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Abstract—The GPU-accelerated cloud, enabled by maturing
GPU virtualization techniques, has become the most attractive
platform for high-performance computing and machine learning
workloads. However, it is notoriously challenging to build the
multi-tenant GPU cloud where resources, like CPUs and GPUs,
can be shared. One well-known and heavily studied reason is that
workloads suffer from poor performance isolation and low GPU
utilization when GPUs are shared. But little attention has been
paid to another fundamental yet under studied problem: how
sharing CPUs among GPU instances could affect the workload
performance?

Targeting this problem, the paper conducts experiments to
measure the performance slowdown and vGPU utilization de-
crease under interference from CPU sharing. The results show
that GPU workloads suffer from poor and unpredictable per-
formance and heavy vGPU under-utilization because of CPU
sharing. We find that such interference is the result of the complex
interplay between the characteristics of CPU-GPU interactions
and the special behavior of shared vCPUs: vCPU discontinuity.
To diagnose how vCPU discontinuity causes the interference, the
paper leverages NVIDIA Nsight Systems for fine-grained profiling
and has the following findings: 1) vCPU discontinuity causes
inefficient CPU-GPU synchronizations; 2) vCPU discontinuity
delays task offloading to the vGPU; 3) Polling-based CPU-GPU
synchronization suffers from interference more than blocking-
based CPU-GPU synchronization; 4) GPU workloads with fre-
quent task offloads and synchronizations are more vulnerable.
Based on the findings, the paper proposes a novel polling-then-
blocking CPU-GPU synchronization primitive. Evaluation shows
that it can improve the performance by 4.2x.

I. INTRODUCTION

With the maturity of GPU virtualization techniques, GPU-
based clouds are starting to gain momentum. Studies show
that the GPU Passthrough [1], [2] technique allows virtual
machines (VMs) to access GPUs with almost native per-
formance. Hence, major cloud providers [3]–[7] now offer
instances accelerated by virtual GPUs (vGPUs). For example,
Amazon AWS provisions P3 instances on the EC2 platform
containing up to 8 vGPUs and 96 virtual CPUs (vCPUs). In
addition, some GPU instances are specifically optimized for
high-performance computing and machine learning [3], [4].

However, it is still challenging to build multi-tenant GPU
clouds where resources, like GPUs and CPUs, are shared
among instances. One reason being that workloads suffer from
poor performance isolation and low utilization when instances

share GPUs. Many efforts have been made to address these
issues [8]–[12]. But little attention has been paid to another
fundamental yet under studied problem: how sharing CPUs
among GPU instances could affect the workload performance?

It is crucial to answer this question for two reasons. First,
many cloud providers have already started provisioning GPU
instances with shared vCPUs (e.g. Oracle VM.GPU2/3 and
IBM AC1/2). Analyzing the performance interference can
provide a guideline for users to make more informed decisions
regarding workload deployment and motivate cloud providers
to make related optimizations. Second, sharing vCPUs can
increase the system throughput and lower cost, since vCPUs
only handle light tasks, such as device communication and
synchronization, while the heavy tasks are offloaded to vGPUs.
Though these vCPU tasks are often multi-threaded and remain
in the critical path of the GPU workflow, thus, are vulnerable
to any interference.

Through extensive experiments, we observed that workloads
may suffer from poor and unpredictable performance under
interference caused by CPU sharing in multi-tenant GPU
clouds. Figure 1 shows performance degradation of various
GPU workloads, including NAMD [13], GROMACS [14],
and two programs from the Rodinia Benchmark Suite [15],
under different interference scenarios caused by a while(1)
loop workload (i.e. synthetic) and two real workloads from
the PARSEC Benchmark Suite [16]. To mimic the multi-
tenant GPU clouds, two VMs sharing CPUs are created
with one running a GPU workload and the other running a
CPU workload as the background interference. Using GPU
Passthrough, one dedicated GPU is attached to the VM running
GPU workloads to eliminate the effects from vGPU sharing
(see Section III for detailed settings).

As shown in Figure 1, the performance slowdowns vary
substantially across different GPU workloads. For example,
the CPU sharing slowed down NAMD and GROMACS by up
to 6.7x while the performance of r.particle filter and r.srad are
barely degraded under different interference scenarios. Also,
performance degradation becomes unpredictable when the co-
running interference changes. For example, while NAMD
suffers a 1.8x slowdown with streamcluster and fluidanimate,
its degradation with the synthetic workload is as high as 6.7x.
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Fig. 1: The runtime slowdowns of GPU workloads under
different CPU-sharing interference in multi-tenant clouds.

Similarly, the slowdowns of GROMACS ranges from 1.7x to
2.1x under different background interference. More interest-
ingly, the performance slowdowns of different workloads vary
even under the same type of interference. For example, both
NAMD and GROMACS are slowed down by around 1.7x with
streamcluster. In contrast, while the synthetic workload causes
a 6.7x slowdown to NAMD, it only degrades the performance
of GROMACS by 1.8x.

The slowdown and its unpredictability under different inter-
ferences are the result of complex interplay between the char-
acteristics of the GPU workload, especially tasks handled by
vCPUs, and the behaviours of the shared vCPUs. To enable fair
CPU sharing with low latency, the hypervisor would constantly
deschedule one vCPU from a CPU to reschedule another
vCPU. This unique behaviour is called vCPU discontinuity.
Many studies [17]–[20] have been conducted to understand,
in multi-tenant clouds, how vCPU discontinuity influences
performance of different types of CPU workloads, such as
synchronization-intensive workloads [21] and I/O-intensive
workloads [22]. However, how vCPU discontinuity interacts
with GPU workloads remains unknown, and understanding it
would be crucial to analyzing performance interference caused
by CPU sharing in multi-tenant GPU clouds.

The paper aims to diagnose the performance interference
by revealing how vCPU discontinuity affects GPU workloads.
The investigation is done by leveraging NVIDIA Nsight Sys-
tems [23], which can visualize the timeline of a workload’s
CPU and GPU activities, to compare the workload execution
timelines with and without vCPU discontinuity side-by-side.
With the help of the fine-grained profiling, the paper has the
following findings: 1) vCPU discontinuity causes inefficient
CPU-GPU synchronizations; 2) vCPU discontinuity delays
task offloading to the GPU and detection of kernel completion,
with the delays observed to be in the order of milliseconds;
3) Polling-based CPU-GPU synchronization suffers from the
previous two problems more than blocking-based CPU-GPU
synchronization due to its quick depletion of the vCPU time
slice leading to more frequent vCPU descheduling; 4) The
delays in CPU-GPU synchronizations and GPU offloading
increase the workload runtime and result in heavy vGPU
under-utilization. In other words, GPU workloads with fre-
quent task offloads and synchronizations are vulnerable to the
performance interference from vCPU discontinuity.

To demonstrate the above findings, the paper thoroughly

analyzes and profiles the NAMD benchmark as a case study.
NAMD is selected for the following reasons. First, NAMD
is a representative scientific workload. The observations from
studying it can be applicable to many other similar workloads.
Second, NAMD is implemented using CUDA [24] which is a
widely used paradigm in GPU-based clouds. The application
offers two versions which use polling-based and blocking-
based CPU-GPU synchronizations respectively, allowing the
paper to comprehensively analyze both scenarios. Last but
not least, NAMD frequently launches fine-grained kernels
and suffers from poor and unpredictable performance, which
makes it the perfect example to demonstrate the performance
influence and vGPU under-utilization in detail.

Based on the findings, the paper proposes a novel polling-
then-blocking CPU-GPU synchronization primitive to mitigate
the performance interference and vGPU under-utilization. This
hybrid optimization is driven by the predictability of kernel
execution times, which deviate only by 2%-5% from their
average value. This inspired a design that runs a continuously
updated online profiler gathering optimal polling intervals then
allowing vCPU to poll for this defined period before blocking
for completion in order to save the vCPU time slice for critical
path tasks. The evaluations show that this hybrid CPU-GPU
synchronization method improves the performance of NAMD
by 4.2x and 1.9x compared to NAMD using polling-based and
blocking-based CPU-GPU synchronizations respectively.

The contributions of the paper are summarized as follows:
1) The paper is the first to systematically diagnose how

CPU sharing among GPU instances in clouds can affect
the GPU workloads.

2) The paper leverages fine-grained profiling to reveal how
vCPU discontinuity causes GPU workload performance
degradation and vGPU under-utilization.

3) The paper thoroughly investigates the NAMD imple-
mented with CUDA as a case study to demonstrate the
delays of CPU-GPU synchronizations and GPU kernel
offload.

4) The paper proposes a novel polling-then-blocking CPU-
GPU synchronization method to mitigate the perfor-
mance interference.

The remainder of the paper is organized as follows. Sec-
tion II provides the background of GPU virtualization, vCPU
discontinuity, and the workflow of GPU workloads. Section III
describes the motivating experiments that evaluate GPU work-
load performance degradation and vGPU under-utilization.
Section IV thoroughly profiles and analyzes NAMD using
NVIDIA Nsight Systems. Section V proposes a novel polling-
then-blocking CPU-GPU synchronization method to optimize
performance in the GPU cloud. Section VI introduces the
related works, and Section VII concludes the paper.

II. BACKGROUND

In this section, we aim to introduce the most prevail-
ing details regarding multi-tenant GPU clouds. Firstly, the
current utilized techniques for attaching shared or dedicated
GPU resources to VMs in the GPU cloud are presented



(Section II-A). Secondly, the behavior of vCPUs utilizing
shared CPU resources in the GPU cloud is detailed, with an
introduction to the issue of vCPU discontinuity (Section II-B).
Lastly, we analyze the precise workflow of GPU applications
as well as the CPU-GPU synchronization techniques and their
respective use of CUDA events (Section II-C).

A. GPU Cloud Powered by Virtualization

GPUs are massively parallel processing devices which are
designed for compute-intensive and high throughput applica-
tions such as those in machine learning, academic research,
scientific simulation, biomolecular dynamics, image process-
ing, and much more. Their ability to exploit hundreds to
thousands of cores in accelerating parallel computing tasks has
made it possible to offload critical tasks to the GPUs. Our fo-
cus is geared towards NVIDIA GPUs due to their widespread
use in the GPU cloud, as well as their popular programming
paradigm NVIDIA’s Compute Unified Device Architecture
(CUDA) [24]. In virtualized environments, cloud instances can
access either shared or dedicated vGPU resources through API
forwarding, device emulation, or hardware virtualization. GPU
cloud instances powered by shared resources involves sharing
of a physical GPU device simultaneously among several cloud
instances. The virtualization technologies that make sharing of
vGPU devices on the cloud possible include NVIDIA GRID
vGPU [25], Intel KVMGT [26], and AMD MxGPU [27].

Allocating a dedicated vGPU device to a cloud instance
allows for bare-metal performance [28], [29]. GPU-cloud in-
stances powered by dedicated resources involves gaining direct
control on the GPU device, with exclusive access for the full
duration of the cloud instance. The virtualization technology
that is most widely used in the cloud is PCI Passthrough [1].
Since this technique allows the GPU device to perform as if
it were physically attached to the cloud instance, it provides
increased performance and better fidelity.

Critical compute-intensive tasks being offloaded to vGPUs
means cloud instances require higher distribution of resources
towards the vGPU as compared to the vCPU. Hence, GPU
cloud instances desiring high performance benefits favour uti-
lizing dedicated vGPU devices while sharing vCPU resources
with other instances due to its weighted benefits.

B. vCPU Discontinuity Interference

Hypervisors in virtualized environments multiplex CPU
resources to provide vCPU resources for VMs. In multi-tenant
clouds, it is a very common occurrence that the number of
active vCPUs surpasses the number of available CPU cores.
Due to this overcommitting, active vCPUs are forced to share
CPU resources, with each vCPU receiving an equal share of
the time slice intermittently. In order to provide each vCPU
with its fair share of resources, the hypervisor deschedules a
vCPU upon the completion of its full time slice to reschedule
another vCPU. This is referred to as vCPU discontinuity. To
increase efficiency and reduce costs associated with context
switch, the length of time slices is commonly in the tens of
milliseconds.
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Fig. 2: Comparison of timelines of the execution cycle of
a GPU application using Polling CPU-GPU synchronization
technique on a PM and a VM. The CPU continuously polls
for GPU kernel completion utilizing cudaEventQuery.
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Fig. 3: Comparison of timelines of the execution cycle of a
GPU application using Blocking CPU-GPU synchronization
technique on a PM and a VM. The CPU blocks until notifi-
cation of GPU kernel completion by cudaEventSynchronize.

The immediate descheduling of a vCPU at the completion of
its time slice releases the vCPU’s ability to offload kernels or
to process its own light tasks. The vCPU is only able to process
these tasks when it receives its next time slice. In comparison,
physical machines are able to immediately process these tasks
without risk of CPU descheduling. Figures 2 and 3 show
this comparison in workflow execution. In virtual machines,
the continuous descheduling caused by vCPU discontinuity
induces heavy interference to workloads due to its effect of
delaying tasks on the critical path such as kernel invocation
or data synchronization. This delay is greatly affected by the
length of the time slice, where the delay can be in the order
of tens of milliseconds dependant on the number of vCPUs
sharing the available CPU cores.

C. Workloads in GPU Cloud

The regular workflow of a GPU application is a cycle of:
(1) initialization of variables, memory allocation and transfer,
and execution of light functions by the CPU; (2) offloading
of computational intensive tasks to the GPU in the form of



GPU kernels; (3) asynchronous execution of tasks and con-
tinuous CPU-GPU synchronization probing for GPU kernel
completion by the CPU; (4) memory transfer and execution
of completed kernel on the CPU. The timeline of this workflow
on the physical machine and virtual machine is shown in
Figures 2 and 3, with the virtual machine workflow affected by
vCPU discontinuity interference. It is important to notice that
applications and workloads with high frequency of CPU-GPU
synchronization are more vulnerable to performance degrada-
tions, especially while sharing vCPUs. If continuous CPU-
GPU synchronization and communication is required as part
of the critical path, then vCPU discontinuity interference can
delay the required and critical device synchronization. Hence,
synchronization-intensive workloads are most vulnerable in the
GPU cloud.

It is worth mentioning some details of the execution se-
quence of GPU applications for clarity in subsequent discus-
sions. CPUs run multiple threads which execute CPU tasks in
parallel, where the number of threads determines the number
of tasks that can be performed simultaneously. A function
in the application code with the purpose of execution on
the GPU is referred to as a kernel. GPU kernels consist
of the computationally intensive and high throughput tasks
of an application to maximize on the GPU’s programming
power. After initialization of variables and memory allocation,
a CPU is responsible for copying data to the GPU’s memory
and launching a kernel. As the kernel is executed, the CPU
resumes with other tasks while synchronously coordinating
communication between itself and the GPU. It must be noted
that GPUs do not have the ability to directly communicate
with CPUs, hence the only signaling mechanism available
to signal kernel completion is by setting a flag value in
memory [30]. The process of a CPU checking for this flag
value is referred to as CPU-GPU synchronization. Different
CPU-GPU synchronization techniques are discussed further
in this section. Since the CPU’s performance is dire to this
cycle, multiple shared CPUs are used to establish better task
parallelization and increase the performance of the application.

In order for CPUs to receive notification of completed
kernels, in CUDA, two specific event management functions,
cudaEventQuery and cudaEventSynchronize [31], can be used.
CUDA events are synchronization markers, where the event is
setup to check the status of all the work in a GPU kernel. The
former function, cudaEventQuery, is used to query the status
of the work captured by an event, while the latter function,
cudaEventSynchronize, is used to block and wait until the
completion of all work captured by an event.

CPUs synchronize and communicate with the GPU through
CUDA events that check the status of completion of in-
voked kernels. There are two main CPU-GPU synchroniza-
tion techniques: polling and blocking [32]. In the former
synchronization technique, a CPU thread continuously calls
cudaEventQuery to poll the status of the kernel until the event
is returned a success indicating kernel completion. Due to
the nature of constant checking for completion, polling uses
the full resources and time slice of the vCPU. In the latter

synchronization technique, a CPU calls cudaEventSynchronize
which causes the CPU to sleep or block until the event
is returned a success indicating kernel completion. Unlike
polling, blocking does not use the full resources of the vCPU,
but it introduces a crucial latency in waking up the vCPU
thread, due to the costly vCPU switches [33], and other
potential issues discussed in later sections.

III. MEASURING PERFORMANCE INTERFERENCE

To understand how vCPU discontinuity interference affects
GPU workloads, we conducted experiments to measure the
performance slowdowns and decreases in vGPU utilization
under conditions as those in multi-tenant GPU clouds. In this
section, we detail our cloud environment as well as the CPU
and GPU benchmarks used. We then present the experiments
that leverage this cloud environment and discuss the results.

A. Environmental Setup

Our cloud environment consisted of two VMs: one VM
(named corunner) serving as a CPU cloud instance is
equipped with a specified number of vCPUs, and the other
VM (named GPUrunner) serving as a GPU cloud instance
is equipped with the same specified number of vCPUs and
one vGPU. The vCPUs of both the corunner and the
GPUrunner VMs share the same set of CPUs on creation
using the technique of vcpupin. CPU bandwidth control is
used to mitigate the performance isolation issue by ensuring
both VMs use a fair share of their allotted vCPU time.
Furthermore, a dedicated GPU device was attached to the
GPUrunner VM to eliminate the interference from GPU
sharing between instances.

The host system used is a HPE ProLiant DL385Gen10
server with 256GB of memory, 4 Intel Xeon Gold 6138 20-
core processors, and 2 NVIDIA Tesla P100 GPUs. We created
VMs on the server with 16, 32, and 64 vCPUs to measure the
workload performance and vGPU utilization in relation to the
number of vCPUs. The VMM is KVM [34]. Ubuntu Server
20.04.2 (kernel 5.8.0) is the OS for both the host and the
guests. The GPU, with CUDA 10.1 as the driver, is attached
as vGPU to the GPUrunner VM using PCI Passthrough.

B. Benchmarks

The CPU-intensive benchmarks used to provide background
interference were a synthetic benchmark, consisting of a
while(1) loop, matrix multiplication program (i.e. matmul),
and p.stream cluster, p.dedup, p.x264, and p.fluidanimate
from the PARSEC Benchmark Suite [16]. The CPU-GPU
synchronization-intensive benchmarks executing in the GPU
instance GPUrunner were NAMD [13] and GROMACS [14].

C. Scenarios

To measure the performance of the vGPU while sharing
vCPU resources and accurately compare the findings with
baseline performance results, we conducted three sets of exper-
iments for each CPU-GPU synchronization-intensive bench-
mark: (1) Shared1: GPUrunner VM executing a benchmark
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Fig. 4: The runtime slowdowns of GPU workloads under interference from synthetic benchmark sharing 16, 32, 64, vCPUs.

simultaneously along with the corunner VM executing a
CPU-intensive benchmark without performance isolation en-
forced for CPU sharing, (2) Shared2: GPUrunner VM exe-
cuting a benchmark simultaneously along with the corunner
VM executing a CPU-intensive benchmark with performance
isolation enforced for CPU sharing using CPU bandwidth
control, and (3) Baseline: GPUrunner VM executing a
benchmark with half the number of specified vCPUs along
with no execution from the corunner VM. These experi-
mental setups are summarized in Table I.

TABLE I: Experimental Setups

Experiment corunner GPUrunner Perf. Iso. #vCPUs

Shared1 3 3 7 16, 32, 64

Shared2 3 3 3 16, 32, 64

Baseline 7 3 N.A 8, 16, 32

The percentage utilization of the vCPU, vGPU, and work-
load execution time while running each benchmark was
recorded. Each experiment was performed on VMs running
a set of 16, 32, or 64 vCPUs. The Baseline experiment type
provides the ideal comparable performance of a GPU cloud
instance without interference from CPU sharing. Assuming
there is no degradation issue from sharing vCPUs, then a
scenario where a VM is assigned to 16 shared vCPUs and a
single vGPU should perform equivalently to a scenario where
a VM is assigned to 8 dedicated vCPUs and a single vGPU.
However, we know that sharing vCPUs among cloud instances
may cause interference, hence we quantify this scenario using
the Shared1 and Shared2 experiment types. Shared1 provides a
scenario where 2 cloud instances execute intensive workloads
with no mechanism controlling the fair utilization of the shared
vCPU resources. On the other hand, Shared2 provides a similar
scenario where 2 cloud instances execute intensive workloads
employing a performance isolation mechanism to fairly divide
shared resources among the instances.

D. Results

The benchmark runtime slowdown results for 16, 32, and 64
vCPUs while running against interference from the synthetic
benchmark are shown in Figure 4, while Figure 5 shows the
runtime slowdown of the benchmarks co-run with different
interference benchmarks on 16 vCPUs. It can be seen that
there is a significant slowdown in workload execution time
and heavy vGPU under-utilization across all benchmarks,

which can be credited to the interference issues caused by
vCPU discontinuity. In this section, we leverage the cloud
environment to analyze the performance of GPU workloads
under interference from vCPU discontinuity and resource over-
commitment. The performance of the benchmarks co-run with
interference from the synthetic benchmark is used to analyze
these findings due to its consistent maximum interference
across all benchmarks. The findings are analyzed below.

1) Degradation in Runtime Performance: Across all bench-
marks, the program execution time was slowed down by 1.2x
to as much as 20x as shown in Figure 4. In the Shared1
scenario, as compared to the Baseline, the performance of
the NAMD benchmarks’ execution times were decreased by
47% to 85% and that of GROMACS was decreased by 45%
while sharing 16 vCPUs. Likewise, in the Shared2 scenario, as
compared to the Baseline, the performance of the NAMD with
Polling, NAMD with Blocking, and GROMACS benchmark’s
execution times were decreased by 15%, 61%, and 43%
respectively while sharing 16 vCPUs. The reason for this
evident degradation can be credited to vCPU discontinuity
interference on critical path tasks. The constant descheduling
and rescheduling of vCPUs during program execution causes
vulnerability to vCPU inability to offload kernels or execute
light tasks. With interference to these critical tasks, the bench-
marks experience a constantly increasing delay at each time
slice, extending their program execution time.

2) vGPU Under-utilization: The vGPU workload perfor-
mance is highly coupled with the ability to timely receive
offloaded kernels and immediate execution of completed ker-
nels. Due to the critical path task interference caused by
vCPU discontinuity, there is a delay in vGPU tasks in turn
decreasing the highly coupled vGPU workload performance.
As shown in Figure 4, the vGPU performance is slowed
down 1.3x to 20x. The vGPU performance of the NAMD
benchmarks decreases by 51% to 82% and that of GROMACS
decreases by 34% while sharing 16 vCPUs in the Shared1
scenario, and by 22% to 59% and by 22% respectively while
sharing 16 vCPUs in the Shared2 scenario. More specifically,
benchmarks experiencing a comparably larger degradation in
runtime performance as well experience heavy vGPU under-
utilization, due to the high coupling.

3) Unpredictability in Performance: Although runtime per-
formance degradation is observed across all benchmarks, the
degradation varies over different benchmarks (Figure 4) and
under different co-run interferences (Figure 5). For instance,
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Fig. 5: The runtime slowdowns of GPU workloads under different CPU interference sharing 16 vCPUs.

the runtime performance of NAMD with Polling is degraded
by 6.7x while sharing 16 vCPUs, compared to a degradation
of 1.8x for GROMACS. Similarly, as seen in Figure 5, the
runtime performance of NAMD with Polling is degraded by
6.7x with interference from the synthetic benchmark, but
experiences a degradation of 1.4x with interference from
p.fluidanimate. It is established from earlier arguments that
workloads experience interference from vCPU discontinuity,
although this interference is evidently inconsistent. The be-
havior of this interference greatly depends on the patterns
and CPU intensity of the co-run programs, and their effect on
vCPU discontinuity. Hence, the inconsistency across different
co-run interferences induces an unpredictable nature in GPU
workload performance.

4) Increased Degradation Under Varied #vCPUs: Intu-
itively, attaching more vCPUs to a VM should increase work-
load performance due to the increased task parallelism. Al-
though, from our experiments we identify that the performance
degradation is amplified as the number of vCPUs increases.
For example, the workload runtime performance of the NAMD
with Polling benchmark is degraded by a factor of 6.7x, 11.1x,
and 20x when sharing 16, 32, and 64 vCPUs respectively.
More interestingly, the absolute runtime of all workloads under
interference consistently increased as the number of vCPUs
increased. The key to this observation is as the number of
vCPUs attached to a VM increases, the number of tasks
executed by the vCPUs and the number of tasks offloaded
to the vGPU increase accordingly. Consequently, the increase
in kernel invocation frequency increases the synchronization
intensity and rate at which CPU-GPU synchronization and
communication occurs. This further amplifies the interference
leading to runtime slowdown and vGPU utilization degrada-
tion. Although, increasing the number of vCPUs available to
the VM increases the amount of tasks that can be offloaded
to the vGPU, it also increases the vCPU’s vulnerability to
interference issues caused by vCPU discontinuity.

5) Increased Degradation Under Varied #VMs: The per-
formance of GPU workloads suffer drastically in relation to
the number of other VMs in the multi-tenant cloud sharing
the same CPU resources. The essence of multi-user resource
sharing in the cloud is referred to as an overcommitted sce-
nario, where there is an over-commitment to sharing available
physical resources across multiple VMs. Figure 6 shows the
performance of GPU workloads in varying overcommitted
scenarios. The no interference experiments are where the VMs
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Fig. 6: The performance of GPU workloads in varying over-
committed scenarios with 1-4 co-run VMs causing interference
using the synthetic benchmark.

receive dedicated CPU and GPU resources and hence are
not affected by outside interference, while with interference
experiments are where the VMs share CPU resources among
1-4 other VMs. In the presence of only one other VM sharing
the same CPU resources, it can be seen that the runtime
performance is slowed down by 1.2x to 2.6x across the
benchmarks. Although, in the presence of four other VMs
sharing the same CPU resources, it can be seen that the
runtime performance is degraded further by up to 4.8x. It
is important to note that resource over-commitment is very
common in multi-tenant clouds due to cost efficiency, though
it has a dire effect on workload performance.

IV. DIAGNOSE: CASE STUDY OF NAMD
The efficiency of vCPU critical tasks directly determines

the workload performance and vGPU utilization. In time-
sharing multi-tenant clouds, vCPUs get descheduled, leaving
them with the inability to process necessary tasks, in turn
delaying the critical path execution. Thus, to fully understand
the performance degradation and vGPU under-utilization, it is
crucial to understand how vCPU discontinuity affects these
vCPU tasks. We found that the major sources of latencies due
to vCPU discontinuity are during kernel invocation (Section
IV-A) and in receiving completed kernels (Section IV-B).
These observations show that workloads with more frequent
number of kernels are more vulnerable to performance degra-
dation. GPU workloads such as r.particle filter and r.srad only
invoke an average of 1 kernel per second during execution,
while synchronization-intensive workloads, such as NAMD,
can invoke as much as 370 kernels per second, and are
therefore more vulnerable to critical path latencies, inducing
higher performance degradations, as was shown in Figure 1.

To study the effect of vCPU discontinuity on critical vCPU
tasks, it is essential to analyze synchronization-intensive work-



loads due to their high vulnerability to performance degrada-
tions. In this section we analyze the performance results of the
synchronization-intensive benchmark NAMD, which utilizes
both polling and blocking CPU-GPU synchronization tech-
niques, as a case study of the vCPU discontinuity interference
in the cloud by providing and investigating NVIDIA Nsight
Systems [23] visual profiling examples. In the diagnose, we
conduct profiling using the Shared2 experiment type to provide
fair resource sharing among tenants, and use the synthetic
benchmark for maximum background interference.

A. Latency in Kernel Invocation

Offloading tasks to the vGPU is an important vCPU task
that, if delayed, induces a delay on future critical path tasks.
The effect of descheduling of the vCPU at the completion
of its time slice in time-sharing multi-tenant clouds, vCPU
discontinuity interference, is different among both CPU-GPU
synchronization techniques. In the polling scenario, the vCPU
is always busy querying the status of kernel execution, thus,
utilizing the full CPU time slice, making the vCPU vulnerable
to getting descheduled immediately before it is able to invoke
a GPU kernel, as explained by Figure 2. This was observed
through the visual profiling as shown in Figure 7. The vCPU
starts the kernel launcher but is immediately descheduled,
which causes the vCPU to wait until its next time slice to
successfully launch the GPU kernel. The latency induced due
to this behavior was observed to be 29.79ms on average. This
induced latency due to vCPU discontinuity interference can
as well be observed through the number of kernel invocations
made per second. Without sharing vCPUs, hence unaffected by
vCPU discontinuity, NAMD with Polling invokes an average
of 171 kernels per second. Although, this drops to an average
of 95 kernel invocations per second when affected by vCPU
discontinuity. The top workflow in Figure 7 displays the
evident delay between the time of the start of the kernel
launcher and the time that the vCPU is rescheduled to success-
fully launch the kernel. This is in comparison to the bottom
workflow which displays a normal execution cycle where the
vCPU has the ability to immediately launch the GPU kernel.

vCPU DE-SCHEDULED

START OF KERNEL 
LAUNCHER

vCPU SUCCESSFULLY 
LAUNCHES GPU KERNEL

DELAY IN KERNEL INVOCATION

Fig. 7: The profiling timeline for NAMD with Polling with
(top) and without (bottom) vCPU discontinuity interference
during kernel invocation.

Conversely, in the blocking scenario, the vCPU is woken up
to invoke the GPU kernel and returns to the blocking mode,

only to be woken up at the notification of kernel completion.
Thus, latency is only experienced in waking up the vCPU, as
explained by Figure 3. Once the vCPU is ready to execute
the next set of kernels, it is woken up to begin the cycle,
hence it is not vulnerable to getting descheduled immediately
before kernel invocation. Although the latency in waking up
the vCPU varies in an overcommitted scenario, it has no direct
effect on subsequent kernel invocations.

B. Latency in Receiving Completed Kernels

In the time-sharing multi-tenant cloud, if the vCPU is
descheduled due to the completion of its time slice, then there
will be an observed delay between the GPU kernel completion
and the data synchronization call on the vCPU. In the polling
scenario, the vCPU may utilize its full time slice and become
vulnerable to getting descheduled during kernel execution
or immediately before kernel completion, as explained by
Figure 2. This was observed through the visual profiling as
shown in Figure 8. Once the GPU kernel is complete, the
vCPU is unable to receive and process the completed data
because it is in-active. The latency induced was observed to
be 28.65ms on average. The top workflow in Figure 8 displays
the evident delay due to the inability to immediately execute
the data from the completed kernel. This is in comparison to
the bottom workflow which displays a normal execution cycle
where the vCPU is active to immediately receive and process
the data, avoiding delays to future critical path tasks.

vCPU DE-SCHEDULED

GPU KERNEL 
COMPLETE

vCPU ACTIVE TO PROCESS 
COMPLETED KERNEL

DELAY RECEIVING KERNEL

Fig. 8: The profiling timeline for NAMD with Polling with
(top) and without (bottom) vCPU discontinuity interference
while receiving a completed kernel.

In the blocking scenario, the delay was similar to that of
the polling scenario. This as well is credited to the depletion
of shared CPU resources between instances in the multi-
tenant cloud, as explained by Figure 3. This was observed
through the visual profiling as shown in Figure 9. The kernel
is completed on the vGPU, but is not processed immediately
due to descheduling of the vCPU. The latency induced was
observed to be 13.58ms on average. The top workflow in
Figure 9 displays that upon kernel completion, the vCPU is
unable to immediately receive and process the data due to its
descheduling. This in-completion of tasks causes a significant
delay, inducing further delays on critical path tasks of future
time steps. The delay on future time steps can be observed
through the kernel invocations made per second, where NAMD
with Blocking invokes 191 and 248 kernels per second, with



and without interference from vCPU discontinuity respec-
tively. The bottom workflow in Figure 9 displays a normal
execution cycle where the vCPU is able to synchronize and
immediately receive and process completed kernels.

vCPU DE-SCHEDULED

GPU KERNEL 
COMPLETE

vCPU ACTIVE TO PROCESS 
COMPLETED KERNEL

DELAY RECEIVING KERNEL

Fig. 9: The profiling timeline for NAMD with Blocking with
(top) and without (bottom) vCPU discontinuity interference
while receiving a completed kernel.

The latency associated with each CPU-GPU synchronization
technique is summarized in Table II. Both techniques are
vulnerable to delays in critical path tasks due to the continuous
vCPU descheduling. In section V, we propose a novel CPU-
GPU synchronization primitive to mitigate these delays.

V. OPTIMIZING PERFORMANCE IN GPU CLOUDS

Our analysis found that the nature of synchronization-
intensive applications contributes to a substantial waste of the
vCPU time slice due to the continuous device communication.
Through profiling of NAMD, we observed that the execution
time of each kernel was consistent and predictable, deviating
only 2%-5% from their average value regardless of background
interference. Inspired by the characteristics of synchronization-
intensive applications and predictability of kernel execution
times, we propose a novel polling-then-blocking CPU-GPU
synchronization primitive to improve workload performance
in the multi-tenant GPU cloud. This hybrid synchronization
model reduces vCPU time slice waste by polling for a defined
period before blocking for completion, allowing saved time to
be focused on execution of critical path tasks. This optimiza-
tion serves as an adaptive synchronization model between the
polling and blocking CPU-GPU synchronization techniques.

The polling-then-blocking primitive uses Algorithm 1. This
hybrid optimization approach utilizes a dictionary of aver-
age kernel execution times, accessed by Kernel ID, to de-
termine the most efficient synchronization technique to use
after launching a kernel. The time during execution of each
invoked kernel is recorded, and the respective average time is
continually adjusted in the dictionary to ensure data accuracy
and maintain optimal polling intervals. Following kernel invo-
cation, a call to the hybrid synchronization primitive is done.
The primitive initially ensures that the vCPU is blocked by
calling cudaEventSynchronize if the kernel’s execution time
is longer than the maximum threshold. This threshold should
be equal to the remaining vCPU time slice, ensuring that the
vCPU immediately blocks if it cannot perform polling without
interruption. The remaining vCPU time slice is calculated by

Algorithm 1 Kernel Latency Optimization

1: Dk: kernel exec. dictionary; Tk: kernel exec. time
value; T : timestep ending polling; Event: cudaEvent;
max threshold: max. allowed spin time

2: function HYBRIDSYNC(Event, kernel.id)
3: Tk ← Dk[kernel.id]
4: if Tk > max threshold then
5: cudaEventSynchronize(Event) . block instantly
6: Dk[kernel.id] ← updated Tk

7: else . poll first, then block for completion if needed
8: T = time() + Tk

9: while T > time() do . poll for at most Tk time
10: if cudaEventQuery(Event) then
11: Dk[kernel.id] ← updated Tk

12: return . kernel complete
13: end if
14: end while
15: cudaEventSynchronize(Event)
16: Dk[kernel.id] ← updated Tk

17: end if
18: end function

19: kernel<<< · · ·>>>()
20: cudaEventRecord(Event, Stream=0)
21: hybridSync(Event, kernel.id)

methods in [22]. For regular kernels, the primitive initially
allows the vCPU to use the polling technique to check for
kernel completion for the full duration of the stored polling in-
terval using cudaEventQuery, returning from synchronization
if completed within this period. If the kernel is not completed
within this period, then a call to cudaEventSynchronize is made
to block the vCPU and wait upon the completion of the kernel.
Importantly, before returning to the main function, the optimal
polling period is always updated and stored into the dictionary.
Thus, since the kernel synchronization is bound to less delays
due to avoiding high vCPU time slice consumption, this will
cause an overall less delay to the critical path and as well
mitigate the latency in invoking kernels. This implementation
is portable and scalable to other applications due to its online
gathering of moving averages during execution, providing
optimal polling intervals for each kernel at runtime while
taking into consideration workload and environment changes.

Figure 10 shows the comparable optimized performance us-
ing the proposed hybrid CPU-GPU synchronization technique.
The application was run under interference from the synthetic
benchmark for maximum interference. The results show that
the NAMD application achieved the highest increase in per-
formance of 4.2x and 5.4x for execution time and vGPU uti-
lization respectively while implemented with the polling-then-
blocking CPU-GPU synchronization technique. Moreover, the
latency in kernel invocation and in receiving completed kernels
were drastically reduced under the hybrid synchronization
model. Table II shows a comparison of the latency under



TABLE II: Latency Using Different CPU-GPU Synchronization Techniques Compared to Optimized Hybrid Model.

CPU-GPU Synchronization Techniques
Polling Blocking Hybrid

Invoking Kernel High Latency (29.79ms) Negligible Latency Low Latency (5.42ms)

Receiving Kernel High Latency (28.65ms) High Latency (13.58ms) Low Latency (1.49ms)
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Fig. 10: Normalized performance and vGPU utilization of
NAMD under polling, blocking, and the proposed hybrid CPU-
GPU synchronization techniques using NAMD with Blocking
as a baseline. A larger bar indicates higher performance.

different CPU-GPU synchronization techniques. In NAMD, a
single execution cycle has an average length of 4.5ms, from
variable initialization to execution of the completed kernel
on the CPU. As seen in Table II, the latency incurred while
utilizing the polling and blocking synchronization techniques
is 13.58ms to 29.79ms which induces severe performance
degradations considering that the latency can be as much as
6.6x the length of a single execution cycle. The hybrid model
outperforms both polling and blocking as is accurate with our
analysis of allowing the vCPU to extend its active time just in
time to receive and process the completed kernel, otherwise
blocking in order save the vCPU time slice and avoid delays
in the critical path. Under this hybrid synchronization model,
the performance of the application replicates that of both
the polling and blocking synchronization techniques, while
producing an increased performance in comparison.

It’s important to mention that the polling-then-blocking
primitive increases system throughput due to less waste of the
vCPU time slice for excessive polling, hence improvement of
other co-runner performance is possible.

VI. RELATED WORK

QoS of GPU Cloud Sharing of vCPUs and vGPUs is
vulnerable to poor performance in the GPU cloud due to
the underlying default mechanisms of resource sharing and
scheduling. This causes substandard utilization and perfor-
mance fluctuations. Many studies have been done to improve
the resource sharing and Quality of Service (QoS) of the
GPU cloud, with solutions including VGRIS [8], vGASA [9],
gScale [10], FairGV [11], and gQoS [12]. These solutions
focus on improving the QoS of sharing vGPU devices in the
GPU cloud. The work in this paper instead focuses on im-
proving the QoS of the GPU cloud by improving the resource
sharing of vCPU devices between GPU cloud instances.

Improving NAMD Performance NAMD is a highly pop-
ular molecular dynamics application that has been applied

as a case study benchmark in many research studies. Due
to its widespread use in research, many solutions have been
implemented to improve the performance of the NAMD appli-
cation [35]–[38]. However, all solutions have solely focused on
improving the performance of NAMD on physical machines.
The work in this paper focuses on improving the performance
of NAMD in the virtualized cloud environment.

CPU-GPU Synchronization CPUs and GPUs have separate
memory resources, hence there is an inherent latency in
data transfer and communication between the devices. Several
studies have been done to improve CPU-GPU synchronization,
with solutions such as CGCM [39], BigKernel [30], and taking
advantage of F/E bits in GPU DRAM [40]. Although, the
primary focus of these studies is on implementing synchro-
nization improvements at the hardware and compiler level.
The work in this paper focuses on improving CPU-GPU syn-
chronization on a system and application level. The proposed
polling-then-blocking hybrid primitive is a synchronization
method that is embedded within an application’s source code.

VII. CONCLUSION

In this paper, we diagnose the effect of vCPU discontinuity
on GPU workloads in multi-tenant GPU clouds by thor-
oughly experimenting, profiling, and analyzing the behavior
of NAMD as a case study. We found that vCPU disconti-
nuity leads to inefficient CPU-GPU synchronization, which
in turn delays critical path tasks such as kernel offloading
and receiving. Consequent delays in these tasks postpones
subsequent critical path tasks, inducing latencies in the order
of milliseconds. Furthermore, the incurred delays in CPU-
GPU synchronizations and critical path tasks due to vCPU
interference produces an increase in workload runtime and
results in heavy vGPU under-utilization. Through extensive
experiments, the performance interference caused by vCPU
discontinuity attributed to the following issues: (1) vCPU
discontinuity increases the vulnerability of vCPUs to be de-
scheduled when the vCPU is needed to execute critical path
tasks, thus, causing a degradation in runtime performance
and heavy vGPU under-utilization; (2) the inconsistency in
vCPU discontinuity interference correlates with the patterns
of co-run interferences, thus, produces unpredictable GPU
workload performance; (3) increasing the number of shared
vCPUs in turn increases the performance degradation of the
GPU workload due to the inherent increase in synchronization
frequency inducing higher vulnerability to interference by
vCPU discontinuity; (4) a higher number of VMs in the multi-
tenant cloud induces increased performance degradation of
the GPU workload due to the inefficiency of the increasing
resource over-commitment.



Inspired by these findings, we propose a polling-then-
blocking technique that provides a hybrid optimization to allow
for vCPUs to remain active just in time to receive and process
completed kernels, avoiding delays to the critical path. The
thorough diagnose of the performance interference caused by
CPU sharing in multi-tenant GPU clouds done in this paper
should provide a guideline for users, to make informed deci-
sions in relation to workload deployment, and cloud providers,
to make related optimizations and start provisioning efficient
multi-tenant GPU cloud instances sharing CPU resources.
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