
to store the counterforce, the number of write operations on 
the shared memory is increased. Because the data of array B 



is used to update the array acc in the global memory, the 
number of the read operation on the shared memory and the 
number of the write operation on the global memory are 
increased. Furthermore, since the number of interactions 
between a pair of particles is half reduced in this procedure, 
the write operation on d_acc in register is also half reduced. 

In the procedure Neighbor box, because only B/2 
neighbor boxes would be loaded from global memory to the 
shared memory for computing in the improve BPB algorithm, 
the numbers of read operation on global memory and write 
operation on the shared memory for loading neighbor boxes 
from global memory to the shared memory are half reduced. 
In addition, the number of read-write operations on the array 
A in the shared memory is also half reduced. However, the 
number of the write operations on array B in the shared 
memory is increased to store the counterforce. At last the 
number of read operation on the shared memory and the 
number of write operation on global memory are increased, 
for the data of array B in the shared memory is used to 
update the array acc in global memory. 

In the procedure Return d_acc, the amount of data access 
is not changed. 

TABLE II.  THE MACRO CHANGE OF THE AMOUNT OF COMPUTATION 

AND DATA ACCESS IN THE IMPROVED BPB ALGORITHM 

Change of the 

amount of 

computation 

Change of the amount of data access 

Read-write 

operations on 

register(times) 

Read-write 

operations on 

shared 

memory(times) 

Read-write 

operations on 

global 

memory(times) 

-N(P-1)/2 -
BP2/2 

-N(P-1)-BP2 -N(P-1)-BP2 2N -BP/2 

When tree_level=7, N=16384P, B=129540 and P≧1 

Reduced by 
P(145924P-

16384)/2 

Reduced by 
P(145924P-

16384) 

Reduced by 
P(146462P-

89346) 

Reduced by 

32002P 

The above analysis indicates that both increment and 
reduction of the amount of data access to multilevel GPU 
storage space exits in different procedures of the near-field 
computation in the improved BPB algorithm. Therefore, the 
macro analysis of the change of the amount of the 
computation and data access in the improved BPB algorithm 
is presented in the Tab.2. It shows that the amount of 
computation and the amount of data access to register are 
half reduced. However, the changes of the amounts of data 
access to the shared memory and global memory are 
determined by the height of the quadtree and the number of 
particles in each box. In the real numerical experiments, the 
height of the quadtree is set to 7, if there is at least one 
particle in each box, the amounts of data access to the shared 
memory and global memory are reduced, that is to say, both 
the amount of data access and the amount of computation are 
reduced, which lead to the superiority of the improved BPB 
algorithm. Furthermore, we can conclude that the 
improvement would be enhanced with the increment of the 
number of the particles in each box. 

B. Numerical Experiments 

In this section, the numerical experiments are executed 
and the experimental results of the implementations of the 
previous BPB algorithm and the improved BPB algorithm on 

GPU are compared and analyzed to demonstrate the 
superiority of the improved BPB algorithm based on the 
Newton’s third law. The experiments are executed on a HP 
work station that consists of 8 cores (Intel Xeon 
E5506/2.13GHz quad-core) with 8GB memory and a single 
Tesla C1060. CentOS 5.4 is used as operating system. The 
compiler we used for the compilation of our GPU code is the 
NVIDIA CUDA compilation tools. The level of the quadtree 
is set to 7, thus there are 16384 boxes, and the particle 
distribution is uniform. The number of particles in each box 
ranges from 8 to 512. 

The runtimes of the different implementations on CPU 
and GPU are recorded in Tab.3. The highest speedup of the 
improved BPB algorithm’s implementation compared to the 
serial CPU implementation reaches 326. Fig.8 demonstrates 
the conclusion in the theoretical analysis that acceleration of 
the improved BPB algorithm is enhanced with the increment 
of the number of particles per box. However, the runtime of 
the improved BPB algorithm is not half or more reduced for 
the half reduced amount of computation and the reduced 
amount of data access. The reason is that the usage of the 
atomic function harmfully influenced the performance of the 
implementation on GPU. Nevertheless, the result of the 
experiments still definitely demonstrates the superiority of 
the improved BPB algorithm. 

TABLE III.  THE MACRO CHANGE OF THE AMOUNT OF COMPUTATION 

AND DATA ACCESS IN THE IMPROVED BPB ALGORITHM 

Number 

of 

particles 

per box 

CPU(ms) 

GPU(ms) Speedup 

Previous 

BPB 

Improved 

BPB 

Previous 

BPB 

Improved 

BPB 

8 150.846 79.506 79.227  1.90  1.90 

16 581.918 82.382 81.446  7.06  7.14 

32 2291.87 90.248 88.130  25.40  26.01 

64 9106.34 116.69 109.707  78.04  83.01 

128 36426.1 234.54 202.768  155.31  179.64 

256 145100 644.85 499.495  225.01  290.49 

512 579568 2475.9 1774.183  234.08  326.67 
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Figure 8.  Comparison of the runtime of the previous BPB algorithm and 

the improved BPB algorithm on GPU 

 



V. THE NOVEL GPU OPTIMIZATION MODEL OF 

TRANSFORMATION BETWEEN DATA ACCESS AND 

COMPUTATION. 

The Newton’s third law half reduces the amount of 
computation in the improved BPB algorithm, and the data 
accesses in these reduced computations are also deducted. 
However, the remaining computations need to undertake 
additional data access to deal with the counterforce, and this 
process is the transformation between data access and 
computation, which is a novel GPU optimization model. 
Through the theoretical analysis and numerical experiments, 
we have demonstrated that this GPU optimization model 
may optimize the performance of the algorithm mapping on 
GPU. Thus we can deep analyze an algorithm to find the 
possibility of the transformation between data access and 
computation to optimize its algorithm mapping on GPU. 
Because the data access always accompany with the 
computation, there are four situations of the transformation 
between data access and computation: 

 If the computation is transformed to data access, the 
amount of computation is reduced and the amount of 
data access is increased. 

 If the computation is transformed to data access, the 
amount of computation is reduced and the amount of 
data access is not changed or reduced. 

 If the data access is transformed to computation, the 
amount of computation is increased and the amount 
of data access is reduced. 

 If the data access is transformed to computation, the 
amount of computation is increased and the amount 
of data access is not changed or increased. 

When the transformation belongs to the first three 
situations, the algorithm on GPU could be theoretically 
optimized. When the transformation belongs to the last 
situation, the performance would be harmfully influenced. 
Therefore, before the GPU optimization model of 
transformation between data access and computation is used 
to improve the algorithm mapping on GPU, the quantitative 
analysis of the amount of computation and data access 
should be conducted to judge which situation dose the 
transformation belong to. 

VI. CONCLUSION 

We have proposed a novel parallel algorithm for the 
near-field computation in N-body problem on GPU. This 
algorithm is based on Newton’s third law and evolved from 
the BPB algorithm presented in our previous work. The 
theoretical analysis shows the improvement of the amount of 
the computation and data access in the improved BPB 
algorithm. The effect of this improvement is demonstrated 
by the numerical experiments. At last the GPU optimization 
model of transformation between data access and 
computation is proposed on the basis of the principle of the 
improvement in the improved BPB algorithm. Four 
situations of this model are discussed to help the researcher 

to determine whether the transformation in their algorithm 
can lead to the improvement of the implementation’s 
performance on GPU. 

In the future work, the far-field computation in N-body 
problem would be mapped on GPU, and the CUDA 
implementation would be transplanted to the multi-GPU 
computational platform. 
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