
Pace Control via Adaptive Dropout for Federated Training

A Work-in-Progress Report

Feiyang Wang†, Xiaowei Shang�, Jianchen Shan∗, Xiaoning Ding�
†Department of Mathematics and Computer Science, Rutgers University - Newark Campus, Newark, NJ, USA

�Department of Computer Science, New Jersey Institute of Technology, Newark, NJ, USA
∗Department of Computer Science, Hofstra University, Hempstead, NY, USA

Abstract—This paper proposes a neuron drop-out mechanism
to control the training paces of mobile devices in federated deep
learning. The aim is to accelerate the speed of local training on
slow mobile devices with minimal impact on training quality,
such that slow mobile devices can catch up with fast devices
in each training round to increase the overall training speed.
The basic idea is to avoid the computation of some neurons
with low activation values (i.e., neuron dropout), and dynamically
adjust dropout rates based on the training progress on each
mobile device. The paper introduces two techniques for selecting
neurons, LSH and Max Heap, and a method for dynamically
adjusting dropout rates. It also discusses a few other approaches
that can be used to control training paces.

I. INTRODUCTION

Federated Learning has attracted considerable attention. It

utilizes a large-scale distributed system crossing cloud and

millions of user mobile devices to train a model (e.g., a deep

neural network) with the data on these devices. Compared to

other distributed training systems, user data does not leave

their devices with federated learning, which eliminates users’

privacy concerns. For the federated learning of neural network,

after the initial network structure is established, a central

server running in the cloud is used to start training rounds

and coordinate the training in mobile devices. Specifically,

in each round, the server firstly selects a certain number of

available participating mobile devices, configures the schedule,

and broadcasts neural network parameters to these mobile

devices to initiate their local training. Once local training

finishes, the server aggregates the local model gradients on the

mobile devices to update the global neural network parameters,

which are carried to the next round.

One of the key issues in federated learning is to deal

with the low and heterogeneous computing capabilities on

mobile devices. Compared to conventional distributed systems

for deep learning, which use a cluster of high-end servers

to train a neural network, federated learning relies on the

computing resources on mobile devices. However, the com-

puting resources available to federated training (e.g., available

CPU/GPU cycles, free memory, remaining battery life, etc) are

usually limited on mobile devices, and vary across different

devices and over time. This significantly limits training speed.

This paper explores the techniques that can accelerate

federated training by controlling the training paces on mobile

devices. Without a mechanism controlling the paces, in each

training round, fast devices may spend long time waiting

for slow devices to finish their local training in the current

round before moving to the next round; thus, the training

speed is largely throttled by slow devices. Pace control is to

substantially increase the training speed on slow devices with

minimal impacts on training quality. It is partly motivated by

heterogeneous distributed learning [1], which is designed to

coordinate the learning on heterogeneous resource-constrained

devices. With heterogeneous distributed learning, each com-

puting device employs a neural network with a size that fits

its computing capability; i.e., resource-constrained devices can

implement less accurate but less complex neural networks

than other devices, allowing them to cache up with other

devices. However, heterogeneous distributed learning cannot

be utilized in federated learning, because it requires devices

to share sample parameters, which incur privacy risks and high

communication overhead.

This paper proposes a neuron drop-out mechanism for pace

control in federated deep learning, which can maximize the

total utilization of participating devices to increase training

speed. This mechanism does not require participating devices

to share their data. The basic idea is to avoid the computation

of a proportion of neurons on slow devices, and dynamically

adjust the proportion based on the training progress on each

mobile device. The paper discusses how to select neurons to

drop out and how to adjust dropout rates.

II. TWO NEURON DROPOUT TECHNIQUES

In deep learning, dropping out some neurons in a neural

network can substantially reduce computation workload and

mitigate over-fitting. Previous works have shown that keeping

only the neurons with high activation values (called active

neurons) in training can achieve higher accuracy than normal

dropout [2], [3]. The paper combines two methods to select

active neurons. One is Locality Sensitive Hashing (LSH) [4]–

[6], which is highly efficient and fits best slow mobile devices

because of its high selectivity. The other is a max heap dropout

method, which can select active neurons at a relatively low

selectivity for the mobile devices with moderate speeds. This

section introduces these techniques.

A. LSH Dropout in Sub-Linear Time

When training a neural network, forward propagation can

be described as:

al = f(W lal−1 + bl) (1)

176

2020 IEEE Cloud Summit

978-1-7281-8266-7/20/$31.00 ©2020 IEEE
DOI 10.1109/IEEECloudSummit48914.2020.00036

Authorized licensed use limited to: Hofstra University. Downloaded on March 18,2023 at 20:20:34 UTC from IEEE Xplore. Restrictions apply.

where al and al−1 are the output vectors for layers l and l−1
respectively, bl is the bias vector, W l is the weight matrix, and

f(·) is the activation function (e.g., sigmoid, tanh, or ReLU).

Because f(·) is monotonically increasing when its input is in

(0, 1), al is proportional to wal−1. Thus, finding the neurons

with high activation values can be considered as a maximum

inner product search problem (MIPS), i.e., searching for the

neurons (ni) with the highest inner products between al−1 and

their weights wl
i, i.e, al−1wl

i
T

.

Note that the euclidean distance between wl
i and al−1 is

∥
∥al−1 − wl

i

∥
∥
2
=

∥
∥al−1

∥
∥
2
+
∥
∥wl

i

∥
∥
2 − 2al−1wl

i
T

for a neuron

ni. After the inputs are normalized with weight normalization

[7] for all layers,
∥
∥al−1

∥
∥ and

∥
∥wl

i

∥
∥ are both constants. Thus,

the euclidean distance is
∥
∥al−1 − wl

i

∥
∥
2
= C − 2al−1wl

i
T

,

where C is a constant. This converts the MIPS problem into

to a nearest neighbor search problem, i.e., to find the neurons

with parts of their weight vectors similar to their inputs al−1.

The nearest neighbor search problem can be efficiently

solved utilizing Locality Sensitive Hashing (LSH) family

function h(·). The function calculates the colliding probability

of two vectors a and w, and guarantees that the possibility

monotonically increases with the similarity between the vec-

tors. Thus, it can be used to query the approximately highly

similar vectors.

For a layer l, L hash tables are constructed to find the active

neurons set ASl in sub-linear time. These tables are queried

with al−1 being the querying vector. For each table, a LSH

hash function h(·) is formed by concatenating K independent

hash bits {h1(·), h2(·), ..., hk(·)}. All the neurons with their

weight vectors corresponding to the hash key h(al−1) in these

tables are selected as active neurons.

For LSH, K and L are key parameters. As each hash bit

in the hash key can be viewed as the existence of a certain

“feature” of the querying vector, with a higher K, the items

in the corresponding hash buckets are similar to the querying

vector with a higher probability. Thus, increasing K lowers

“false-positive” in finding high activation neurons. Increasing

L helps reducing “false-negative”, because collecting all the

neurons found in more hash tables reduces the chance that a

neuron with high activation value is missing.

B. Max-Heap Dropout in Linear Time

As an alternative way to select active neurons, after the

activation values have been computed, we can build a max

heap with these values, with which the highest activation

values (and the corresponding neurons) can be quickly located.

The max heap method provides the flexibility of selecting high

activation values at any given selectivity. To select K highest

value neurons from N neurons (selectivity is K/N), the time

complexity is O(N + k ∗ LogN). When k < c ∗ N/log(N),
where c is constant, the time complexity becomes O(N).

III. PACE CONTROL WITH ADAPTIVE NEURON DROPOUT

Figure 1 shows how the training paces are controlled.

During the training, a dropout rate is determined for each

mobile device based on its progress (Subsection III-A). Then,

Training Progress

How far is a device
behind other devices

Report point
(75% of devices have

passed this point)

Report point
(No other devices

has passed it)

Average report point
(Average progress of
all mobile devices)

Fig. 1. Page Control with Dynamic Neuron Dropout

a technique, either LSH or Max Heap, is selected to dropout

neurons (Subsection III-B), LSH for high dropout rates and

Max Heap for low dropout rates.

A. Dynamically Adjusting Dropout Rates

The dropout rate of a mobile device is determined by two

factors: 1) the relative position of a mobile device, i.e., whether

it is a straggler or it is proceeding faster than most of others;

and 2) the training speed difference between the mobile device

and others.

As shown in Figure 1, to determine the first factor, in each

round, we set a fixed number of report points as the landmarks

for progress. When a mobile device reaches a report point, it

reports this progress to the server, and the server sends back

how many participating mobile devices (in percentage) have

passed this report point. The larger the percentage is, the larger

the dropout rate should be.

To determine the second factor for a mobile device, we

first calculate an average value (named average report point)
of the latest report points that have been passed by all mobile

devices. Then, we compute the difference between the average

report point and the current point as the indicator.

Note that, for the mobile devices that are much faster than

other mobile devices, their dropout rates are very low. There

is no need to dropout any neurons for these mobile devices,

because the overall training progress is not determined by

these mobile devices.

B. Neuron Selection with LSH and Max-Heap

Though LSH drop out is highly efficient, two issues must be

addressed to be used to dynamically adjust the training paces

on mobile devices. One is how to maintain high accuracy,

which is a key requirement of pace control. The other is

how to further improve efficiency to minimize the resource

consumption on mobile devices. We address these issues by

combining LSH dropout, Max-Heap dropout and exponential

decay, as we introduce below.

177

Authorized licensed use limited to: Hofstra University. Downloaded on March 18,2023 at 20:20:34 UTC from IEEE Xplore. Restrictions apply.

With LSH, after hash tables have been built with pre-

selected K and L parameters, the selectivity is roughly deter-

mined. Because pace control needs to dynamically change the

dropout rate, it is possible that excessive neurons or insufficient

neurons are selected by LSH, or in other word, the number

of neurons selected by LSH can not match the number of

neurons determined by the desired dropout rate. This issue can

be solved as follows. For a given dropout rate, when enough

active neurons are chosen by LSH, we terminate neurons query

with LSH; when LSH cannot choose enough active neurons,

neurons taken from a random array created beforehand can be

used as supplement.

However, the above solution can reduce accuracy. Espe-

cially, when the number of neurons selected by LSH is

significantly lower than the number of neurons determined by

the desired dropout rate, too many random neurons would be

chosen. In these cases, to guarantee accuracy, the top-k max

heap dropout algorithm is more preferable, though the O(N)
time complexity with Max-Heap is higher than that of LSH

dropout.

With LSH, the cost of updating the hash tables may be

high. After updating gradients, weights change, so do their

hash codes. Thus, hash tables must be updated to reflect

these changes. This incurs high cost, especially on the mobile

devices that are short of resources or filled with data. To

address this issue, we borrow the exponential decay idea in

[8], which exponentially increases the number of iterations

between consecutive hash table updates. However, even with

exponential decay, in the initial stage, hash tables must be

updated frequently, and the costs may still exceed computing

all the neurons in the network. Thus, LSH dropout is used

only when the convergence of the model starts to slow down

after the initial stage and when hash tables can be updated

infrequently. Max Heap dropout can be used when LSH is

inactive.

IV. ALTERNATIVE APPROACHES FOR PACE CONTROL

The key to effective pace control is to adjust the com-

putation workloads on slow mobile devices with minimal

impacts to training quality. While this goal can be achieved by

dropping out neurons with low activation values, it can also be

achieved in other ways, for example reducing the number of

data required in training, and offloading computation to other

devices. This section discusses and compares two possible

approaches in these two directions: common data dropout,

and split learning. Common data dropout looks to be more

promising. The combination of this approach with neuron

dropout can be our future work.

A. Common Data Dropout via LSH

Mobile users generate a huge amount of data. Not all the

data can effectively contribute to model training. For example,

users may have identical or similar data, because they may

share photos/video clips or download similar contents from

internet. In federated learning, local training is performed in-

dependently on each individual mobile device. A data sample

… Data ID

00 … 01 2,5,16

…. … … 3, 19

11 … 10 4,55

… Data ID

01 … 10 7, 8, 9

…. … … 4, 5

11 … 10 17, 26

Hashed keys are
exchanged between
devices to search for

common data

The data samples
corresponding to matched

keys are common data
matched keys

common data hashed keys:
(11, …, 10) ….

Fig. 2. Reducing Common Data with LSH in Page Control

on a mobile device can effectively contribute to the local

model training even though it is identical to those on other

devices. However, its contribution to global model training

gradually diminishes after the local model gradients on the

devices with similar data have been aggregated into the global

model. The reason is that similar data tend to change local

gradients in a similar way, and FedAvg is usually used in

the aggregation. In one extreme case where two devices hold

exactly the same local data, the aggregated gradients would

be same as the gradients from any device’s local training.

Therefore, at the beginning of communication round, reducing

common data among users can be an effective mechanism to

accelerate training speed.

For federated learning, it is not a valid approach to collect

data from users and then reduce common data. Thus, we

propose to leverage the following advantages of LSH to detect

and reduce common data. First, the LSH family hash function

is practically infeasible to invert. Only exchanging LSH hash

function values between users may not jeopardize the privacy

in raw data. Second, the innate capability of LSH in clustering

similar items makes it highly efficient in detecting common

data.

As shown in Figure 2, each device can construct a LSH

table for all local devices’ data sets. In each round, a certain

number of devices are randomly selected. They broadcast their

hashed key vectors to each other, based on which common

data is detected. Then, these devices broadcast the hashed key

vectors of common data to all other devices, which mark their

common data on their data hash table. The central server can

configure faster devices to train more common data and adjust

the size of training data for slow worker at next epoch.

Compared to dropping out neurons, dropping out common

data may be more efficient and ideal when the model is trained

on the massive and similar users’ data with relatively short-

length features for low communication overhead. Beside it,

since data rarely change during the training, there is no need

to update data hash tables repeatedly.

178

Authorized licensed use limited to: Hofstra University. Downloaded on March 18,2023 at 20:20:34 UTC from IEEE Xplore. Restrictions apply.

B. Pace Control via Split Learning

Central server/ powerful device

Resource-constrained device

Input layer

Cutting layer

Output layer

Label

Fig. 3. Split Learning Configuration

Split learning [9] allows a device to offload the computation

of some layers in its neural network to other devices. For

privacy reasons, only the computation in middle layers are

offloaded. Figure 3 shows that each client trains a partial

network up to a specific cutting layer, the output would be

sent to server/device for continue training, and eventually,

server/device would send the input of end layer back to client

in order to avoid label sharing. For pace control, a slow

device may choose to offload the computation to the central

server or to other participating devices that are more powerful.

Compared to neuron dropout and common data dropout, split

learning does not need to sacrifice the quality of data or model

and no high cost to set up (e.g., building hash tables). However,

because of the possible intensive information between cutting

layers in neural network and the high frequency of data

exchanging, the communication overhead can be considerable

or even prohibitive. Therefore, split learning will be more

suitable when the communication is not the bottleneck, i.e. a

stable and resilient network being provided for all participants

during whole process.

V. SUMMARY AND CONCLUSION

The pace-control mechanism presented in the paper dynam-

ically adjusts the training speeds of mobile devices. It tunes

up dropout rates for the mobile devices lagging behind to

accelerate the training. It tunes down dropout rates for the

mobile devices that train the model with high speed in order to

improve model accuracy. At the same time, dropout is carried

out to keep the neurons with high activation values. In classical

back propagation algorithms, though not strictly proof, the

connections between high activation neurons are more likely to

produce higher gradients. Therefore, sparse gradient generated

by the selected active neurons can effectively contribute to the

convergence of the global model [10], [11].

This mechanism may bring three benefits to federated

learning: 1) accelerating convergence; 2) improving quality

of the final model; and 3) reducing the resource and energy

consumption on mobile devices.

Compared to other solutions that rely on offloading data

or workloads from stragglers to more power servers or peer

devices, our mechanism achieves the above benefits while

keeping user privacy to the largest extent.

REFERENCES

[1] M. Rapp, R. Khalili, and J. Henkel, “Distributed learning on
heterogeneous resource-constrained devices,” ArXiv e-prints, 2020,
cs.LG/2006.05403.

[2] A. Makhzani and B. Frey, “Winner-take-all autoencoders,” ArXiv e-
prints, 2015, cs.LG/1409.2752.

[3] A. Makhzani and B. Frey, “k-sparse autoencoders,” ArXiv e-prints, 2014,
cs.LG/1312.5663.

[4] R. Spring and A. Shrivastava, “Scalable and sustainable deep learning
via randomized hashing,” ArXiv e-prints, 2016, stat.ML/1602.08194.

[5] J. Gao, H. V. Jagadish, W. Lu, and B. C. Ooi, “Dsh: Data sensitive
hashing for high-dimensional k-nnsearch,” in Proceedings of the 2014
ACM SIGMOD International Conference on Management of Data,
SIGMOD ’14, p. 1127–1138, 2014.

[6] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high dimen-
sions via hashing,” in Proceedings of the 25th International Conference
on Very Large Data Bases, VLDB ’99, (San Francisco, CA, USA),
p. 518–529, Morgan Kaufmann Publishers Inc., 1999.

[7] T. Salimans and D. P. Kingma, “Weight normalization: A simple
reparameterization to accelerate training of deep neural networks,” ArXiv
e-prints, 2016, cs.LG/1602.07868.

[8] B. Chen, T. Medini, J. Farwell, S. Gobriel, C. Tai, and A. Shrivas-
tava, “Slide : In defense of smart algorithms over hardware accel-
eration for large-scale deep learning systems,” ArXiv e-prints, 2020,
cs.DC/1903.03129.

[9] P. Vepakomma, O. Gupta, T. Swedish, and R. Raskar, “Split learning
for health: Distributed deep learning without sharing raw patient data,”
ArXiv e-prints, 2018, cs.LG/1812.00564.

[10] A. F. Aji and K. Heafield, “Sparse communication for distributed
gradient descent,” Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, 2017.

[11] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally, “Deep gradient
compression: Reducing the communication bandwidth for distributed
training,” ArXiv e-prints, 2020, cs.CV/1712.01887.

179

Authorized licensed use limited to: Hofstra University. Downloaded on March 18,2023 at 20:20:34 UTC from IEEE Xplore. Restrictions apply.

