
Making Dynamic Page Coalescing Effective on

Virtualized Clouds

Weiwei Jia∗
The University of Rhode Island

Jiyuan Zhang∗
New Jersey Institute of Technology

Jianchen Shan
Hofstra University

Xiaoning Ding
New Jersey Institute of Technology

Abstract

Using huge pages has become a mainstream method to re-
duce address translation overhead for big memory work-
loads in modern computer systems. To create huge pages,
system software usually uses page coalescing methods to
dynamically combine contiguous base pages. Though page
coalescing methods help effectively reduce address transla-
tion overhead on native systems, as the paper shows, their
effectiveness is substantially undermined on virtualized plat-
forms.
The paper identifies this problem and analyzes the causes.

It reveals and experimentally confirms that only huge guest
pages backed by huge host pages can effectively reduce ad-
dress translation overhead. Existing page coalescingmethods
only aim to increase huge pages at each layer, and fail to
consider this cross-layer requirement on the alignmentment
of huge pages.
To address this issue, the paper designs Gemini as a cross-

layer solution that guides the formation and allocation of
huge pages in the guest and the host. With Gemini, the
memory management at one layer is aware of the huge pages
at the other layer, andmanages carefully the memory regions
corresponding to these huge pages. This is to increase the
potential of forming and allocating huge pages from these
regions and minimize the associated cost. Then, it guides
page coalescing and huge page allocation to first consider
these regions before other memory regions. Because huge
pages are preferentially formed and allocated from these
regions and less from other regions, huge guest pages backed
by huge host pages can be increased without aggravating
the adverse effects incurred by excessive huge pages.

∗equal contribution

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
EuroSys ’23, May 8–12, 2023, Rome, Italy

© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-9487-1/23/05. . . $15.00
https://doi.org/10.1145/3552326.3567487

Extensive evaluation based on the prototype implementa-
tion in Linux/KVM and diverse real-world applications, such
as key-value store, web server, and AI workloads, shows
that Gemini can reduce TLB misses by up to 83% and im-
prove application performance by up to 126%, compared to
state-of-the-art page coalescing methods.

CCS Concepts: • Networks→ Cloud computing; • Soft-
ware and its engineering;

Keywords: Cloud Computing, Memory Management, Virtu-
alization, Operating Systems
ACM Reference Format:

Weiwei Jia, Jiyuan Zhang, Jianchen Shan, and Xiaoning Ding. 2023.
Making Dynamic Page Coalescing Effective on Virtualized Clouds.
In Eighteenth European Conference on Computer Systems (EuroSys

’23), May 8–12, 2023, Rome, Italy.ACM, NewYork, NY, USA, 16 pages.
https://doi.org/10.1145/3552326.3567487

1 Introduction

In modern computer systems, translation lookaside buffer
(TLB) capacity cannot scale at the same rate as memory ca-
pacity [1, 2]. Address translation overhead has become a
major performance bottleneck for many big-memory work-
loads [3–19]. This problem is particularly serious in virtu-
alized clouds, where hardware supported nested paging is
used to support memory virtualization (e.g., Intel’s extended
page tables [20] and AMD nested page tables [21]). With
nested paging, to resolve a TLB miss, the processor needs to
walk through two layers of page tables (i.e., two-dimensional
page walk), and the cost can be 6x as much as walking
through one layer of page table upon TLB misses on native
systems [12, 20].
Using huge pages (e.g., 2MB pages on x86 platforms) to re-

duce address translation overhead has become a mainstream
and effective method. With the huge page support in TLB,
a TLB entry can cache the page table entry (PTE) of a huge
page, and can be used to translate addresses for an increased
amount of data (e.g., 2MB with a huge page PTE vs. 4KB with
a base page PTE). This significantly increases TLB coverage,
and thus reduces TLB misses. In addition, using huge pages
can reduce the steps in a page walk and the memory reads
incurred by the page walk.
To reduce address translation overhead with huge pages,

system software needs to create and allocate huge pages.

https://doi.org/10.1145/3552326.3567487
https://doi.org/10.1145/3552326.3567487

EuroSys ’23, May 8–12, 2023, Rome, Italy Weiwei Jia, Jiyuan Zhang, Jianchen Shan, and Xiaoning Ding

Dynamic page coalescing (e.g., Linux transparent huge page)
has become a de facto method for creating and allocating
huge pages on many systems. Because huge pages may incur
memory space waste and high demand-paging overhead, ex-
isting systems usually support simultaneously multiple page
sizes (e.g., 2MB huge pages and 4KB base pages). They use
page coalescing methods to dynamically combine contigu-
ous base pages into huge pages to reduce address translation
overhead and split under-utilized huge pages to reduce the
space and paging overhead.
A common understanding is that the more huge pages

are created and used in the system, the more effectively the
address translation overhead can be reduced. Thus, many
efforts are being focused on exploiting coalescing opportuni-
ties and reducing coalescing overhead, such that more huge
pages can be created with low overhead [1, 5, 8, 15, 22].
Though this approach achieves great success in reduc-

ing address translation overhead on native (non-virtualized)
systems, the paper shows that more huge pages may not
necessarily mean “more effective” on virtualized platforms.
As we will explain in §2, only when a huge page formed in
the guest is backed by a huge page in the host, can the huge
pages effectively reduce address translation overhead. We
refer to them as well-aligned huge pages for brevity.
Though there are system components coalescing base

pages into huge pages at both the guest and the host layers,
because they coalesce pages independently, it is likely that
a huge page formed in the guest is not backed by a huge
page in the host, or vice versa. In these cases, the huge pages
can hardly reduce address translation overhead. We refer to
these huge pages as mis-aligned huge pages and refer to this
problem as huge page misalignment problem. This problem
can degrade performance by up to 67% as shown in §6.
To mitigate this huge page misalignment problem, the

paper proposes Gemini as a cross-layer solution. Gemini
guides and drives the huge page management in the guest
and the host, particularly the page coalescing components,
to turn mis-aligned huge pages into well-aligned huge pages
by forming and allocating new huge pages to match the
mis-aligned huge pages.
To achieve this goal, Gemini first makes the memory man-

agement at a layer aware of the mis-aligned huge pages
formed at the other layer. Gemini periodically scans the pro-
cess page tables in VMs and the VM page tables in the host to
find the mis-aligned huge pages. It keeps track of these huge
pages using their guest physical addresses. Thus, a guest
can check the guest physical addresses of the mis-aligned
huge pages in the host, and tries to form and allocate huge
guest pages at these addresses. The host can check the guest
physical addresses of the mis-aligned huge pages in a guest,
and tries to back these addresses using huge host pages.
To form and allocate new huge pages that match the mis-

aligned huge pages at the other layer, Gemini carefully man-
ages the space of the memory regions corresponding to the

mis-aligned huge pages. It reserves the space temporarily,
hoping that the space can be allocated directly as huge pages
or allocated as contiguous base pages, which later can be
promoted into huge pages with minimal overhead. Then,
Gemini guides page coalescing and huge page allocation to
form and allocate huge pages from these regions first be-
fore considering other memory regions. These huge pages
turn the mis-aligned huge pages at the other layer into well-
aligned huge pages. Gemini does not create huge pages ex-
cessively, and thus does not aggravate the adverse effects
incurred by excessive huge pages.
The paper makes the following contributions. First, to our

best knowledge, this is the first work that identifies and
studies the huge page misalignment problem in virtualized
clouds. Second, we have proposed Gemini as an effective
system solution that can efficiently address the problem and
the technical challenges of the solution. Finally, we have
implemented Gemini based on Linux and KVM. We also
tested it and compared it to seven related systems, using
diverse real-world applications and extensive experiments.
Our tests show Gemini can significantly reduce TLB misses
and address translation overhead, and effectively improve
application performance and system efficiency compared to
other evaluated systems.

2 Background and Motivation

This section first introduces how virtual addresses are trans-
lated with TLB and what the overhead is (§2.1). Based on
the introduction, it explains how huge pages help reduce the
overhead on native systems and why they may not reduce it
on virtualized systems, i.e., the huge pagemisalignment prob-
lem (§2.2). Then, it explains and experimentally confirms
that, due to the huge page misalignment problem, dynamic
page coalescing becomes ineffective on virtualized platforms
(§2.3).

2.1 Address Translation with TLB and Its Overhead

To access any data in CPU cache or memory, virtual memory
addresses must be translated to the real memory locations
of the data, i.e., physical memory addresses on a native sys-
tem or host physical address (HPAs) on a virtualized system.
Existing systems use predominantly page-based memory
management. The address mappings needed to finish the
translations are managed in page tables. On a native sys-
tem, process page tables in the OS manage the mappings
between virtual pages and physical pages. A virtualized sys-
tem usually uses nested paging. The process page tables in
the guest OS manage the mappings between guest virtual
pages (GVPs) and guest physical pages (GPPs), and the vir-
tual machine (VM) page table in the host OS manage the
mappings between GPPs and host physical pages (HPPs).
The mappings in these two layers of page tables must be
combined to form complete translations.

Making Dynamic Page Coalescing Effective on Virtualized Clouds EuroSys ’23, May 8–12, 2023, Rome, Italy

CPU

cache and memory

TLB

virtual pg # PTE (pg real loc.)

virtual pg # PTE (pg real loc.)

virtual pg # PTE (pg real loc.)

virtual pg # pg offset

data real loc.
(physical address on native systems,

host physical address on virtualized systems)

pg real loc. pg offset

data virtual address
(guest virtual address on virtualized system)

Figure 1. Address translation with a TLB on native systems and on virtual-
ized systems.

The address translation overhead mainly refers to the time
required to finish address translations, i.e., address trans-
lation latencies. In a processor, the TLB conducts address
translations, and plays an importantly role in reducing the
overhead. A TLB is a small cache that buffers a number of
page table entries (PTEs), which contain the real memory
locations of the corresponding virtual pages. On a native
system the PTEs of process page tables are cached; and on a
virtualized system the PTEs of VM page tables are cached.
The PTEs are tagged with the virtual page addresses; this
forms a table mapping virtual pages to their real locations.
As shown in Figure 1, to translate a virtual address, the TLB
uses the virtual page address (higher bits in the virtual ad-
dress) to find the corresponding page table entry and obtain
the real location of the page. Then, it adds the page offset
(lower bits in the virtual address) to the page location to
obtain the location of the data.
When the PTE needed to finish an address translation can

be found in the TLB (i.e., a TLB hit), the address translation
overhead is minimized. Otherwise (i.e., a TLB miss), the TLB
conducts a page walk to locate the PTE and load it to the
TLB. On a native system, this is to walk down a multi-level
process page table. On a virtualized system, it is much more
complex. The page walk is essentially two-dimensional, with
one dimension being walking through the process page table
in the guest and the other dimension being walking through
the VM page table in the host. Interested readers can refer
to [12] for details.
TLB misses and page walks can significantly increase ad-

dress translation overhead, because they may incur memory
accesses. For example, on x86 platforms, each page walk may
incur up to 4 memory accesses on a native system and 24
memory accesses on a virtualized system with nested paging.
In addition to memory accesses, in two-dimensional page
walks, since the guest physical addresses used in process
page tables in the guest must be translated to host phys-
ical addresses, extra TLB misses may be incurred, further
increasing the address translation overhead.
To reduce the overhead incurred by page walks, page walk

caches are integrated in TLB. They cache the page table direc-
tories that must be accessed and used to locate PTEs. Thus,

accessing these page table directories can be satisfied in TLB
without reaching to memory. Page walk caches are partic-
ularly effective in caching high-level page table directories
that are close to the tree root of a page table [12]. However, it
is not easy to cache the directories at the lowest level of page
tables that are close to the PTEs of base pages [23]. Thus,
TLB misses are still much more costly than TLB hits; and
reducing TLB misses continues to be a paramount task.

2.2 Huge Page Misalignment Problem

Huge pages may reduce address translation overhead in two
ways.
• Reducing TLB misses, as the primary way: When cached
in the TLB, the PTE of a huge page can be used to translate
addresses for hundreds times more data than the PTE of a
base page (2MB vs. 4KB). Thus, using huge pages signifi-
cantly increases the coverage of a TLB, and thus reduces
TLB misses.
• Reducing the overhead of page walks, as a secondary way:
The PTE of a huge page is closer to the root of the page table.
Thus, in a page walk, it takes fewer step(s) to walk down
the page table to locate the PTE of a huge page than the
PTE of a base page. More importantly, only high-level page
table directories are needed to locate the PTEs of huge pages,
which can easily be cached in page walk caches. This makes
the page walk overhead substantially lower for huge pages
than base pages.
On a native system, when accessing the data in any huge

pages, the PTEs of the huge pages can be cached in TLB to
reduce TLB misses. Thus, the more huge pages are created
and used, the more address translation overhead can be re-
duced. However, on a virtualized system, when accessing the
data in a huge page, as explained below, it is likely that there
is not a PTE can be cached in the TLB. Thus, rather than
reducing TLB misses, using huge pages may even increase
TLB misses.
Using huge pages can reduce TLB misses only when both

the guest and the host use huge pages for the same data,
i.e., a huge GVP is backed by a huge GPP and a huge HPP
at the same time. The reason is that only in these cases the
PTEs of the VM page tables can be cached in the TLB and
used correctly in address translation [12]. When a huge GVP
is backed by multiple base HPPs in the host, there is not a
PTE in the VM page table that corresponds to the GVP; thus,
no PTEs can be loaded to the TLB to help translation. If a
base GVP is backed by a huge HPP, because there is not a
PTE in the VM page table that corresponds to the virtual
page, the page offset cannot be used to obtain correct host
physical address (HPA). Thus, in neither of these cases, there
is a valid PTE that can be cached in the TLB to help the
address translation. The paper refers to such huge pages
as misaligned huge pages and this problem as huge page

misalignment problem. For brevity, we refer to the huge pages

EuroSys ’23, May 8–12, 2023, Rome, Italy Weiwei Jia, Jiyuan Zhang, Jianchen Shan, and Xiaoning Ding

 0

 50

 100

 150

 200

Small data set Large data set

N
o
rm

al
iz

ed
 t

h
ro

u
g
h
p
u
t

(%
)

(R
el

at
iv

e
to

 H
o
st

-B
-V

M
-B

) Host-B-VM-B
Host-H-VM-B
Host-B-VM-H
Host-H-VM-H

Figure 2.Misaligned huge pages cannot reduce address translation over-
head.

 0
 20
 40
 60
 80

 100
 120
 140

Canneal Streamcluster

N
o
rm

al
iz

ed
 t

h
ro

u
g
h
p
u
t

(%
)

(r
el

at
iv

e
to

 H
o
st

-B
-V

M
-B

)

(a) Throughput of
throughput-oriented workloads

Host-B-VM-B
Misalignment

THP
CA-paging

Trans.-ranger
HawkEye

Ingens
Gemini

 0

 20

 40

 60

 80

 100

 120

Img-dnn Specjbb

N
o

rm
al

iz
ed

 l
at

en
cy

 (
%

)
(r

el
at

iv
e

to
 H

o
st

-B
-V

M
-B

)

(b) Mean Latency of
latency sensitive workloads

Figure 3. Huge page misalignment problem in virtualized systems. Compared to ex-
isting systems, Gemini’s performance is much better because most huge pages are
well aligned between guest- and host-level.

backed or being backed by huge pages as well-aligned huge
pages.
Though the misaligned huge pages still can help reduce

page walk overhead, they increase TLB misses. Thus, they
can hardly reduce address translation overhead, and may
even hurt performance. To illustrate this problem,we show in
Figure 2 the performance of a micro-benchmark in a VM that
randomly access a data set.When the data set is small, no TLB
misses are incurred, and the performance is similar, nomatter
whether base pages or huge pages (aligned) are used in the
guest and the host to save the data set (labeled with Host-

B-VM-B and Host-H-VM-H, correspondingly, in the figure).
However, if huge pages are only used in one layer, and base
pages are used in the other layer (labeled with Host-B-VM-H

and Host-H-VM-B in the figure), these huge pages become
misaligned huge pages. Accesses to the data in these pages
cause TLB misses, and makes the microbenchmarks show
lower performance. When the data set is large, using well-
aligned huge pages can substantially improve performance,
since they can reduce TLB misses and page walk overhead
at the same time. Using misaligned huge pages can hardly
improve performance, compared to using only base pages,
since the benefits of reducing page walk overhead are largely
offset by increased misses.

2.3 Page Coalescing Efforts Invested in Vain

On a virtualized platform, the guest and the host may inde-
pendently coalesce contiguous base pages into huge pages

workloads THP
CA-

paging
Trans.-
ranger

HawkEye Ingens Gemini

Canneal 26% 32% 23% 29% 30% 51%
Streamcluster 19% 22% 15% 25% 35% 50%

Img-dnn 21% 18% 15% 33% 35% 67%
Specjbb 18% 14% 12% 32% 33% 81%

Table 1. Rates of well-aligned huge pages. Existing systems cannot effectively
manage huge pages in virtualized system because rates of well-aligned
huge pages in these systems are low, greatly increasing TLB misses and the
address translation overhead.

or split huge pages into base pages. Due to the lack of coordi-
nation, the huge pages are “well-aligned” largely by chance.
Though the chance increases when more huge pages are
created in each layer, the pressure to reduce the adverse ef-
fects of huge pages (e.g., space waste and paging overhead)
caps the chance, and thus limits the effectiveness of page
coalescing mechanisms.
To understand how this problem affects the perfor-

mance of different types of workloads, we test the perfor-
mance of two throughput-oriented applications from PARSEC
benchmark suite [24], Canneal and Streamcluster, and
two latency-sensitive applications from TailBench [25],
Img-dnn and Specjbb. §6 details the experimental setup,
including server/VM configurations and application descrip-
tions. We compare the performance of these applications
(Figure 3) and the rates of well-aligned huge pages (Table 1)
under four scenarios.
• Base page only: Both the guest and the host use only base
pages. This scenario is labeled as Host-B-VM-B in Figure 3.
•All huge pages aremis-aligned. The guest only allocates
base pages to the application, and the host only allocates
huge pages (labeled with Misalignment)1.
• Uncoordinated page coalescing is used in both host
and guest to create huge pages. Thus only a small por-
tion of huge pages may be well-aligned. We tested the
latest page coalescing mechanisms, including Ingens [1],
HawkEye [8], CA-paging [26], Translation-ranger [27],
as well as Linux THP [28].
• Our solution Gemini, which can make most huge pages
well-aligned.
The results first show that, compared to the base-page-

only scenario, using huge pages only incrementally im-
prove performance if they are mis-aligned (Misalignment).
This is consistent with what we have observed with
the micro-benchmark earlier. Using THP, CA-paging, or
Translation-ranger in both the host and the guest can
create some well-aligned huge pages (below 30%). However,
the reduced address translation overhead can hardly be re-
flected on performance. Compared to the Misalignment
scenario, the applications even show lower performance

1When the guest allocates huge pages and the host allocates base pages,
the results are similar.

Making Dynamic Page Coalescing Effective on Virtualized Clouds EuroSys ’23, May 8–12, 2023, Rome, Italy

with Translation-ranger, mainly because of the high run-
time overhead paid on page promotion operations. Ingens
and HawkEye can create more huge pages with low over-
head. Thus, the rates of well-aligned huge pages increase
to around 30%, are reflected by non-trivial performance im-
provements. However, run-time overhead and other system
overhead (e.g., space waste) cannot allow further increas-
ing well-aligned huge pages through increasing the total
number of huge pages. Finally, the results show that, with
Gemini, more than 50% of huge pages are well-aligned. This
is achieved without increasing the total number of huge
pages or high system/run-time overhead. Thus, it improves
the throughputs by over 20% and lower the latencies by over
16% on average, relative to Ingens and HawkEye. We also
collected TLB misses in the experiments, which show similar
trend and are included in §6.

3 Gemini: Objective and Main Idea

As explained and confirmed in §2.3, only well-aligned
huge pages can effectively reduce address translation over-
head. Thus, the objective of Gemini is to effectively turn
mis-aligned huge pages into well-aligned huge pages. The
method is to create new huge pages and map them to mis-
aligned huge pages.
Gemini classifies mis-aligned huge pages into two types.

To turn them into well-aligned huge pages, Gemini tries to
use different methods to create new huge pages. A type-1

mis-aligned huge page does not have any base pages mapped
to it. To turn it into a well-aligned huge page, Gemini tries to
allocate a huge page at the corresponding address at the other
layer. If the opportunity of allocating such a huge page is not
immediately available, Gemini tries to allocate contiguous
base pages, which later can be directly promoted into a huge
page without any page migration.
A type-1 mis-aligned huge page turns into a type-2 mis-

aligned huge page, if the above two methods fail. A type-2
mis-aligned huge page has some base pages mapped to it;
but the base pages cannot be directly promoted into a huge
page, for which page migrations must be involved. To turn a
type-2 mis-aligned huge page into a well-aligned huge page,
Gemini tries to use the existing system component for page
coalescing to promote the corresponding base pages into a
huge page.
Note that we are seeking a solution with low overhead.

Creating excessive huge pages causes both space overhead
(e.g., memory fragmentation) and run-time overhead (e.g.,
page migrations). The overhead constraint has been the main
reason for existing systems to use multiple page sizes and
dynamic page coalescing methods. It is also a main factor
affecting the design of Gemini.
To reduce the overhead while keeping the effectiveness in

turningmis-aligned huge pages into well-aligned huge pages,
Gemini uses three techniques. First,Gemini temporarymain-
tains the status of type-1 mis-aligned huge pages until they

becoming well-aligned huge pages or time-out. Compared
to type-2 mis-aligned huge pages, type-1 mis-aligned huge
pages incur much lower space overhead and run-time over-
head when turned into well-aligned huge pages. Maintaining
the status of type-1 is to prevent them from becoming type-2
mis-aligned huge pages and thus avoid the high overhead
associated with turning type-2 mis-aligned huge pages. The
status maintaining is achieved by temporarily reserving the
memory regions corresponding to the type-1 mis-aligned
huge pages. During the reservation, only the allocations of
huge pages and the allocations of contiguous base pages are
allowed.
Second, Gemini enhances page allocators. With the en-

hancement, when huge pages or contiguous base pages are
needed, the memory regions reserved for maintaining the
status of type-1 mis-aligned huge pages are used first in the
allocations. This is also to increase the chances that turn
type-1 mis-aligned huge pages directly to well-aligned huge
pages without going through the type-2 status.
Third, when page coalescing components are used to pro-

mote pages, they first try to promote the base pages mapped
to type-2 mis-aligned huge pages before checking other base
pages. This is to increase the chance that type-2 mis-aligned
huge pages are turned into well-aligned huge pages and to
leverage the mechanisms in these page coalescing compo-
nents to avoid high overhead and excessive page promotions.

4 Gemini: Overall Structure and Key Tech-

niques

Figure 4 shows the key components in Gemini and other
related system components that work together to implement
the idea introduced in Section 3.
To fix mis-aligned huge pages, the first step is to detect

them. This is conducted using the host layer misaligned huge
page scanner (MHPS) component as shown in Figure 4. MHPS
periodically scans the page tables of the guest processes
for the huge pages formed in the guest, and scans the page
tables of VMs for the huge pages formed in the host. For each
huge page identified in the scanning, MHPS labels it with the
system layer (i.e. guest or host), its guest physical address,
and VM ID of the address. Mis-aligned huge pages can be
identified by comparing the labels.
Then, Gemini makes each guest aware of the mis-aligned

huge host pages that are mapped to it. This is achieved by
providing the guest physical addresses of the mis-aligned
host huge pages labeled with the corresponding VM ID. The
guest can check the pages allocated to these addresses to
determine the types (type-1 or type-2) of these mis-aligned
huge pages.
At each layer, Gemini uses the huge booking component

to reserve the huge-page-sized memory space corresponding
to the type-1 mis-aligned huge pages. Such a memory region
is reserved until a time-out is reached or until the region
is allocated as a huge page or contiguous base pages. The

EuroSys ’23, May 8–12, 2023, Rome, Italy Weiwei Jia, Jiyuan Zhang, Jianchen Shan, and Xiaoning Ding

Guest
Host

Misaligned huge
page scanner

Guest
process

page table

Virtual
machine

page tableScan

Update

Misaligned
host huge
pages info.

Misaligned
huge page
promoter

Default page
coalescing

mechanisms

Guide Promote

Huge
booking

Enhanced
memory
allocator

Get
misaligned info.

Get misaligned info.

Gemini Guest

Gemini Host

Figure 4. Gemini system overview. Key components are shaded in orange.

Algorithm 1 Booking Timeout Adjustment
1: 𝑇𝑑 : desired timeout value; 𝑇𝑒 : effective timeout value; 𝑇𝑖𝑛𝑖𝑡 : initial

timeout value; 𝑃 : time period between two adjustments

2: 𝑇𝑑 ← 𝑇𝑖𝑛𝑖𝑡

3: while true do
4: 𝑇𝑒 ← 𝑇𝑑 , collect TLB misses and memory fragmentation for a time

period of 𝑃
5: if TestTimeout(𝑇𝑑 * 1.1) then
6: 𝑇𝑑 ← 𝑇𝑑 ∗ 1.1; continue
7: else

8: 𝑇𝑒 ← 𝑇𝑑 , collect TLB misses and memory fragmentation for a
time period of 𝑃

9: end if

10: if TestTimeout(𝑇𝑑 * 0.9) then
11: 𝑇𝑑 ← 𝑇𝑑 ∗ 0.9; continue
12: end if

13: end while

14: function TestTimeout(𝑇)
15: 𝑇𝑒 ← 𝑇 , collect TLB misses and memory fragmentation for a time

period of 𝑃
16: 𝐷𝑇𝐿𝐵 ← average decrease of TLB misses
17: 𝐷𝐹𝑟𝑎𝑔 ← average decrease of memory fragmentation
18: if 𝐷𝑇𝐿𝐵 > 0 and 𝐷𝐹𝑟𝑎𝑔 >= 0 then return true; end if

19: return false
20: end function

method for adjusting the timeout value will be introduced
in Section 4.1.
The enhanced memory allocator interacts with the huge

booking component to preferentially allocate huge pages and
contiguous base pages from the memory regions reserved by
the huge booking component. We introduce how base pages
are allocated from these regions in Section 4.2.
In addition to these components, the promoter component

interacts with the page coalescing component in the system
to perferentially promote the base pages mapped to type-2
mis-aligned huge pages.

HPA

2MB aligned
free memory

GPA

GPA2=GVA2-GuestOffset
GuestOffset=GVA1-GPA1

HPA2=GPA2-HostOffset
HostOffset=GPA1-HPA1

GVA . . .

.

. . .

. . .

2MB

. . .

GVA1

GPA1

First fault addr. at GVA2

2MB
2MB aligned

allocated memory2MB

HPA1

2MB

2MB

2MB

2MB

2MB

Figure 5. Main idea of EMA. Each huge page sized memory region is associ-
ated with a starting address and an offset in each level. The starting address
(e.g., GVA1) of one huge page sized memory region is the starting address
of the huge page that the first fault address (e.g., GVA2) belongs to. To form
well-aligned huge pages, “𝐺𝑢𝑒𝑠𝑡𝑂𝑓 𝑓 𝑠𝑒𝑡 = 𝐺𝑉𝐴𝑠𝑡𝑎𝑟𝑡 −𝐺𝑃𝐴𝑠𝑡𝑎𝑟𝑡 ” and
“𝐻𝑜𝑠𝑡𝑂𝑓 𝑓 𝑠𝑒𝑡 = 𝐺𝑃𝐴𝑠𝑡𝑎𝑟𝑡 −𝐻𝑃𝐴𝑠𝑡𝑎𝑟𝑡 ” are used for forthcoming memory
allocations in guest- and host-level, respectively.

4.1 Booking Timeout Value Adjustment

This booking timeout value is a key parameter in Gemini. A
large value increases the waste of memory space and may in-
crease memory fragmentation, as the memory space cannot
be used by other processes or for other purposes during the
booking period. A small value may reduce the effectiveness
ofGemini in reducing its overhead.Gemini uses Algorithm 1
to periodically adjust the time period to improveGemini’s ef-
fectiveness without increasing memory fragmentation. The
algorithm slightly increases or decreases the booking timeout
value, and checks how TLBmisses and the degree of memory
fragmentation changes. It keeps the new value if TLB misses
are decreased and the degree of memory fragmentation is
not increased. It uses Linux perf tool to measure the number
of TLB misses, and uses free memory fragmentation index
(FMFI [1]) to measure the degree of memory fragmentation.

4.2 Enhanced Memory Allocator (EMA)

Gemini enhances the memory allocator to form huge pages
from the memory regions reserved by the huge booking
component. For example, for a 2MB type-1 mis-aligned huge
page in the host, based on the guest physical address of the
page, the huge booking component in the guest reserves a
2MB guest physical memory region. If a huge page needs
to be allocated in the guest, the enhanced memory allocator
(EMA) can allocate this memory region to fit the need. This
turns the mis-aligned huge page into a well-aligned huge
page. However, often such an opportunity is not available,
and only requests for base pages are available. In this case,
EMA tries to allocate the space in this region in the form of
contiguous base pages and later directly promote these base
pages into a huge page. This requires that these base pages

Making Dynamic Page Coalescing Effective on Virtualized Clouds EuroSys ’23, May 8–12, 2023, Rome, Italy

have contiguous guest virtual addresses, and the lowest ad-
dress is aligned to the huge page size (2MB). This subsection
mainly introduces how this requirement can be satisfied.
The main idea of EMA is to align the starting addresses of

GPA and HPA to GVA based on huge pages upon the first
page fault to the huge page sized memory region. For in-
stance, in Figure 5, upon the first page fault at GVA2, Gemini
allocates guest physical memory space starting at GPA2.
GPA2 is aligned to GVA2 based on huge pages.
To achieve this, Gemini first locates the starting address

of the huge page sized guest virtual memory space (GVA1
in Figure 5) that the first fault address (GVA2) belongs to.
Then, Gemini finds a free huge page sized guest physical
memory space. Please note that Gemini first chooses the
guest physical memory space that has been backed by host
huge pages (i.e., misaligned host huge pages). The misaligned
huge pages information is collected and shared to the guest
by the host level misaligned huge page scanner (MHPS) as
shown in Figure 4. Next, Gemini locates the starting address
of the huge page sized guest physical memory region (GPA1)
and calculates the offset of the huge page sized memory re-
gion for the guest level (i.e.,𝐺𝑢𝑒𝑠𝑡𝑂 𝑓 𝑓 𝑠𝑒𝑡 = 𝐺𝑉𝐴1−𝐺𝑃𝐴1).
Finally, Gemini calculates where to allocate guest physical
memory space (i.e., 𝐺𝑃𝐴2 = 𝐺𝑉𝐴2 −𝐺𝑢𝑒𝑠𝑡𝑂 𝑓 𝑓 𝑠𝑒𝑡).
If the guest physical space is not backed by host physical

space, the starting address of HPA is fault at HPA2 that is
aligned to GPA2 based on huge pages. The offset in the host
level is calculated in the same way as that in the guest level
(i.e.,𝐻𝑜𝑠𝑡𝑂 𝑓 𝑓 𝑠𝑒𝑡 = 𝐺𝑃𝐴1−𝐻𝑃𝐴1). For forthcomingmemory
allocations, 𝐺𝑢𝑒𝑠𝑡𝑂 𝑓 𝑓 𝑠𝑒𝑡 is used as the guest level offset to
calculate where to allocate GPA; 𝐻𝑜𝑠𝑡𝑂 𝑓 𝑓 𝑠𝑒𝑡 is used as the
host level offset to calculate where to allocate HPA. By doing
so, in-place huge page promotion can be used to increase
the efficiency of forming well-aligned huge pages.
Our key observation is that the number of well-aligned

huge pages can be significantly increased with low overhead,
if memory space corresponding to the misaligned huge page
is allocated based on the above huge booking and EMA mech-
anisms.
Huge preallocation. The above requirement (512 base
pages with contiguous guest virtual addresses and the lowest
address being aligned to the huge page size) may not be met
easily. In many cases, only a few base pages are missed to
make up to such 512 pages in the requirement. In these cases,
EMA pre-allocates the missing base pages, so as to promote
the base pages early. EMA performs the pre-allocation and
the promotion before the huge booking time-out. To control
the space waste, EMA performs the pre-allocation cautiously
when two conditions are met: 1) the number of base pages
allocated in the region exceeds a threshold (256 selected ex-
perimentally), and 2) the degree of memory fragmentation
is low (FMFI≤0.5), indicating that the workload tends to use
contiguous memory pages.

5 Implementation Details

We have implementedGemini based on Linux/KVM 4.19. We
added/modified about 5500 LoC mainly in Linux memory
management subsystem. Specifically, these additions and
modifications include: 1) ∼1700 LoC in page_alloc.c, ∼500
LoC in huge_memory.c, and ∼400 LoC in mempolicy.c to
implement the EMA and HB (huge booking) mechanisms; 2)
∼2700 LoC in a new kernel file (kgeminid.c) to implement
the misaligned huge page promoter (MHPP) mechanisms; 3)
other user-level control programs to help users use Gemini.
Enhanced Memory Allocator. We realize EMA based on
virtual memory areas (VMAs) instead of huge page sized
memory regions. The reason is that the number of offset de-
scriptor for huge page sized memory regions can be huge. It
is hard to efficiently manage and search them. When Gemini
memory allocations are requested, EMA first tries to find the
offset descriptor associated with the VMA that the requested
address is in. The offset descriptor includes the offsets to
calculate where to allocate the guest/host physical address.
The offset descriptors are organized in a self-organizing lin-
ear search list [29] to optimize the search time. If the offset
descriptor of the VMA cannot be found, Gemini memory al-
locator calculates the offsets for the memory region, creates
a new offset descriptor, and inserts it into the list.
To realize EMA based onVMAs, there are twomain practical

issues to overcome. First, what guest/host physical memory
space should be booked to fit the entire VMA. Gemini tries
to align the entire VMA based on huge pages boundaries
instead of aligning each fault address individually. This is
because fitting the entire VMA can increase memory con-
tiguity and reduce memory fragmentation [1, 27]. Many
previous works [2, 26] also show that memory contiguity
can significantly reduce address translation overhead if TLB
is enhanced to support larger memory (> 1GB) translation
in the future.
To address the first issue, Gemini enhances the buddy al-

locator in Linux. Existing memory allocator usually uses
binary buddy allocator [30, 31] as it is faster compared to
other allocators [32]. In buddy allocator (e.g., Linux buddy
system), free memory is grouped into order-𝑥 free memory
blocks lists, where a memory block in an order-𝑥 free list in-
corporates 2𝑥 contiguous free pages. Typically, the maximum
order is 11 (e.g., Linux MAX_ORDER attribute); thus, exist-
ing buddy allocator can only allocate up to 4MB contiguous
memory space (i.e., order-11). Further increasing the order
number is very sensitive to external fragmentation [26, 33].
Therefore, existing buddy allocator cannot be directly used
for EMA.
Second, how to handle the target GPA or HPA is unavail-

able for allocation. After the guest/host memory space is
booked, the target GPA/HPA calculated with aforementioned
EMA mechanisms may not be available for allocation as the

EuroSys ’23, May 8–12, 2023, Rome, Italy Weiwei Jia, Jiyuan Zhang, Jianchen Shan, and Xiaoning Ding

Physical Memory

Unallocated Memory Allocated Memory Unallocated memory with
size smaller than a huge page

Gemini
Contiguity List start_phy_addr,size start_phy_addr,size start_phy_addr,size

Figure 6. Gemini contiguity list.

HPA

2MB aligned
free memory

First allocated memory
for a VMA

GPA

GVA

2MB 2MB 2MB 2MB 2MB 2MB 2MB

. . .

. . .

. . .

VMA1

2MB

2MB

. . .

. . .

. . .
2MB 2MB aligned

allocated memory
2MB

Figure 7. Sub-VMA.

corresponding VMA may be changed (e.g., VMA expan-
sion [34]) or the target GPA/HPA has been allocated. Gemini
should tolerate such issue.Gemini realizesGemini contiguity
list and Sub-VMA to address the above two issues.
Gemini contiguity list. Figure 6 shows the Gemini conti-
guity list. It tracks the contiguous physical memory regions.
Each entry in Gemini contiguity list points to a free and con-
tiguous physical memory region with its starting physical
address and size. Gemini is used when the size of the VMA is
larger than the huge page size (i.e., 2MB). Gemini contiguity
list is sorted based on the starting address to mitigate mem-
ory fragmentations. The reason is that small and random
page allocations are allocated from the beginning part of
the physical memory space without fragmenting large, free,
and contiguous memory regions. When a VMA is touched
for the first time, Gemini searches the Gemini contiguity list

for a free physical memory region that could fit it with the
next-fit policy. In the host level, Gemini searches the Gemini
contiguity list of the HPA to fit the contiguous guest physical
memory space that has been firstly touched. This increases
the possibility of forming more well-aligned huge pages. The
search starts from the place where it left off the previous time.
Please note that Gemini only allocates the physical pages
that are touched in the selected memory region; it does not
allocate the entire physical memory region for the whole
VMA; it directs the forthcoming page faults of the same
source VMA to the selected free memory region through
the aforementioned offset mechanisms. In case there is no
available free memory regions to fit the entire VMA, Gemini
finds the largest free physical memory region in the Gemini
contiguity list.Gemini uses the sub-VMAmechanisms to pro-
cess the remaining VMA. Currently, we realize the contiguity
list with double link list in Linux.
Sub-VMA. Figure 7 shows the sub-VMA mechanism. Af-
ter Gemini searches Gemini contiguity list, it may not find

an available memory region to fit the entire VMA such as
VMA1 in Figure 7. In this case, Gemini chooses the largest
free memory region and generates a new starting address, a
new length, and a new offset for the remaining VMA. For the
forthcoming memory allocations, Gemini locates the offset
associatedwith the VMA through checking each VMA’s start-
ing address and size. If the VMA is found, Gemini calculates
the target GPA and HPA with the corresponding offset; if the
target GPA or HPA is unavailable for allocation (e.g., already
allocated),Gemini chooses a new free memory region for the
remaining VMA from Gemini contiguity list. If no VMA is
found (i.e., first touched VMA),Gemini searchesGemini con-
tiguity list to find a free memory space for the first touched
VMA. The sub-VMA mechanisms are applied to each level
independently to avoid costly interactions between guest-
and host-level.
Huge Bucket.We implement the huge bucket through re-
purposing the buddy allocator. Huge bucket books the mis-
aligned host huge pages and each time allocates the whole
huge page sized guest physical memory regions backed by
host huge pages. The buddy allocator groups free memory
pages into blocks and each block contains 2𝑥 contiguous free
pages and is aligned to 2𝑥 × 4𝐾𝐵, where the non-negative 𝑥
is the order of the block. We leverage order 9 and above to
realize the huge memory bucket. For the well-aligned huge
pages that have been freed after use, Gemini temporarily
reserves them for a time period and returns them to the
OSs afterwards. Gemini also returns some well-aligned huge
pages when the memory space becomes scarce or the mem-
ory fragmentation becomes severe.

6 Evaluation

We have evaluated Gemini extensively with a diverse set
of workloads and compared Gemini to seven related sys-
tems. The objective of the evaluation is four-fold: 1) to show
that Gemini can improve performance with high efficiency
when the workload runs in a clean slate VM (§6.2) and in
an reused VM (§6.3), respectively, 2) to understand Gemini’s
performance advantage compared to the related systems
(§6.2, §6.3, and §6.5), 3) to verify the effectiveness of the
major techniques in Gemini (§6.4), and 4) to evaluate the
applicability and overhead of Gemini (§6.5).

6.1 Experiment Settings

Our evaluation was conducted on a DELLTM PowerEdgeTM
T630 server with two 2.1GHz Intel Xeon E5-2620 processors,
128GB of DRAM, a 1.6TB SSD, and an Intel I350 Gigabit NIC.
Each processor has 8 physical cores. Each core has 1536 L2
TLB entries for 4KiB/2MiB pages, 4 entries of data TLB for
1GiB pages, 64 entries of data TLB for 4KiB pages, 8 entries
of instruction TLB for 2MiB/4MiB pages, and 64 entries of
instruction TLB for 4KiB pages. With Linux QEMU/KVM, we
built VMs, each with a single virtual CPU (vCPU) or multiple

Making Dynamic Page Coalescing Effective on Virtualized Clouds EuroSys ’23, May 8–12, 2023, Rome, Italy

 0

 50

 100

 150

 200

 250

 300

RocksDB

Redis
Memcached

Canneal

Streamcluster

Dedup
CG.D

429.mcf

SVM
RocksDB

Redis
Memcached

Canneal

Streamcluster

Dedup
CG.D

429.mcf

SVM

N
o
rm

al
iz

ed
 t

h
ro

u
g
h
p
u
t

(%
)

 Without fragmentation With fragmentation

Misalignment
THP

CA-paging
Translation-ranger

Hawkeye
Ingens

Gemini

Figure 8. Throughputs of different systems when workload runs in a clean slate VM. Throughputs are normalized to those of Host-B-VM-B.

 0
 20
 40
 60
 80

 100
 120
 140
 160

Img-dnn

Sphinx
Moses

Xapian
Masstree

Specjbb

Silo
RocksDB

Memcached

Redis
Img-dnn

Sphinx
Moses

Xapian
Masstree

Specjbb

Silo
RocksDB

Memcached

RedisN
o
rm

al
iz

ed
 l

at
en

cy
 (

%
)

 Without fragmentation With fragmentation

Misalignment
THP

CA-paging
Translation-ranger

Hawkeye
Ingens

Gemini

Figure 9. Mean latencies of different systems when workload runs in a clean slate VM. Mean latencies are normalized to those of Host-B-VM-B.

 0

 20

 40

 60

 80

 100

 120

 140

 160

Img-dnn

Sphinx
Moses

Xapian
Masstree

Specjbb

Silo
RocksDB

Memcached

Redis
Img-dnn

Sphinx
Moses

Xapian
Masstree

Specjbb

Silo
RocksDB

Memcached

Redis

N
o
rm

al
iz

ed
 t

ai
l

la
te

n
cy

 (
%

)

 Without fragmentation 			With fragmentation

Misalignment
THP

CA-paging
Translation-ranger

Hawkeye
Ingens

Gemini

Figure 10. Tail latencies (99th) of different systems when workload runs in a clean slate VM. Tail latencies are normalized to those of Host-B-VM-B.

App. Workload description

Img-dnn Handwriting recognition based on OpenCV [35].
Sphinx Speech recognition like Apple Siri [36].
Moses Real time translation like Google translate [37].
Xapian Search engine used in websites and S/W frameworks [38].

Masstree In memory K/V store with 50% GET and 50% PUT [39].
Specjbb Industry-standard JAVA middleware benchmark [40].
Silo In-memory transactional database with TPCC [41].
Shore On-disk transactional database with TPCC [42].

RocksDB Serve requests (random keys,50% SET,50% GET) [43].
Redis Serve requests (random keys,50% SET,50% GET) [44].

MemcachedServe requests (random keys,50% SET,50% GET) [45].
PARSEC Three benchmarks from PARSEC benchmark suite [24].
NPB Two benchmarks from NPB benchmark suite [46].

429.mcf Scientific computation benchmark in SPEC CPU 2006 [47].
SVM The Benchmark for support vector machines [48].

Table 2. Programs and workloads used to test Gemini.

vCPUs and 32GB memory. We set the number of applica-
tion threads equal to the number of vCPUs. Both host OS
and guest OS are Ubuntu Linux 16.04 with the same Linux
4.19 kernel and software configuration, unless otherwise
indicated. We test Gemini with a large and diverse set of

workloads generated by typical applications from different
domains (e.g., web server, database server, key/value store,
AI workload, scientific applications, etc.), as summarized in
Table 2. We profile these workloads with hardware perfor-
mance counters, which show they all spend a significant part
of execution time on page walks. This is also well corrobo-
rated by previous works [1, 8, 16, 26]. Two workloads (i.e.,
Shore and SP.D) are non-TLB sensitive and used to test the
applicability and overhead of Gemini. In the experiments,
each VM encapsulates one workload.
We test Gemini under two settings. Under the first setting,

workload is executed in a clean slate VM. This is used to test
the effectiveness of Gemini on forming well-aligned huge
pages. In this setting, we test theworkloadwithmemory frag-
mentation and without memory fragmentation, respectively.
We developed a program to fragment the memory. The pro-
gram used the free memory fragmentation index (FMFI) to
measure memory fragmentation [1, 8, 15]. In the experiment,
both guest- and host-level memory are fragmented, unless
otherwise indicated. We care more about Gemini’s perfor-
mance when memory is fragmented because previous works

EuroSys ’23, May 8–12, 2023, Rome, Italy Weiwei Jia, Jiyuan Zhang, Jianchen Shan, and Xiaoning Ding

show that memory quickly fragments in multi-tenant virtu-
alized cloud environments [1, 49]. We further study the effec-
tiveness ofGemini through comparing it to seven related sys-
tems. These systems include Host-B-VM-B, Misalignment,
THP [28], Ingens [1], HawkEye [8], CA-paging2 [26], and
Translation-ranger [27]. Please refer to §2.3 for detailed
descriptions about these systems.
Under the second setting, workload is executed in an

reused VM. In this setting, we execute a workload after the
completion of another workload (i.e., SVM [48]) with a large
working set (∼30GB). In virtualized systems, memory space
allocated to the VM will not return to the host OS immedi-
ately [26, 51]. In this case, we want to test the effectiveness
of Gemini’s huge bucket mechanisms. Specifically, we want
to evaluate whether the well-aligned huge pages can be effi-
ciently reused by the workload.
We measure the throughputs of the workloads. We also

collect average and tail latencies if the workloads report
them. The performance measurements may vary signifi-
cantly across different workloads. When we present them
in figures, for clarity, we normalize them against those of
Host-B-VM-B or Gemini, as indicated in the figures.

6.2 Workload Performance in A Clean Slate VM

Figure 8 shows throughputs of different workloads when
all the eight systems are tested with memory fragmentation
and without memory fragmentation, respectively. Gemini
outperforms Host-B-VM-B by 1.72x on average, which is
the best throughput among all the systems. To pinpoint why
Gemini shows the best throughput, we profile the rates of
well-aligned huge pages when workload is executed in each
evaluated system. We show the results in Table 3. Gemini
forms the largest rates of well-aligned huge pages, 66% on
average. This helps Gemini reduce TLB misses significantly,
as shown in Figure 11. The average rates of well-aligned
huge pages in other systems are up to 33%, as these sys-
tems only consider increasing the efficiency of huge page
management in each level. Gemini considers not only the
efficiency of using huge pages in each level but also (more
importantly) the effectiveness of forming well-aligned huge
pages in virtualized systems.
Among all the systems, only Translation-ranger de-

creases the throughput by 7% on average, compared to
Host-B-VM-B. The main reason is that page migrations
incurred by Translation-ranger cause significant over-
head. Specifically, Translation-ranger frequently mi-
grates pages to increase memory contiguity, in order to in-
crease TLB coverage. In comparison to Host-B-VM-B, all
the systems other than Gemini and Translation-ranger
improve the throughput by 22% on average, as these
systems form either huge pages only in one level (e.g.,

2We tested CA-paging’s software component [50].

workloads THP
CA-

paging
Trans.-
ranger

HawkEye Ingens Gemini

Img-dnn 21% 18% 15% 33% 35% 67%
Sphinx 17% 17% 12% 31% 34% 64%
Moses 19% 16% 14% 26% 24% 57%
Xapian 18% 17% 13% 30% 34% 61%

Masstree 22% 16% 15% 33% 43% 70%
Specjbb 18% 14% 12% 32% 33% 81%
Silo 12% 16% 14% 23% 24% 62%

RocksDB 25% 17% 13% 33% 26% 64%
Redis 18% 17% 13% 35% 28% 60%

Memcached 17% 15% 12% 23% 25% 77%
Canneal 26% 32% 23% 29% 30% 51%

Streamcluster 19% 22% 15% 25% 35% 50%
dedup 18% 22% 15% 25% 26% 55%
CG.D 20% 23% 11% 42% 46% 80%

429.mcf 25% 27% 13% 36% 42% 76%
SVM 23% 20% 16% 41% 40% 81%

Table 3. Rates of well-aligned huge pages in different systems when work-
load runs in a clean slate VM.

Misalignment) or well-aligned huge pages by chance (e.g.,
Ingens, HawkEye, CA-paging, and THP).
Figure 9 shows the mean latency of all the systems

when memory is fragmented and unfragmented, respec-
tively. Gemini reduces the mean latency by 57% on
average, compared to Host-B-VM-B. In comparison to
Host-B-VM-B, Translation-ranger increases the mean
latency by 11% on average, as page migrations incurred by
Translation-ranger frequently trigger costly TLB shoot-
downs and CPU caches pollution. This significantly in-
creases the mean latency in virtualized systems [52–54].
Nevertheless, page migrations also opportunistically in-
crease the rate of well-aligned huge pages. That’s why
Translation-ranger forms 14% more rate of well-aligned
huge pages and incurs 27% lower TLB misses on average,
relative to Host-B-VM-B.
Figure 9 also shows that all the systems other than Gemini

and Translation-ranger reduce the mean latency by 24%
on average, compared to Host-B-VM-B. Misalignment can
reduce themean latency as it forms huge pages in the host OS.
For Ingens, HawkEye, CA-paging, and THP, they form well-
aligned huge pages by chance, such that they may reduce
TLB misses and address translation overhead. Interestingly,
for workload Specjbb, HawkEye increases the mean latency
and the tail latency by 15% and 26% on average, respectively,
compared to Ingens. We profile HawkEye and find that it
deduplicates Specjbb’s in-use zero-pages and incurs extra
copy-on-write page faults. This leads to the higher latency
compared to Ingens.
Figure 10 shows the 99th tail latencies of different sys-

tems when memory is fragmented and unfragmented, re-
spectively. Compared to Host-B-VM-B, Gemini and other
systems reduce the tail latency by 60% and 14% on average,
respectively. Gemini reduces much more tail latency for two
main reasons. First, other systems do not consider the design

Making Dynamic Page Coalescing Effective on Virtualized Clouds EuroSys ’23, May 8–12, 2023, Rome, Italy

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

RocksDB

Redis
Memcached

Canneal

Streamcluster

Dedup
CG.D

429.mcf

SVM
Img-dnn

Sphinx
Moses

Xapian
Masstree

Specjbb

Silo

N
o
rm

al
iz

ed
 T

L
B

 m
is

se
s

(x
)

Misalignment
THP

CA-paging
Translation-ranger

Hawkeye
Ingens

Host-B-VM-B
Gemini

Figure 11. TLB misses of different systems when workload runs in a clean slate VM. TLB misses are normalized to those of Gemini.

of forming well-aligned huge pages for virtualized clouds.
This can greatly increase tail latency. Second, we find that
the tail latency is vulnerable to TLB misses and page walk
overhead.
When memory is unfragmented, Gemini, Ingens, and

HawkEye perform similarly on some workloads (e.g., SVM
and CG.D), as shown in Figure 8, Figure 9, and Figure 10.
We find that these workloads usually allocate large mem-
ory regions with static arrays and use them uniformly, such
that the dense and uniform memory access patterns make
these systems also formmany well-aligned huge pages. How-
ever, for some other workloads (e.g., Redis and RocksDB),
they allocate large memory (more than 10GB) gradually and
use dynamic data structures to save temporary data, and
their memory patterns are more complex and quickly cause
memory fragmentations. For these workloads, Gemini out-
performs Ingens and HawkEye, no matter memory is frag-
mented or not.
To further understand the performance of all the eval-

uated systems, we profile TLB misses when workload is
executed in each evaluated system. We show the results in
Figure 11. We find that Gemini also incurs extra TLB misses
as it does not reserve huge pages and needs a short time
to form well-aligned huge pages. Therefore, workload may
execute without the well aligned huge pages for a short
period. Nonetheless, Gemini saves precious memory space
compared to memory reservation approaches. In comparison
to Gemini, other systems increase the TLB misses by 2.39x
on average. This shows Gemini’s effectiveness on reducing
TLB misses through efficiently forming well-aligned huge
pages. Due to space constraints, we only present TLB misses
(Figure 11) and rates of well-aligned huge pages (Table 3)
when memory is fragmented.

6.3 Workload Performance in An Reused VM

Figure 12, Figure 13, and Figure 14 show all the evaluated
systems’ throughputs, mean latencies, and 99th tail laten-
cies, respectively, when workload runs in an reused VM. On
average, Gemini outperforms Host-B-VM-B by 1.65x and
reduces the mean latency and the tail latency by 32% and
26%, respectively, compared to Host-B-VM-B.
Among all the other systems, Ingens achieves the sec-

ond largest performance on average. Compared to Ingens,

 0

 50

 100

 150

 200

 250

 300

RocksDB

Redis
Memcached

Canneal

Streamcluster

Dedup
CG.D

429.mcf

SVM

N
o

rm
al

iz
ed

 t
h

ro
u

g
h

p
u

t
(%

)

Misalignment
THP

CA-paging
Translation-ranger

Hawkeye
Ingens

Gemini

Figure 12. Throughputs of different systems when workload runs in an reused VM.

Throughputs are normalized to those of Host-B-VM-B.

 0
 20
 40
 60
 80

 100
 120
 140
 160

Img-dnn

Sphinx
Moses

Xapian
Masstree

Specjbb

Silo
RocksDB

Memcached

Redis

N
o

rm
al

iz
ed

 l
at

en
cy

 (
%

)
Misalignment

THP
CA-paging

Translation-ranger

Hawkeye
Ingens

Gemini

Figure 13. Mean latencies of different systems when workload runs in an reused VM.

Mean latencies are normalized to those of Host-B-VM-B.

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

Img-dnn

Sphinx
Moses

Xapian
Masstree

Specjbb

Silo
RocksDB

Memcached

Redis

N
o

rm
al

iz
ed

 t
ai

l
la

te
n

cy
 (

%
)

Misalignment
THP

CA-paging
Translation-ranger

Hawkeye
Ingens

Gemini

Figure 14. Tail latencies (99th) of different systems when workload runs in an reused

VM. Tail latencies are normalized to those of Host-B-VM-B.

Gemini offers 25% more throughput, 14% lower mean la-
tency, and 11% lower tail latency. Translation-ranger
shows the worst performance among the evaluated systems,
due to the costly page migrations overhead. HawkEye and
Ingens show comparable performance, and their perfor-
mance outperforms THP on average. HawkEye and Ingens
are optimized based on THP especially for asynchronous
and utilization-based promotion, and more fair huge pages
promotion. Misalignment shows better performance com-
pared to Host-B-VM-B, as it only forms huge pages in the
host OS. CA-paging shows better average performance com-
pared to Host-B-VM-B because it tries to allocate contiguous
memory space in both guest- and host-level to predict mem-
ory address translation between guest virtual address and

EuroSys ’23, May 8–12, 2023, Rome, Italy Weiwei Jia, Jiyuan Zhang, Jianchen Shan, and Xiaoning Ding

 0
 2
 4
 6
 8

 10
 12
 14

RocksDB

Redis
Memcached

Canneal

Streamcluster

Dedup
CG.D

429.mcf

SVM
Img-dnn

Sphinx
Moses

Xapian
Masstree

Specjbb

Silo

N
o
rm

al
iz

ed
 T

L
B

 m
is

se
s

(x
)

Misalignment
THP

CA-paging
Translation-ranger

Hawkeye
Ingens

Host-B-VM-B
Gemini

Figure 15. TLB misses of different systems when workload runs in an reused VM. TLB misses are normalized to those of Gemini.

workloads THP
CA-

paging
Trans.-
ranger

HawkEye Ingens Gemini

Img-dnn 52% 58% 35% 57% 51% 84%
Sphinx 64% 57% 36% 61% 63% 89%
Moses 59% 54% 44% 65% 52% 94%
Xapian 55% 59% 31% 52% 58% 96%

Masstree 56% 66% 30% 51% 63% 84%
Specjbb 64% 51% 40% 59% 67% 88%
Silo 59% 61% 36% 63% 60% 75%

RocksDB 64% 59% 31% 67% 51% 83%
Redis 61% 55% 32% 61% 64% 81%

Memcached 60% 56% 37% 63% 66% 86%
Canneal 56% 64% 36% 58% 69% 92%

Streamcluster 52% 62% 38% 55% 68% 90%
dedup 50% 64% 33% 51% 50% 79%
CG.D 58% 68% 37% 68% 60% 98%

429.mcf 51% 58% 34% 52% 62% 93%
SVM 59% 62% 32% 60% 66% 99%

Table 4. Rates of well-aligned huge pages in different systems when work-
load runs in an reused VM.

host physical address, such that it may form well-aligned
huge pages and mitigate address translation overhead.
To pinpoint the performance advantage of Gemini com-

pared to other systems, we profile TLB misses and rates of
reusing the well-aligned huge pages that have been formed.
We show the profiling results in Figure 15 and Table 4, respec-
tively. Gemini shows low TLB misses for two main reasons.
First, Gemini’s huge booking (HB) and enhanced memory
allocator (EMA) mechanisms greatly increase the rate of well-
aligned huge pages. Second, Gemini’s huge bucket mech-
anisms help reuse 88% of the well-aligned huge pages on
average, after the completion of SVM workload. Relative to
Gemini, other systems increase TLB misses by 4.6x on aver-
age. For these systems, after SVM terminates, the allocated
huge pages are freed and returned to the guest OS. These
huge page sizedmemory regionsmay be reallocated for other
base page (4KB) allocations (e.g., small memory allocations
in Xapian). This may break the well-aligned huge pages
created by the SVM workload, causing serious performance
degradation.

6.4 Performance Breakdown

Figure 16 shows the performance breakdown of Gemini
under memory fragmentation. Gemini’s EMA/HB and huge
bucket contribute to the whole throughput by 66% and 34%
on average, respectively. EMA/HB contribute the most as they

 0

 20

 40

 60

 80

 100

 120

R
ocksD

B

R
edis

M
em

cached

C
anneal

Stream
cluster

D
edup

C
G

.D

429.m
cf

SV
MN

o
rm

al
iz

ed
 t

h
ro

u
g

h
p

u
t

(%
)

Huge Booking and EMA
Huge Bucket

Figure 16. Performance breakdown of Gemini. Performance of each part is normal-
ized to the total performance of Gemini.

 0

 50

 100

 150

 200

 250

Canneal

SVM
Streamcluster

SVM
Canneal

SP.D
Streamcluster

SP.D

N
o
rm

al
iz

ed
 t

h
ro

u
g
h
p
u
t

(%
)

 w/ TLB-sensitive workload w/ non-TLB-sensitive workload

Misalignment
THP

CA-paging
Translation-ranger

Hawkeye
Ingens

Gemini

Figure 17. Throughputs of different systems when different workloads in VMs are col-

located in the same server. Throughputs are normalized to those of Host-B-VM-B.

are the foundation of effectively forming well-aligned huge
pages with low overhead. Huge bucket further improves
Gemini’s efficiency on forming well-aligned huge pages. For
some workloads (e.g., CG.D and SVM), EMA/HB outperform
huge bucket, as these workloads usually allocate a chunk of
memory region and do not frequently free and reuse mem-
ory. For some other workloads (e.g., Redis and RocksDB),
EMA/HB and huge bucket perform similarly because the well-
aligned huge pages are frequently created, freed, and reused
during the execution of the workload.

6.5 Applicability and Overhead

To evaluate Gemini’s applicability and overhead, we collo-
cate two virtual machines (VMs) on the server. Each VM
has 16 virtual CPUs (vCPUs). In each VM, we run either a
TLB-sensitive application or a non-TLB-sensitive application;
each application has 16 threads. Figure 17 and Figure 18 show
throughputs and mean latencies of all the evaluated systems,
respectively. On average, Gemini performs the best among

Making Dynamic Page Coalescing Effective on Virtualized Clouds EuroSys ’23, May 8–12, 2023, Rome, Italy

 0

 20

 40

 60

 80

 100

 120

 140

Img-dnn

RocksDB

Specjbb

RocksDB

Img-dnn

Shore
Specjbb

Shore

N
o
rm

al
iz

ed
 l

at
en

cy
 (

%
)

 w/ TLB-sensitive workload w/ non-TLB-sensitive workload

Misalignment
THP

CA-paging
Translation-ranger

Hawkeye
Ingens

Gemini

Figure 18. Mean latencies of different systems when different workloads in VMs are

collocated in the same server. Latencies are normalized to those of Host-B-VM-B.

all the systems. Compared to Gemini, other systems offer
37% lower throughput and 19% higher mean latency on av-
erage. This shows Gemini’s effectiveness on multi-threaded
applications, multiple processors, and multiple VMs consol-
idated on the same server. Gemini allows multiple threads
to book well-aligned huge pages concurrently through effi-
ciently batchingmemory allocations. For multiple processors
(multiple NUMA nodes), Gemini searches the Gemini conti-
guity list and finds the contiguity free memory space in the
NUMA node that is close to the thread. Besides, Gemini’s
huge bucketmechanisms alsomitigate interferences between
small and large memory allocations.
Figure 17 and Figure 18 also show Gemini does not intro-

duce much performance overhead (2% on average). When
TLB-sensitive workload is collocated with non-TLB-sensitive
workload (i.e., NPB SP.D and Shore), there is almost no space
for Gemini to improve the performance of NPB SP.D and
Shore. For these workloads, Gemini’s performance drops
by up to 3%, compared to vanilla Linux/KVM. This shows
Gemini introduces negligible overhead.

7 Related Work

Huge pages. Existing works [17–19, 26, 27] show that TLB
misses and address translation overhead have become the
performance bottleneck for modern big memory workloads.
Huge pages have been extensively studied to reduce such
overhead in native systems [1, 5, 15]. Many systems have
actually supported huge pages for a long time (e.g., Linux
Libhugetlbfs [55, 56]). They mainly require users to man-
ually control the use of huge pages.
To support transparent huge pages, many research works

have been proposed [8, 16]. Ingens [1] identifies several is-
sues in Linux transparent huge page (i.e., Linux THP) mecha-
nisms, such as long latency caused by synchronous page fault
and unfair allocation of huge pages among processes. It pro-
poses asynchronous huge page allocation, utilization-based
huge page promotion, and a share-based policy to allocate
huge pages fairly. HawkEye [8] identifies several suboptimal
issues in Ingens [1], and proposes new mechanisms to ad-
dress these issues through measuring page translation over-
head with hardware performance counters. Temeraire [18]
enables aggressive huge pages allocations in TCMalloc [57].

FreeBSD uses a reservation-basedmemory allocator [5, 16],
which allocates a 2MB-aligned physical memory region upon
the first page fault and creates the huge page mapping after
the entire memory region is accessed. Navarro et al.[5] op-
timizes the reservation-based huge page management with
new mechanisms such as multiple huge page sizes support
and contiguity-aware page replacement algorithm to control
memory fragmentations. Zhu et al.[16] comprehensively an-
alyze huge pages mechanisms and propose Quicksilver to
optimize memory bloat and fragmentation problems.
Optimizing address translation in virtualized systems.

Merrifield et al.[12] study workload performance and TLB
misses when base pages and huge pages are used in virtu-
alization environments; they mention that both guest- and
host-level must map the page at 2MB to allow the proces-
sor to use a 2MB TLB entry. CA-paging [26] mitigates the
address translation overhead through software and hard-
ware codesign. GLUE [13, 14] mitigates the page splintering
problem [9, 58–66] in virtualized systems.
Other works. Translation-ranger [27] is an OS support
to improvememory contiguity and reduce the number of con-
tiguous memory regions to reduce TLB burden. RMM [33]
enables ranges of an arbitrary number of virtually and phys-
ically contiguous pages to increase TLB reach. To realize the
idea, it adds a hardware range TLB and an range page table
to enable range address translation.
Gemini’s novelty. Existing works mainly target the effi-
ciency of huge page mechanisms in native systems. They
are complementary to Gemini. Gemini targets the huge
page misalignment problem in virtulized clouds. Previous
works [1, 27, 49] show that memory quickly fragments in
multi-tenant virtualized cloud environments, and thus this
problem can easily happen. Gemini addresses the problem
through effectively forming well-aligned huge pages on vir-
tualized clouds.

8 Conclusion and Future Work

This paper identifies the huge page misalignment problem
that can significantly increase TLB misses and degrade ap-
plication performance on virtualized platforms. It designs
Gemini as an effective cross-layer page coalescing solution
for this problem. By forming well-aligned huge pages with
low overhead, Gemini can substantially reduce TLB misses
and improve performance. Our evaluation based on diverse
real-world applications shows state-of-the-art page coalesc-
ing mechanisms still suffer the huge page misalignment
problem, and Gemini can achieve substantially better per-
formance than these mechanisms.
As future work, we plan to test and further improve

Gemini under more workload and more complex scenar-
ios. For example, memory deduplication (e.g., Linux KSM),
memory ballooning, and swapping are used in virtualization
environments to deal with memory pressure. They may de-
mote huge pages that are created by Gemini and reduce the

EuroSys ’23, May 8–12, 2023, Rome, Italy Weiwei Jia, Jiyuan Zhang, Jianchen Shan, and Xiaoning Ding

performance of Gemini. In our current design, we only allow
misaligned huge pages and infrequently used huge pages
to be demoted when system is under memory pressure. We
would like to further study how memory deduplication, bal-
looning, and swapping may interplay with Gemini when
such huge pages run out.

9 Acknowledgments

We thank the anonymous reviewers for their constructive
comments, and Dr. Gaël Thomas for his helpful suggestions
as the shepherd for this paper.

References

[1] Youngjin Kwon, Hangchen Yu, Simon Peter, Christopher J
Rossbach, and Emmett Witchel. Coordinated and efficient
huge page management with ingens. In 12th {USENIX} Sympo-

sium on Operating Systems Design and Implementation ({OSDI}
16), pages 705–721, 2016.

[2] Jayneel Gandhi, Vasileios Karakostas, Furkan Ayar, Adrián
Cristal, Mark D Hill, Kathryn S McKinley, Mario Nemirovsky,
Michael M Swift, and Osman S Ünsal. Range translations for
fast virtual memory. IEEE Micro, 36(3):118–126, 2016.

[3] Artemiy Margaritov, Dmitrii Ustiugov, Edouard Bugnion, and
Boris Grot. Prefetched address translation. In Proceedings

of the 52nd Annual IEEE/ACM International Symposium on

Microarchitecture, pages 1023–1036, 2019.
[4] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros

Volos, Mohammad Alisafaee, Djordje Jevdjic, Cansu Kaynak,
Adrian Daniel Popescu, Anastasia Ailamaki, and Babak Falsafi.
Clearing the clouds: a study of emerging scale-out workloads
on modern hardware. Acm sigplan notices, 47(4):37–48, 2012.

[5] Juan Navarro, Sitararn Iyer, Peter Druschel, and Alan Cox.
Practical, transparent operating system support for super-
pages. ACM SIGOPS Operating Systems Review, 36(SI):89–104,
2002.

[6] Reto Achermann, Ashish Panwar, Abhishek Bhattacharjee,
Timothy Roscoe, and Jayneel Gandhi. Mitosis: Transparently
self-replicating page-tables for large-memory machines. In
Proceedings of the Twenty-Fifth International Conference on Ar-

chitectural Support for Programming Languages and Operating

Systems, pages 283–300, 2020.
[7] Ashish Panwar, Reto Achermann, Arkaprava Basu, Abhishek

Bhattacharjee, K. Gopinath, and Jayneel Gandhi. Fast local
page-tables for virtualized numa servers with vmitosis. In
Proceedings of the Twenty-Sixth International Conference on Ar-

chitectural Support for Programming Languages and Operating

Systems, 2021.
[8] Ashish Panwar, Sorav Bansal, and K Gopinath. Hawkeye:

Efficient fine-grained os support for huge pages. In Proceedings
of the Twenty-Fourth International Conference on Architectural

Support for Programming Languages and Operating Systems,
pages 347–360, 2019.

[9] Fei Guo, Seongbeom Kim, Yury Baskakov, and Ishan Banerjee.
Proactively breaking large pages to improve memory over-
commitment performance in vmware esxi. In Proceedings of

the 11th ACM SIGPLAN/SIGOPS International Conference on

Virtual Execution Environments, pages 39–51, 2015.

[10] Fan Guo, Yongkun Li, Yinlong Xu, Song Jiang, and John CS
Lui. Smartmd: A high performance deduplication engine with
mixed pages. In 2017 {USENIX} Annual Technical Conference
({USENIX}{ATC} 17), pages 733–744, 2017.

[11] Artemiy Margaritov, Dmitrii Ustiugov, Amna Shahab, and
Boris Grot. Ptemagnet: Fine-grained physical memory reser-
vation for faster page walks in public clouds. In The 26th

International Conference on Architectural Support for Program-

ming Languages and Operating Systems, ASPLOS 2021, 2021.
[12] Timothy Merrifield and H Reza Taheri. Performance implica-

tions of extended page tables on virtualized x86 processors.
In Proceedings of the12th ACM SIGPLAN/SIGOPS International

Conference on Virtual Execution Environments, pages 25–35,
2016.

[13] Binh Pham, Ján Veselỳ, Gabriel H Loh, and Abhishek Bhat-
tacharjee. Large pages and lightweight memory management
in virtualized environments: Can you have it both ways? In
Proceedings of the 48th International Symposium on Microar-

chitecture, pages 1–12, 2015.
[14] Binh Pham, Jan Vesely, Gabriel H Loh, and Abhishek Bhat-

tacharjee. Using tlb speculation to overcome page splintering
in virtual machines. 2015.

[15] Ashish Panwar, Aravinda Prasad, and K Gopinath. Making
huge pages actually useful. In Proceedings of the Twenty-

Third International Conference on Architectural Support for

Programming Languages and Operating Systems, pages 679–
692, 2018.

[16] Weixi Zhu, Alan L Cox, and Scott Rixner. A comprehen-
sive analysis of superpage management mechanisms and
policies. In 2020 {USENIX} Annual Technical Conference
({USENIX}{ATC} 20), pages 829–842, 2020.

[17] Rohan Kadekodi, Saurabh Kadekodi, Soujanya Ponnapalli, Har-
shad Shirwadkar, Gregory R Ganger, Aasheesh Kolli, and Vijay
Chidambaram. Winefs: a hugepage-aware file system for per-
sistent memory that ages gracefully. In Proceedings of the

ACM SIGOPS 28th Symposium on Operating Systems Principles

CD-ROM, pages 804–818, 2021.
[18] AH Hunter, Chris Kennelly, Paul Turner, Darryl Gove, Tipp

Moseley, and Parthasarathy Ranganathan. Beyond malloc effi-
ciency to fleet efficiency: a hugepage-aware memory allocator.
In 15th {USENIX} Symposium on Operating Systems Design

and Implementation ({OSDI} 21), pages 257–273, 2021.
[19] Martin Maas, Chris Kennelly, Khanh Nguyen, Darryl Gove,

Kathryn S McKinley, and Paul Turner. Adaptive huge-page
subrelease for non-moving memory allocators in warehouse-
scale computers. In Proceedings of the 2021 ACM SIGPLAN

International Symposium on Memory Management, pages 28–
38, 2021.

[20] Intel 64 and ia-32 architectures developer’s manual.
https://www.intel.com/content/www/us/en/architecture-
and-technology/64-ia-32-architectures-software-developer-
manual-325462.html.

[21] Amd64 architecture programmer’s manual. https://developer.
amd.com/resources/developer-guides-manuals/.

[22] Theodore Michailidis, Alex Delis, and Mema Roussopoulos.
Mega: overcoming traditional problems with os huge page
management. In Proceedings of the 12th ACM International

Conference on Systems and Storage, pages 121–131, 2019.

 https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-arc hitectures-software-developer-manual-325462.html
 https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-arc hitectures-software-developer-manual-325462.html
 https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-arc hitectures-software-developer-manual-325462.html
 https://developer.amd.com/resources/developer-guides-manuals/
 https://developer.amd.com/resources/developer-guides-manuals/

Making Dynamic Page Coalescing Effective on Virtualized Clouds EuroSys ’23, May 8–12, 2023, Rome, Italy

[23] Ravi Bhargava, Benjamin Serebrin, Francesco Spadini, and
Srilatha Manne. Accelerating two-dimensional page walks for
virtualized systems. In Proceedings of the 13th international

conference on Architectural support for programming languages

and operating systems, pages 26–35, 2008.
[24] The Princeton application repository for shared-memory com-

puters (PARSEC). http://parsec.cs.princeton.edu/, 2010.
[25] Harshad Kasture and Daniel Sanchez. Tailbench: a benchmark

suite and evaluation methodology for latency-critical appli-
cations. In 2016 IEEE International Symposium on Workload

Characterization (IISWC), pages 1–10. IEEE, 2016.
[26] Chloe Alverti, Stratos Psomadakis, Vasileios Karakostas,

Jayneel Gandhi, Konstantinos Nikas, Georgios Goumas, and
Nectarios Koziris. Enhancing and exploiting contiguity for
fast memory virtualization. In 2020 ACM/IEEE 47th Annual In-

ternational Symposium on Computer Architecture (ISCA), pages
515–528. IEEE, 2020.

[27] Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhat-
tacharjee. Translation ranger: operating system support for
contiguity-aware tlbs. In Proceedings of the 46th International

Symposium on Computer Architecture, pages 698–710, 2019.
[28] Linux Transparent Huge Pages. https://lwn.net/Articles/

359158/.
[29] James H. Hester and Daniel S. Hirschberg. Self-organizing

linear search. ACM Computing Surveys (CSUR), 17(3):295–311,
1985.

[30] Kenneth C Knowlton. A fast storage allocator. Communica-

tions of the ACM, 8(10):623–624, 1965.
[31] DE Knuth. The art of computer programming: Fundamental

algorithms, volume 1. addisonwesley. Reading, Mass.,, 1997.
[32] David G. Korn and Kiem-Phong Bo. In search of a better

malloc. In Proceedings of the Summer 1985 USENIX Conference,
pages 489–506. USENIX, 1985.

[33] Vasileios Karakostas, Jayneel Gandhi, Furkan Ayar, Adrián
Cristal, Mark D Hill, Kathryn S McKinley, Mario Nemirovsky,
Michael M Swift, and Osman Ünsal. Redundant memory
mappings for fast access to large memories. ACM SIGARCH

Computer Architecture News, 43(3S):66–78, 2015.
[34] Xiaolin Wang, Taowei Luo, Jingyuan Hu, Zhenlin Wang, and

Yingwei Luo. Evaluating the impacts of hugepage on virtual
machines. Science China Information Sciences, 60(1):012103,
2017.

[35] A deep network handwriting classifier. https://github.com/
xingdi-eric-yuan/multi-layer-convnet.

[36] Willie Walker, Paul Lamere, Philip Kwok, Bhiksha Raj, Rita
Singh, Evandro Gouvea, Peter Wolf, and Joe Woelfel. Sphinx-
4: A flexible open source framework for speech recognition,
2004.

[37] Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-
Burch, Marcello Federico, Nicola Bertoldi, Brooke Cowan,
Wade Shen, Christine Moran, Richard Zens, et al. Moses:
Open source toolkit for statistical machine translation. In Pro-

ceedings of the 45th annual meeting of the ACL on interactive

poster and demonstration sessions, pages 177–180. Association
for Computational Linguistics, 2007.

[38] Xapian project. https://github.com/xapian/xapian.
[39] YandongMao, Eddie Kohler, and Robert TappanMorris. Cache

craftiness for fast multicore key-value storage. In Proceedings

of the 7th ACM european conference on Computer Systems, pages
183–196, 2012.

[40] The SPECjbb benchmark. https://www.spec.org/jbb2015/.
[41] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov,

and Samuel Madden. Speedy transactions in multicore in-
memory databases. In Proceedings of the Twenty-Fourth ACM

Symposium on Operating Systems Principles, pages 18–32, 2013.
[42] Ryan Johnson, Ippokratis Pandis, NikosHardavellas, Anastasia

Ailamaki, and Babak Falsafi. Shore-mt: a scalable storage
manager for the multicore era. In Proceedings of the 12th

International Conference on Extending Database Technology:

Advances in Database Technology, pages 24–35, 2009.
[43] RocksDB NoSQL Storage System. https://rocksdb.org/.
[44] Redis In-memory Key-Value Database. http://redis.io/.
[45] Memcached Key-Value Store. https://memcached.org.
[46] NASA Parallel Benchmarks. http://www.nas.nasa.gov/

publications/npb.html.
[47] SPEC CPU 2006. https://www.spec.org/cpu2006/.
[48] Ching-Pei Lee and Chih-Jen Lin. Large-scale linear ranksvm.

Neural computation, 26(4):781–817, 2014.
[49] Jean Araujo, Rubens Matos, Paulo Maciel, Rivalino Matias, and

Ibrahim Beicker. Experimental evaluation of software aging
effects on the eucalyptus cloud computing infrastructure. In
Proceedings of the Middleware 2011 Industry Track Workshop,
pages 1–7, 2011.

[50] Source code of CA-Paging. https://github.com/cslab-ntua/
contiguity-isca2020.

[51] Memory is not released after workloads in VMs free memory.
https://bugzilla.redhat.com/show_bug.cgi?id=995420.

[52] Hwanju Kim, Sangwook Kim, Jinkyu Jeong, Joonwon Lee, and
Seungryoul Maeng. Demand-based coordinated scheduling
for smp vms. In ACM SIGPLAN Notices, volume 48, pages
369–380. ACM, 2013.

[53] Sanidhya Kashyap, Changwoo Min, and Taesoo Kim. Scal-
ing guest {OS} critical sections with ecs. In 2018 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 18), pages 159–
172, 2018.

[54] Nadav Amit, Amy Tai, and Michael Wei. Don’t shoot down
tlb shootdowns! In Proceedings of the Fifteenth European Con-

ference on Computer Systems, pages 1–14, 2020.
[55] Persistent huge pages in Linux. https://www.kernel.org/doc/

Documentation/vm/hugetlbpage.txt.
[56] Huge pages part 2: Interfaces. https://lwn.net/Articles/375096/.
[57] Tcmalloc: Thread-caching malloc. http://goog-perftools.

sourceforge.net/doc/tcmalloc.html.
[58] TimothyWood, Gabriel Tarasuk-Levin, Prashant Shenoy, Peter

Desnoyers, Emmanuel Cecchet, and Mark D Corner. Memory
buddies: exploiting page sharing for smart colocation in virtu-
alized data centers. ACM SIGOPS Operating Systems Review,
43(3):27–36, 2009.

[59] Michael Nelson, Beng-Hong Lim, and Greg Hutchins. Fast
transparent migration for virtual machines. In Proceedings of

the Annual Conference on USENIX Annual Technical Conference,
ATC ’05, 2005.

[60] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm
Hansen, Eric Jul, Christian Limpach, Ian Pratt, and Andrew
Warfield. Live migration of virtual machines. In Proceedings

of the 2Nd Conference on Symposium on Networked Systems

http://parsec.cs.princeton.edu/
https://lwn.net/Articles/359158/
https://lwn.net/Articles/359158/
https://github.com/xingdi-eric-yuan/multi-layer-convnet
https://github.com/xingdi-eric-yuan/multi-layer-convnet
https://github.com/xapian/xapian
https://www.spec.org/jbb2015/
https://rocksdb.org/
http://redis.io/
https://memcached.org
http://www.nas.nasa.gov/publications/npb.html
http://www.nas.nasa.gov/publications/npb.html
https://www.spec.org/cpu2006/
https://github.com/cslab-ntua/contiguity-isca2020
https://github.com/cslab-ntua/contiguity-isca2020
https://bugzilla.redhat.com/show_bug.cgi?id=995420
https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt
https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt
https://lwn.net/Articles/375096/
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html

EuroSys ’23, May 8–12, 2023, Rome, Italy Weiwei Jia, Jiyuan Zhang, Jianchen Shan, and Xiaoning Ding

Design & Implementation - Volume 2, NSDI’05, 2005.
[61] Carl A. Waldspurger. Memory resource management in

vmware esx server. In Proceedings of the 5th Symposium on

Operating Systems Design and Implementation, OSDI ’02, pages
181–194, USA, 2002. USENIX Association.

[62] VMWARE Large Page Performance Study. https:
//www.vmware.com/content/dam/digitalmarketing/
vmware/en/pdf/techpaper/large_pg_performance.pdf.

[63] Arkaprava Basu, Jayneel Gandhi, Jichuan Chang, Mark D Hill,
and Michael M Swift. Efficient virtual memory for big memory
servers. ACMSIGARCHComputer Architecture News, 41(3):237–
248, 2013.

[64] Fabien Gaud, Baptiste Lepers, Jeremie Decouchant, Justin Fun-
ston, Alexandra Fedorova, and Vivien Quéma. Large pages
may be harmful on {NUMA} systems. In 2014 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 14), pages 231–
242, 2014.

[65] Yuan Xie. Modeling, architecture, and applications for emerg-
ing memory technologies. IEEE design & test of computers,
28(1):44–51, 2011.

[66] Jingyuan Hu, Xiaokuang Bai, Sai Sha, Yingwei Luo, Xiaolin
Wang, and Zhenlin Wang. Hub: Hugepage ballooning in
kernel-based virtual machines. In Proceedings of the Inter-

national Symposium on Memory Systems, pages 31–37, 2018.

https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/large_pg_performance.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/large_pg_performance.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/large_pg_performance.pdf

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Address Translation with TLB and Its Overhead
	2.2 Huge Page Misalignment Problem
	2.3 Page Coalescing Efforts Invested in Vain

	3 Gemini: Objective and Main Idea
	4 Gemini: Overall Structure and Key Techniques
	4.1 Booking Timeout Value Adjustment
	4.2 Enhanced Memory Allocator (EMA)

	5 Implementation Details
	6 Evaluation
	6.1 Experiment Settings
	6.2 Workload Performance in A Clean Slate VM
	6.3 Workload Performance in An Reused VM
	6.4 Performance Breakdown
	6.5 Applicability and Overhead

	7 Related Work
	8 Conclusion and Future Work
	9 Acknowledgments
	References

