
Diagnosing Virtualization Overhead for
Multi-threaded Computation on Multicore Platforms

Xiaoning Ding Jianchen Shan
Department of Computer Science, New Jersey Institute of Technology

Email: {xiaoning.ding, js622}@njit.edu

Abstract—Hardware-assisted virtualization, as an effective
approach to low virtualization overhead, has been dominantly
used. However, existing hardware assistance mainly focuses on
single-thread performance. Much less attention has been paid
to facilitate the efficient interaction between threads, which
is critical to the execution of multi-threaded computation on
virtualized multicore platforms. This paper aims to answer two
questions: 1) what is the performance impact of virtualization
on multi-threaded computation, and 2) what are the factors
impeding multi-threaded computation from gaining full speed
on virtualized platforms. Targeting the first question, the paper
measures the virtualization overhead for computation-intensive
applications that are designed for multicore processors. We
show that some multicore applications still suffer significant
performance losses in virtual machines. Even with hardware
assistance for reducing virtualization overhead fully enabled, the
execution time may be increased by more than 150% when the
system is not over-committed, and the system throughput can be
reduced by 6x when the system is over-committed. To answer
the second question, with experiments, the paper diagnoses the
main causes for the performance losses. Focusing the interaction
between threads and between VCPUs, the paper identifies and
examines a few performance factors, including the intervention
of the virtual machine monitor (VMM) to schedule/switch virtual
CPUs (VCPUs) and to handle interrupts required by inter-core
communication, excessive spinning in user space, and cache-
unaware data sharing.

Keywords—virtualization; performance; multicore; hardware
assistance;

I. INTRODUCTION

Applications usually have lower performance on virtual
machines than on physical machines, due to the overhead
introduced by virtualization. Virtualization overhead is one of
the major concerns when people consolidate their workloads
using virtual machines (VMs) or migrate their workloads into
virtualized clouds. Processors, as primary system resources, are
usually first evaluated before other resources. Thus, identifying
and reducing CPU virtualization overhead are a main focus of
virtualization technology [1]–[6].

Hardware-assisted virtualization is an effective method to
reduce virtualization overhead, and has been widely used
in almost all mainstream virtualization platforms. Hardware
assistance, especially that from hardware processors (e.g. Intel
VT-x [7] and AMD-V [3]), makes virtual devices behave and
perform identically to the corresponding hardware devices for
improved performance. However, existing hardware assistance
for CPU virtualization is mainly focused on single thread per-
formance. While various types of hardware support has been
developed to accelerate each individual thread (e.g., the support

for nonfaulting accesses to privileged states and the support
for accelerating address translation), little attention has been
paid to efficient multi-threaded execution on virtual machines,
especially the efficient interaction between threads. CPU vir-
tualization usually incurs minimal performance penalty for
single-thread applications on latest processors. But, as the
paper will show, multi-threaded applications may suffer sub-
stantial performance losses, even with the hardware assistance
for reducing virtualization overhead fully enabled.

For example, due to the lack of facilitates to efficiently
coordinate VCPUs, a multicore processor is usually virtualized
into a set of single-core virtual CPUs (VCPUs) that are sched-
uled independently by the virtual machine monitor (VMM).
This mismatch between multicore processors and virtual CPUs
may not slow down single-thread applications. But it penalizes
multi-threaded applications, which are designed and optimized
for multicore processors and expect VCPUs to behave identi-
cally to real computing cores.

The paper measures and diagnoses the execution overhead
of multi-threaded applications on virtualized multicore plat-
forms with the latest hardware assistance for virtualization.
With the maturity of hardware-assisted virtualization, virtu-
alization overhead has been significantly reduced for single-
thread executions, and the intent of further reducing the
virtualization overhead for computation-intensive applications
is losing its momentum recently. With the measurement, we
want to motivate architects and system designers to further
reduce virtualization overhead for multi-threaded applications,
and with the diagnosis, we want to find out a few promising
directions for developing new techniques and/or optimizing
existing designs. The contributions of the paper are as follows.

First, the paper shows that, while single-thread computation
has decent performance on virtual machines, multi-threaded
computation still suffer significant performance losses. The
execution time may be increased by more than 150%, even
when the host system is not over-committed. The performance
loss is not due to resource sharing or contention. When the host
system is over-committed, the overhead increases significantly
and the system throughput may be reduced by as much as 6x.
This clearly shows that there is still strong demand for further
reducing the virtualization overhead for computation-intensive
applications.

Then, with experiments, the paper reveals a few factors
degrading the performance of multi-threaded computation on
virtualized multicore platforms. As far as we know, some
factors have not been identified or studied in other literatures.
Specifically, the paper identifies the following performance-
degrading factors: 1) VCPU rescheduling/switching overhead

2015 IEEE 7th International Conference on Cloud Computing Technology and Science

978-1-4673-9560-1/15 $31.00 © 2015 IEEE

DOI 10.1109/CloudCom.2015.102

226

Authorized licensed use limited to: Hofstra University. Downloaded on March 18,2023 at 20:30:41 UTC from IEEE Xplore. Restrictions apply.

incurred by VCPU state changes; 2) the overhead incurred by
handling inter-processor interrupts (IPIs) cannot be eliminated
even with hardware support such as Advanced Programmable
Interrupt Controller virtualization (APICv) [8]; 3) excessive
VCPU spinning in user space cannot be eliminated with
hardware support such as Pause-Loop Exiting (PLE) [9]; 4)
VCPU rescheduling/switching overhead incurred by preempt-
ing spinning VCPUs; 5) opaque cache architectures in virtual
machines prevent efficient data sharing among threads.

Finally, the paper discusses a few techniques that can be
used to reduce the overhead caused by the above factors.
To our best knowledge, this is the first paper that system-
atically measures the virtualization overhead and diagnoses
the performance degradation of multi-threaded applications on
the systems with the latest hardware assistance for efficient
virtualization.

II. EXPERIMENTAL SETTINGS AND METHODOLOGY

We conducted our experiments on two Dell PowerEdge
servers. One is a R720 server with 64GB of DRAM and two
2.40GHz Intel Xeon E5-2665 processors, each of which has 8
cores. The other is a R420 server with 48GB of DRAM and a
2.50GHz Intel Xeon E5-2430 V2 processor with 6 Ivy Bridge-
EN cores. We created virtual machines on the servers. The
VMM is KVM [10]. The host OS and the guest OS are Ubuntu
version 14.04 with the Linux kernel version updated to 3.19.8.
CPU power management can reduce application performance
on VMs [11]. To prevent such performance degradation, in the
experiments, we disabled the C states other than C0 and C1
of the processors, which have long switching latencies.

We selected the benchmarks in PARSEC 3.0 and
SPLASH2X suites in the PARSEC benchmark package [12]1.
We compiled the PARSEC and SPLASH2X benchmarks using
gcc with the default settings of the gcc-pthreads configuration
in PARSEC 3.0. We used the parsecmgmt tool in the PARSEC
package to run them with native inputs. In the experiments,
unless stated otherwise, When we ran a benchmark in a VM we
set the minimum number of threads in each benchmark equal
to the number of VCPUs in the VM with the “-n” option. We
pre-warmed the buffer cache in the guest operating system to
minimize I/O operations. Please note that the memory capacity
(16GB) of a VM is large enough to buffer the input and output
data sets of the benchmark and to provide the memory space
for its execution.

We carried out two groups of experiments. In the first
group of experiments, we ran benchmarks with default system
settings. The hardware assistance for reducing virtualization
overhead (e.g. Extended Page Tables (EPT) and Pause-Loop
Exiting (PLE)) was fully enabled in KVM. We ran each
benchmark under three different scenarios: 1) on a VM with
dedicated hardware resources, 2) on multiple VMs sharing
hardware resources and with one instance of the benchmark
running in each VM, and 3) on the physical machine hosting
the VMs. With these experiments, we want to compare the
performance of the benchmark under these scenarios and show
the overhead incurred by virtualization.

1We did not select benchmark cholesky in SPLASH2X since its execution
time is too short (less than 0.01s) and varies significantly across different runs.

In the second group of experiments, we reran the bench-
marks suffering large performance degradation. We want to
diagnose the root causes for the performance degradation
and reveal the factors causing virtualization overhead. In the
experiments, we used the following methods to diagnose the
executions. In some experiments, we temporarily changed
some system settings when we execute a benchmark. We
selected the settings that can remove or alleviate certain types
of virtualization overhead. For example, by disabling PLE
support, we can reduce the overhead due to handling the
VM EXITs triggered by PLE events. In some other experi-
ments, we used the perf tool for Linux and KVM to profile
the executions [13]. In some cases, neither of the above
methods could identify the root causes. In these cases, we
tried to manually modify the benchmarks and examine the
performance difference.

III. MEASURING VIRTUALIZATION OVERHEAD

This section shows the virtualization overhead of the
benchmarks under two different scenarios. First, we measure
the virtualization overhead when the physical machine is not
over-subscribed. Only one VM was launched in the experi-
ments, and the number of VCPUs was equal to the number of
cores on the physical machine hosting the VM. We compare
the performance of the benchmarks on the VM against that on
the physical machine.

Figure 1 shows the slowdowns of the benchmarks due to
virtualization on the R720 server for both single-thread execu-
tions (i.e., -n 1) and multi-threaded executions (16 threads are
used, i.e., -n 16). The figure clearly shows that multi-threaded
executions were slowed down on virtual machines by much
larger percentages than single-threaded executions. On aver-
age, these benchmarks were slowed down by 4% with single-
thread executions and by 21% with 16-thread executions.
The slowdowns of multi-threaded executions vary across the
benchmarks in a very large range, from less than 1% (canneal,
radiosity, and lu ncb) to more than 150% (dedup). While half
of the benchmarks were slowed down slightly by less than
10%, seven benchmarks were slowed down substantially by
more than than 20%, and three benchmarks were slowed down
by more than 50%.

Then, we measure the virtualization overhead when the
physical machine is over-subscribed. We launched multiple
VMs and run an instance of the benchmark in each VM. We
set the number of VCPUs in each VM equal to the number of
cores in the physical machine and set the number of threads
in each instance equal to the number of the VCPUs in a VM.
Since we launched multiple VMs, the physical cores were
time-shared by VMs. Thus, instead of using the performance
of each individual benchmark instance, we use system through-
put to analyze virtualization overhead. Specifically, we use
Weighted-Speedup to measure the system throughput, which
is the aggregated speedup of the benchmark instances. The
speedup is relative to the execution of the benchmark on a VM
when the system is not over-subscribed. Thus, the scenario
with only one VM launched and one instance running on
the VM serves as the baseline, and the throughput under the
baseline scenario is 1. For example, if there are two instances
of the benchmark running on two VMs and the execution time
of the benchmark is doubled, the Weighted-Speedup is also 1

227

Authorized licensed use limited to: Hofstra University. Downloaded on March 18,2023 at 20:30:41 UTC from IEEE Xplore. Restrictions apply.

 0

 10

 20

 30

 40

 50

 60

 70

blackscholes

bodytrack

canneal

dedup
facesim

ferret
�uidanimate

raytrace

streamcluster

swaptions

vips
x264

freqmine

 barnes

�t fmm
ocean_cp

ocean_ncp

radiosity

radix
raytrace

volrend

water_nsquared

water_spatial

lu_cb
lu_ncb

Sl
ow

do
w

n
(%

)

173

PARSEC SPLASH2X

1 thread
16 threads

Fig. 1. The slowdowns of PARSEC benchmarks and SPLASH2X benchmarks in a 16-VCPU virtual machine relative to their executions on the 16-core R720
server.

 0

 0.5

 1

 1.5

 2

 2.5

dedup
facesim

streamcluste

barne
ocean_cp

ocean_ncp

volrend

Th
ro

ug
hp

ut

1 VM
2 VMs
4 VMs

Fig. 2. The throughput of PARSEC benchmarks and SPLASH2X benchmarks
when the number of VMs was increased from 1 to 4

(i.e., 0.5+0.5), indicating that the throughput is the same as
that under the baseline scenario. A weighted-speedup larger
than 1 indicates higher throughput than the baseline.

In the experiments, we gradually increased the number of
VMs (and the number of benchmark instances) from 1 to 4
before the physical memory is filled. Figure 2 shows how the
system throughput changes for the benchmarks which suffer
high virtualization overhead (slowed down by more than 20%
when the system is not over-subscribed). Since VCPUs might
not be always active when these benchmarks ran, the system
was not fully loaded when there were fewer active VCPUs than
physical cores. Increasing the number of VMs helped making a
full utilization of the hardware resources and thus led to higher
throughput. We observed this trend with some benchmarks.
For example, the system throughput was increased by 74%
for facesim when the number of VMs was increased to 4.

However, we also observed that, with a few benchmarks,
the system throughput reduced dramatically when there was
more than one VM. For example, when the number of VMs
was increased to 2, surprisingly the throughputs of dedup,
streamcluster, and volrend, were reduced by about 6x, 2x,
and 3x, respectively. Please note that, since the baseline is the
performance with the system hosting 1 VM, the performance
degradation is in addition to that incurred by the virtualization
overhead in the baseline scenario.

Under both scenarios, the performance degradation was
measured when the same amount of physical resource was used
(i.e., all the resource on the physical machine). Thus, the per-
formance degradation was due to virtualization overhead, in-
stead of short of physical resource. The experiments evidently

show that the virtualization overhead is still high for some
multicore applications and must be effectively reduced. While
some execution overhead is expected on virtual machines,
the large performance degradation observed in the above
experiments is not normal and makes virtualized platforms an
inefficient choice for some multi-threaded workloads.

To better understand the virtualization overhead, we have
investigated the possible causes for the performance degra-
dation. Since I/O operations are minimized and memory re-
sources are not oversubscribed, we concentrate on examining
the factors related to the virtualization of hardware resources
on processors. Because only some multi-threaded executions
show large slowdowns, we do not investigate the factors that
affect both single-thread and multi-threaded applications (e.g.,
increased pressure on TLBs due to the adoption of techniques
such as EPT). Instead, we focus on the factors related to the
interaction between threads and between VCPUs.

IV. DIAGNOSING VIRTUALIZATION OVERHEAD

In this section, we analyze and diagnose the performance
degradation of the multi-threaded applications running on
virtual machines. We want to find out the factors degrading
performance and to what degree they can degrade performance.
Thus, we select the workloads with large performance degra-
dation in the experiments in the previous section.

We focus our investigation on the interaction between
threads and between VCPUs. Specifically, threads may interact
with each other using various types of IPCs. They may
also share or exchange data through shared memory space.
Processors/cores usually rely on Inter Processor Interrupts
(IPIs) to coordinate with each other. They access shared data
in shared caches. If there are multiple caches holding multiple
copies of shared data, they must keep the copies consistent.
With experiments, we reveal that IPCs, IPIs, and data sharing
can incur high virtualization overhead in different ways on
virtual machines. In the following several subsections, we first
isolate the factors degrading performance and examine their
overhead when the system is not over-subscribed. Then we
analyze the executions with the system over-subscribed with
multiple VMs.

A. Overhead due to Switching/Rescheduling Idle VCPUs

Multi-threaded computation usually runs on multiple
VCPUs in a virtual machine. Some VCPUs become idle when

228

Authorized licensed use limited to: Hofstra University. Downloaded on March 18,2023 at 20:30:41 UTC from IEEE Xplore. Restrictions apply.

 0

 20

 40

 60

 80

 100

dedup
facesim

streamcluste

barne
ocean_cp

ocean_ncp

volrend

Sl
ow

do
w

n
(%

)
173 180

Host:PLE/on, Guest:idle=halt
Host:PLE/on, Guest:idle=poll
Host:PLE/o�, Guest:idle=halt
Host:PLE/o�, Guest:idle=poll

Fig. 3. Slowdowns of the benchmarks are reduced after the overhead incurred
by switching/rescheduling idle VCPUs and spinning VCPUs is removed.

there lacks runnable tasks, and are activated when some tasks
become runnable. To make efficient utilization of hardware
resources, the VMM must be notified to handle these state
changes of VCPUs. The overhead is thus incurred.

Frequent VCPU state changes can be caused by blocking
synchronization, with which a thread waiting for an event
blocks itself by giving up its execution resources (mainly the
CPU) spontaneously. A blocked thread relies on the operating
system to wake it up when the event happens. Blocking makes
the number of active threads in a virtual machine change dy-
namically. The number of VCPUs employed by these threads
also changes accordingly. When the number of active threads
drops below the number of active VCPUs, some VCPUs will
become idle. When the number of active threads increases
beyond the number of active VCPUs, idle VCPU must be acti-
vated. For example, when a thread calls pthread mutex lock()
to request a mutex that is held by another thread, it will block
itself through appropriate library/system calls, waiting for the
release of the mutex. If there are no other threads ready to
run in the system, the VCPU running the thread becomes
idle. In the guest OS, an idle VCPU executes the idle loop,
which typically calls a special instruction (e.g., HLT on Intel 64
and IA-32 architecture (“x86”) platforms). When the mutex is
released, the threads waiting for it are woken up. To maximize
throughput, the guest OS may activate idle VCPUs to schedule
waking threads onto them.

In a virtualized environment, the special instruction and
the operations to activate idle VCPUs must be handled by
the VMM, even though they would be carried out directly
by hardware in a non-virtualized environment. When software
issues the special instruction to place a particular VCPU
into the idle state, the core running the VCPU will raise an
exception and trap into the VMM. The VMM may take this
opportunity to reschedule other VCPUs onto this idling core.
When a thread is ready to run on an idle VCPU, the VMM
must activate the VCPU and reschedule it onto a physical
core. These operations incur much higher cost (e.g., usually
a few microseconds) than those required in a non-virtualized
environment to switching an idle core back (e.g., switching
from C1 to C0 states takes no more than 1 microsecond on
contemporary Intel Xeon CPUs).

To evaluate the overhead caused by switching and
rescheduling idle VCPUs, we change the idling operation in
the guest OS. Instead of having an idle VCPU call HLT

instruction, we make it enter a polling idle loop. In this way,
the overhead incurred by descheduling and rescheduling idle
VCPUs can be avoided. Thus, the overhead can be indicated
by comparing the performance of the benchmarks before and
after the change.

We select the benchmarks with slowdowns larger than 20%
with the default idling operation, and re-run them with polling
idle loop. Figure 3 compares the slowdowns of the benchmarks
with different idling operations. By removing the overhead
of descheduling and rescheduling idle VCPUs (polling idle
loop), the slowdowns of the benchmarks can be significantly
reduced2. The average slowdown is reduced from 59% to
35%. Among these benchmarks, dedup receives the largest
performance improvement, and its slowdown is reduced from
173% to 103%. The slowdown of volrend is reduced by the
largest percentage (about 2/3 of the slowdown is removed).

In real practice, the performance degradation due to han-
dling idle VCPUs can be reduced by reducing the cost of
context switches. There have been some enhancements adopted
in KVM to reduce such cost (e.g., by reducing the cost of
saving and restoring FPUs) [14]. For this reason, compared
to the measurement that we performed earlier [15], handling
idle VCPUs now causes smaller performance degradation. This
shows the effectiveness of these enhancements. However, the
experiments in this section also show that the overhead of
handling idle VCPUs can still cause significant performance
degradation to some applications and should be further re-
duced.

B. Overhead due to Switching/Rescheduling Spinning VCPUs

After the overhead to handle idle VCPUs has been re-
moved, the benchmarks still suffer some performance losses.
To identify the causes, we continued to examine the overhead
caused by switching and rescheduling spinning VCPUs.

VCPU spinning is usually caused by spinning synchro-
nization, with which a thread repeatedly checks some con-
dition (e.g., the value of a shared variable) to determine if
it can continue. The spinning may be initiated explicitly by
the program, and the thread remains in user space during
spinning. It may also be initiated by the OS kernel when
the execution of the thread traps into the kernel. On virtual
machines, spinning may cause the Lock-Holder Preemption
problem (LHP). LHP happens when a VCPU is descheduled
from the host platform while it is holding a lock. Since the
VCPU is descheduled, it cannot proceed and the lock cannot
be released quickly. Thus, other VCPUs that are waiting on the
lock must spin until this descheduled VCPU is rescheduled.
The spinning, however, prevents the descheduled VCPU from
being rescheduled quickly. This forms a situation of live-lock
and significantly reduces system throughput. This live-lock
situation may also be caused by spinning in synchronization
primitives other than spinlocks (e.g., barriers) on virtualized
platforms. For brevity, we use LHP-like problems to refer to

2Note that system setting changes in this section are for diagnosis purposes
and cannot be applied to general practice. While some changes may be used
to improve performance in some specific scenarios (e.g., when the system is
under-subscribed), they may cause serious performance degradation in other
scenarios (e.g., when the system is over-subscribed).

229

Authorized licensed use limited to: Hofstra University. Downloaded on March 18,2023 at 20:30:41 UTC from IEEE Xplore. Restrictions apply.

the lock holder preemption problem and other similar problems
caused by spinning3.

To deal with LHP-like problems, hardware solutions (such
as Intel pause-loop-exiting (PLE) support [16]) have been
implemented on processors. They detect VCPUs that have been
spinning for a while and preempt these VCPUs. Thus, the
VMM can involve to reallocate the resources to other VCPUs
that can make progress, e.g., the VCPUs holding the locks.

However, spinning is usually used to replace blocking in
synchronization primitives for higher performance. Preempting
spinning VCPUs actually changes spinning back to blocking.
Since the hardware support, such as PLE, preempts VCPUs
only based on the lengths of spinning peroids, it may degrade
performance if spinning VCPUs are preempted when there are
not LHP-like problems. For example, when CPU cores are
not over-subscribed, LHP-like problems will not happen. Even
on an over-subscribed system, it is still possible that spinning
VCPUs are preempted when they are about to finish spinning.
In such cases, preempting spinning VCPUs introduces unnec-
essary overhead.

To test whether the PLE support causes any performance
degradation, we disabled PLE support in KVM and re-ran
the experiments. The slowdowns of the benchmarks (relative
to their executions on the physical machine) are shown in
Figure 3. When PLE support is disabled, the performance is
only slightly improved. When polling idle loop is used, the
average slowdown is lowered to 29% (from 35%) by disabling
PLE support. With the default idling operation, disabling PLE
reduces the average slowdown to 56% (from 59%). Disabling
PLE support is most effective for ocean ncp, which only suf-
fers the virtualization overhead caused by preempting spinning
VCPUs. By disabling PLE, its slowdown can be reduced from
28% to 8%.

The experiments show that preempting spinning VCPUs
can slightly reduce performance in the cases where there are
no LHP-like problems. For a small number of applications
such as ocean ncp, it may substantially degrade performance.
When the number of VCPUs in a VM keeps increasing in
the future (e.g., Amazon EC2 now provides instances with 40
VCPUs), synchronization will become more frequent and lock
contention will also be more intensive. This may increase the
chances of spinning VCPUs being preempted, as well as the
performance degradation. For example, people have observed
that it takes 369s to boot a 80-VCPU VM with PLE enabled,
while it takes only 25s with PLE disabled [17].

C. Overhead due to Inter-VCPU Coordination

We notice that, after removing the virtualization overhead
caused by handling idle VCPUs and spinning VCPUs, though
the slowdowns are substantially lowered (from 59% to 29%
on average), the selected benchmarks still suffer some perfor-
mance degradation on virtual machines. The average slowdown

3Synchronization primitives may combine spinning and blocking operations
— a thread spins for a period of time, and if the expected event has not happen,
it blocks itself. Usually, the spinning lasts only a brief period of time. Thus,
the spinning will not cause LHP-like problems, and the hardware support (e.g.
PLE) dealing with LHP-like problems does not detect or interrupt such short-
period spinning. Since only blocking operations incur virtualization overhead
with this combined approach, the paper does not consider the spinning in these
synchronization primitives.

is higher than that of their single-thread executions (7%). This
is largely due to dedup, which suffers a 108% slowdown with
16-thread executions but only 10% slowdown with single-
thread executions. For the selected benchmarks other than
dedup, though their 16-thread executions are also slowed down
by larger percentages than their single-thread executions, the
differences between the slowdowns are not as significant as
dedup. Without dedup, the average slowdown is 15% for 16-
thread executions and 6% for single-thread executions.

To identify the factors causing the remaining slowdowns,
especially that of dedup, we used perf to profile the executions
of the benchmarks, and found that most VM EXITs were
caused by the accesses to Advanced Programmable Interrupt
Controller (APIC). These APIC accesses are mainly incurred
by sending and receiving rescheduling inter-processor inter-
rupts (IPIs) and TLB shootdown IPIs. A rescheduling IPI is
for a CPU to notify another CPU to perform rescheduling. This
usually happens when there is a thread to be activated on the
recipient CPU. A TLB shootdown IPI is for a CPU to notify
other CPUs to flush TLB entries (i.e., “TLB shootdown”). This
usually happens when a CPU flushing a TLB entry needs to
flush the TLB entries on other CPUs. When a CPU receives
an IPI, it must acknowledge (ACK). Then, it signals End-Of-
Interrupt (EOI) at the completion of the interrupt service. On
a physical machine, the OS sends and receives IPIs, as well
as the ACKs and EOIs, by accessing APIC registers, and the
APIC hardware delivers them. But on virtual machines, the
VMM must intercept the accesses, process the requests, and
deliver the IPIs/ACKs/EOIs. This makes the operations much
more expensive on virtual machines than on physical machines.

With existing hardware design and system software design,
the overhead caused by APIC accesses cannot be completely
isolated. To estimate the overhead, we leverage the APIC
virtualization (APICv) support introduced recently in Ivy
Bridge-EP processors [8]. The support reduces the overhead
of hardware interrupts on virtual machines by processing some
operations relating interrupts and APIC (e.g., read accesses)
in hardware without triggering VM EXITs. Since the APICv
support is not available on the R720 server, we repeat the
experiments on the R420 server. To clearly demonstrate the
overhead of APIC accesses, the PLE support is turned off in
KVM, and the polling idle loop is selected in the VM. With the
experiments, we compare the performance of the benchmarks
with APICv turned off and on.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

APICv o� APICv on
 0
 20
 40
 60
 80
 100
 120
 140
 160
 180

Sl
ow

do
w

n
(%

)

VM
_E

XI
Ts

 P
er

 S
ec

on
d

(K
)Slowdown

VM_EXIT

Fig. 4. Slowdowns of dedup and the numbers of VM EXITs per second
incurred by APIC accesses when APICv is turned off and on. The number of
VCPUs in the VM and the number of threads in dedup are 4.

We are most interested in the performance of dedup, since
it has the largest slowdown and can show the overhead in-
curred by APIC accesses more clearly than other benchmarks.

230

Authorized licensed use limited to: Hofstra University. Downloaded on March 18,2023 at 20:30:41 UTC from IEEE Xplore. Restrictions apply.

Figure 4 shows the slowdowns of dedup and the numbers of
VM EXITs per second due to APIC accesses. With APICv
enabled, the number of VM EXITs is reduced by 52%. The
slowdown of dedup is reduced roughly proportionally by
47%. However, even with APICv enabled, dedup still incurs
frequent VM EXITs (about 20K VM EXITs per second on
each core) due to frequent APIC accesses, and thus still suffers
substantial performance degradation. The experiments show
that the VM EXITs caused by APIC accesses can significantly
reduce application performance on virtual machines. Though
APICv can help reducing the cost, there is still much space
for further improvement.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

dedup streamcluster volrend

Th
ro

ug
hp

ut

2VM
2VM,No Spin

4VM
4VM,No Spin

Fig. 5. Throughput of dedup, streamcluster, and volrend when the system is
oversubscribed.

D. Overhead due to Spinning in User Space

In this subsection, we investigate the throughput degrada-
tion when the system is over-subscribed with multiple VMs
running dedup, streamcluster, or volrend. We were surprised
to observe their dramatic performance degradation shown
in Figure 2. By carefully profiling the execution of these
benchmarks, we found a significant portion of execution
time was spent on spinning with streamcluster and volrend,
though the PLE support was enabled. It turned out that
PLE only detects and preempts VCPUs spinning in kernel
mode (CPL=0) [9]. For spinning synchronization in user space
(e.g., pthread spin lock), PLE cannot help preventing LHP-
like problems.

To isolate the performance degradation due to the spinning
in user space, we manually modified the source code of these
three benchmarks and replaced spinning synchronization with
blocking synchronization. As shown in Figure 5, the through-
put of streamcluster is increased to 1.04 with 2 VMs and
1.06 with 4VMs, indicating that the performance degradation
with the stock streamcluster benchmark is mainly caused by
VCPU spinning in user space. Though the throughput of
volrend is increased by almost 2x, it is still much lower
than 1. This indicates that VCPU spinning at the user level
is one of the major factors for the throughput degradation.
For dedup, VCPU spinning is not the major cause for the
degradation. its throughput is only increased by 30% after the
modification. Profiling shows that dedup spends over 85% of
its execution time inside the guest OS kernel calling function
smp call function many, which sends IPIs to VCPUs to do
operations such as TLB shootdowns. The main cause of
the throughput degradation of dedup is that the system is
overwhelmed by processing APIC accesses and routing IPIs.

E. Overhead due to Cache-Unaware Virtualization

Existing virtualization technology gives little consideration
or support to cache optimization and management on virtual
machines. For example, the actual architecture of hardware
caches is not available on virtual machines. The information
about cache resources available to a VCPU is either opaque or
misleading. Although this simplifies the design of VMMs, it
complicates cache optimization in virtual machines or makes it
impossible to do cache optimization. For example, cache-aware
scheduling in Linux [18] and cache-aware task group [19] need
concrete knowledge on cache structure. With existing virtual-
ization technology, these techniques can hardly be performed
on virtual machines.

 0

 20

 40

 60

 80

 100

dedup
facesim

streamcluster

barne
ocean_cp

ocean_ncp

volrend

Sl
ow

do
w

n
(%

)

Cache-aware
Cache-unaware

Fig. 6. Comparison of the slowdowns of the benchmarks when threads in
the same benchmark instance share the last level cache and when they do not.

To illustrate the performance loss caused by cache-unaware
virtualization, we perform the following experiments. We
launch two instances of the same benchmark and run them in
parallel. The minimum number of threads in each instance is
set to 8. We run the instances in three scenarios: (1) on the 16-
core R720 server with one instance on each processor; (2) on a
16-VCPU virtual machine with the threads in the same instance
scheduled on the VCPUs running on the cores of the same
physical processor, and (3) on a 16-VCPU virtual machine
without any restriction on the VMM scheduling VCPUs or
the guest OS scheduling threads. In scenario 2, the threads in
the same instance can share the last level cache (LLC) on the
processor, while in scenario 3 they may not.

For each benchmark, we calculate the slowdowns of its
executions in scenario 2 and scenario 3, relative to its execution
in scenario 1. Figure 6 compares the slowdowns. In scenario
2, by sharing the last level cache, the threads in the same
benchmark instance can exchange data more efficiently and
incur less traffic between the two CPU sockets. Thus, the
executions show higher performance in scenario 2. Among
these benchmarks, dedup’s slowdown is reduced by the largest
percentage. This is because dedup uses a pipelined program-
ming model and most of its data is shared by the threads
working at different pipeline stages. In scenario 3, without
cache sharing information, the threads in the same benchmark
instance cannot be scheduled to the VCPUs sharing the LLC.
They cannot exchange and share data efficiently. Thus, the
executions have larger slowdowns in scenario 3.

231

Authorized licensed use limited to: Hofstra University. Downloaded on March 18,2023 at 20:30:41 UTC from IEEE Xplore. Restrictions apply.

V. SUMMARY AND DISCUSSION

The experiments show that multi-threaded computation still
suffers significant performance degradation on SMP VMs.
Even when the system is not over-subscribed, the execution
of a multi-threaded application can be slowed down by over
150%. When the system is over-subscribed, the throughput
can be reduced by as much as 6x. Recently, reducing the
virtualization overhead of I/O operations attracts increasingly
more attention, and reducing the virtualization overhead of
CPU resources is losing its momentum. The measurement
in the paper show that CPU virtualization can incur larger
overhead than I/O virtualization (about 35% for I/O-intensive
workloads [20]). Thus, reducing the virtualization overhead of
CPU resources should be paid more attention, especially for
multi-threaded applications.

Reducing CPU virtualization overhead is important not
only because there are workloads suffering dramatic per-
formance loss, but also because an increasing number of
applications will be multi-threaded and computation-intensive.
With the growing density and dropping prices of DRAM,
it becomes cost-effective to build commodity servers with
hundreds of gigabytes even terabytes of DRAM. With such
memory capacities, the data sets of most applications can be
completely saved or mostly buffered in memory. New memory
types, e.g, phase-change memory, will be non-volatile and have
even higher densities than DRAM. In the future, memory may
save all the data sets and become the “new disk” for a large
proportion of workloads. This trend is reflected by the rapid
advancement of in-memory computing technology. With min-
imal I/O operations, the performance of these workloads will
be largely determined by how they utilize multicore processors
to process their data in memory. Minimizing virtualization
overhead for multi-threaded computation is critical for their
performance in the cloud.

With experiments, we show that, though single-thread
executions have decent performance on virtual machines,
the interaction between threads incurs large overhead, which
dramatically degrades multi-threaded executions on virtual
machines. On one hand, due to the lack of appropriate hard-
ware support, the interaction between threads involves the
intervention from the VMM. Specifically, the VMM needs to
handle the state changes of VCPUs and other events (e.g., IPIs)
incurred by inter-thread interaction and synchronization, while
the corresponding events on physical machines are handled by
hardware. On the other hand, the behavioral differences be-
tween VCPUs and real CPUs make conventional optimization
for efficient interaction and synchronization between threads
(e.g., spinlocks, data sharing through shared caches) ineffective
on virtual machines. Existing virtualization technology lacks
effective methods to address these problems. For example,
even though PLE is used to address the LHP problem, it may
incur some performance degradation in some cases, and cannot
be used to stop excessive spinning in user space.

The performance degradation of multi-threaded computa-
tion on virtual machines would be more serious if care is
not taken. With the core count on each CPU socket keeping
increasing, applications must split their work and distribute
tasks among more threads to get performance improvement.
However, this may incur more frequent synchronization to
coordinate the tasks and more interaction between the tasks,

which in turn cause higher performance degradation to the
executions in the cloud.

Though software approaches (e.g., smarter VCPU schedul-
ing algorithms) may alleviate the performance degradation,
fundamentally addressing the problems (e.g., that with APIC
accesses) is beyond the capability of software approaches.
The most effective approach would be the enhancements in
hardware CPU designs. While there are a few factors degrading
the performance of multi-threaded executions, the root cause is
that software must explicitly coordinate CPU resource sharing
(e.g., deschedule idle/spinning VCPU, routing IPIs to idle
VCPUs, etc). Thus, a fundamental solution would be using
hardware to coordinate the resource sharing among VCPUs.
For example, a physical core can be designed to have multiple
“logical cores”, one for each VCPU, and share the hardware
resources on the physical core among these logical cores.
Similar ideas have been used in I/O virtualization (e.g., SR-
IOV allows an I/O device to function as multiple separate
physical devices). The idea is also used in SMT processors
to hide memory latencies. But different with SMT design,
which allows hardware threads to share CPU resources in
a fine time granularity at the instruction level, the “logical
cores” for virtualization can share CPU resources at coarse
granularities (e.g., microseconds) to simplify the design and
improve scalability.

VI. RELATED WORK

A number of early studies have identified the performance
issues associated with VMM intervention and management
complexity, such as privilege instructions and memory address
translation [1], [7]. Most of these issues have been addressed
or effectively alleviated with the enhancements in hardware
designs.

Regarding CPU virtualization, most recent studies focus
on the overhead caused by the lock holder preemption (LHP)
and other similar problems [4]–[6], [16], [21]–[24]. On current
platforms, approaches with hardware assistance (e.g. Intel
PLE [16] and AMD PF [25]) to detect and preempt spinning
VCPUs have become de facto standard solutions. The paper
does not focus on LHP or LHP-like problems. Instead, it stud-
ies the virtualization overhead incurred by the solutions and
the performance losses due to the limitation of the solutions.

The virtualization overhead caused by blocking synchro-
nization is identified and analyzed in [15], [26], [27]. The
paper quantifies the overhead in more situations and with the
newer software system that has integrated a few enhancements
for reducing the overhead [14]. Besides the overhead caused
by blocking synchronization, the paper also quantifies the
overhead caused by other factors.

In the paper, we show that the opacity of hardware cache
architecture on VCPUs leads to slow memory accesses and
degrades performance. Regarding memory accesses in virtual
machines, research has been conducted to reduce the overhead
of address translation [2], [28]. The non-uniformity of memory
latencies was found to affect the performance of virtualized
systems [29]. Memory space overhead is another considera-
tion in memory virtualization. For example, ballooning and
deduplication techniques have been developed to reduce the
space overhead [30], [31].

232

Authorized licensed use limited to: Hofstra University. Downloaded on March 18,2023 at 20:30:41 UTC from IEEE Xplore. Restrictions apply.

Virtualization overhead is a major consideration for people
choosing virtualized platforms. There are studies to measure
and identify virtualization overhead for different workloads,
e.g., HPC workloads [32]–[34] and databases [28], to compare
the performance of different virtualization infrastructures [35],
[36], or to compare virtualized and non-virtualized infrastruc-
tures [37]. This paper focuses on the overhead caused by
CPU virtualization for multi-threaded computation-intensive
workloads.

Some studies focus on the overhead incurred by I/O
operations [20], [29], [38], [39]. They are remotely related
with the work.

VII. ACKNOWLEDGMENT

This research was supported by the National Science
Foundation (NSF) under Grants No. CNS 1409523 and NJIT
faculty seed grant. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the NSF.

REFERENCES

[1] K. Adams and O. Agesen, “A comparison of software and hardware
techniques for x86 virtualization,” in ACM ASPLOS 2006, pp. 2–13.
[Online]. Available: http://doi.acm.org/10.1145/1168857.1168860

[2] R. Bhargava, B. Serebrin, F. Spadini, and S. Manne, “Accelerating
two-dimensional page walks for virtualized systems,” ACM SIGOPS
Operating Systems Review, vol. 42, no. 2, pp. 26–35, 2008.

[3] J. Fisher-Ogden, “Hardware support for efficient virtualization,” Uni-
versity of California, San Diego, Tech. Rep, 2006.

[4] T. Friebel and S. Biemueller, “How to deal with lock holder preemp-
tion,” Xen Summit North America, 2008.

[5] Drummonds, “Co-scheduling SMP VMs in VMware ESX server,” 2008,
http://communities.vmware.com/docs/DOC-4960.

[6] H. Kim, S. Kim, J. Jeong, J. Lee, and S. Maeng, “Demand-based
coordinated scheduling for SMP VMs,” in ACM ASPLOS 2013, pp.
369–380.

[7] R. Uhlig, G. Neiger, D. Rodgers, A. L. Santoni, F. C. Martins, A. V.
Anderson, S. M. Bennett, A. Kagi, F. H. Leung, and L. Smith, “Intel
virtualization technology,” Computer, vol. 38, no. 5, pp. 48–56, 2005.

[8] K. Nguyen, “APIC virtualization performance testing and iozone.”
[Online]. Available: https://software.intel.com/en-us/blogs/2013/12/17/
apic-virtualization-performance-testing-and-iozone

[9] Intel, “Intel 64 and IA-32 architectures software developers manual.”
[Online]. Available: ftp://download.intel.com/design/processor/manuals/
253668.pdf

[10] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “KVM:
the Linux virtual machine monitor,” in Proceedings of the Linux
Symposium, 2007, pp. 225–230.

[11] VMware, 2013, http://www.vmware.com/resources/techresources/10205.

[12] C. Bienia and K. Li, “PARSEC 2.0: A new benchmark suite for chip-
multiprocessors,” in MoBS 2009, June.

[13] “Perf wiki.” [Online]. Available: https://perf.wiki.kernel.org/index.php/
Main Page

[14] M. Tosatti, “A walkthrough on some recent KVM performance
improvements.” [Online]. Available: http://www.linux-kvm.org/images/
e/ea/2010-forum-mtosatti walkthrough entry exit.pdf

[15] X. Ding, P. Gibbons, and M. Kozuch, “A hidden cost of virtualization
when scaling multicore applications,” in HotCloud 2013. USENIX.

[16] M. Righini, “Enabling Intel R© virtualization technology features and
benefits,” Intel, Tech. Rep., 2010.

[17] A. Theurer, “KVM and big VMs,” 2012.
[Online]. Available: http://www.linux-kvm.org/images/5/55/
2012-forum-Andrew-Theurer-Big-SMP-VMs.pdf

[18] S. Siddha, “Multi-core and linux* kernel.” [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.136.5973

[19] X. Xiang, B. Bao, C. Ding, and K. Shen, “Cache conscious task
regrouping on multicore processors,” in CCGrid 2012, 2012, pp. 603–
611.

[20] A. Gordon, N. Amit, N. Har’El, M. Ben-Yehuda, A. Landau, A. Schus-
ter, and D. Tsafrir, “Eli: Bare-metal performance for i/o virtualization,”
in ASPLOS 2012, 2012, pp. 411–422.

[21] V. Uhlig, J. LeVasseur, E. Skoglund, and U. Dannowski, “Towards
scalable multiprocessor virtual machines.” in VM 2004, pp. 43–56.

[22] O. Sukwong and H. S. Kim, “Is co-scheduling too expensive for SMP
VMs?” in EuroSys 2011. ACM, 2011, pp. 257–272.

[23] P. M. Wells, K. Chakraborty, and G. S. Sohi, “Hardware support for
spin management in overcommitted virtual machines,” in PACT 2006.
ACM, pp. 124–133.

[24] J. Ouyang and J. R. Lange, “Preemptable ticket spinlocks: Improving
consolidated performance in the cloud,” in ACM VEE 2013, pp. 191–
200.

[25] AMD, “AMD64 architecture programmers manual volume 2: System
programming.”

[26] X. Ding, P. B. Gibbons, M. A. Kozuch, and J. Shan, “Gleaner:
Mitigating the blocked-waiter wakeup problem for virtualized multicore
applications,” in USENIX ATC 2014, 2014, pp. 73–84.

[27] X. Song, H. Chen, and B. Zang, “Characterizing the performance and
scalability of many-core applications on virtualized platforms,” Parallel
Processing Institute, Fudan University, Tech. Rep. FDUPPITR-2010-
002, 2010.

[28] M. Grund, J. Schaffner, J. Krueger, J. Brunnert, and A. Zeier, “The
effects of virtualization on main memory systems,” in Proceedings of the
Sixth International Workshop on Data Management on New Hardware.
ACM, 2010, pp. 41–46.

[29] J. Han, J. Ahn, C. Kim, Y. Kwon, Y.-r. Choi, and J. Huh, “The effect
of multi-core on hpc applications in virtualized systems,” in Euro-Par
2010 Parallel Processing Workshops. Springer, 2011, pp. 615–623.

[30] C. A. Waldspurger, “Memory resource management in vmware esx
server,” ACM SIGOPS Operating Systems Review, vol. 36, no. SI, pp.
181–194, 2002.

[31] S. K. Barker, T. Wood, P. J. Shenoy, and R. K. Sitaraman, “An empirical
study of memory sharing in virtual machines.” in USENIX ATC 2012,
2012, pp. 273–284.

[32] P. Luszczek, E. Meek, S. Moore, D. Terpstra, V. M. Weaver, and J. Don-
garra, “Evaluation of the HPC challenge benchmarks in virtualized
environments,” in Euro-Par 2011, pp. 436–445.

[33] J. R. Lange, K. Pedretti, P. Dinda, P. G. Bridges, C. Bae, P. Soltero,
and A. Merritt, “Minimal-overhead virtualization of a large scale
supercomputer,” in VEE 2011, 2011, pp. 169–180.

[34] N. Chakthranont, P. Khunphet, R. Takano, and T. Ikegami, “Exploring
the performance impact of virtualization on an hpc cloud,” in CloudCom
2014, 2014, pp. 426–432.

[35] D. Cerotti, M. Gribaudo, P. Piazzolla, and G. Serazzi, “End-to-end
performance of multi-core systems in cloud environments,” in Computer
Performance Engineering. Springer, 2013, pp. 221–235.

[36] J. Li, Q. Wang, D. Jayasinghe, J. Park, T. Zhu, and C. Pu, “Performance
overhead among three hypervisors: An experimental study using hadoop
benchmarks,” in Big Data (BigData Congress), 2013 IEEE International
Congress on. IEEE, 2013, pp. 9–16.

[37] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated
performance comparison of virtual machines and linux containers,”
technology, vol. 28, p. 32.

[38] A. Landau, M. Ben-Yehuda, and A. Gordon, “SplitX: split
guest/hypervisor execution on multi-core,” in USENIX WIOV 2011, pp.
1–7.

[39] A. Menon, J. R. Santos, Y. Turner, G. J. Janakiraman, and
W. Zwaenepoel, “Diagnosing performance overheads in the Xen virtual
machine environment,” in ACM VEE 2005, pp. 13–23.

233

Authorized licensed use limited to: Hofstra University. Downloaded on March 18,2023 at 20:30:41 UTC from IEEE Xplore. Restrictions apply.

