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APPLES: Efficiently Handling Spin-lock
Synchronization on Virtualized Platforms

Jianchen Shan, Xiaoning Ding, and Narain Gehani

Abstract—Spin-locks are widely used in software for efficient synchronization. However, they cause serious performance degradation
on virtualized platforms, such as the Lock Holder Preemption (LHP) problem and the Lock Waiter Preemption (LWP) problem, due to
excessive spinning by virtual CPUs (VCPUSs). The excessive spinning occurs when a VCPU waits to acquire a spin-lock. To address the
performance degradation, hardware facilities, such as Intel PLE and AMD PF, are provided on processors to preempt VCPUs when they
spin excessively. Although these facilities have been predominantly used on mainstream virtualization systems, using them in a manner
that achieves the highest performance is still a challenging issue. There are two core problems in using these hardware facilities to reduce
excessive spinning. One is to determine the best time to preempt a spinning VCPU (i.e., the selection of spinning thresholds). The other is
which VCPU should be scheduled to run after the spinning VCPU is descheduled. Due to the semantic gap between different software
layers, the virtual machine monitor (VMM) does not have information about the computation characteristics on VCPUs, which is needed
to address the above problems. This makes the problems inherently challenging. We propose a framework named AdPtive Pause-Loop
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Exiting and Scheduling (APPLES) to address these problems. APPLES monitors the overhead caused by excessive spinning and
preempting spinning VCPUs, and periodically adjusts spinning thresholds to reduce the overhead. APPLES also evaluates and
schedules “ready” VCPUs in a VM by their potential to reduce the spinning incurred by the spin-lock synchronization. The evaluation is
based on the causality and the time of VCPU preemptions. The implementation of APPLES incurs only minimal changes to existing
systems (about 100 lines of code in KVM). Experiments show that APPLES can improve performance by 3 ~ 49 percent (14 percent on

average) for the workloads with frequent spin-lock operations.

Index Terms—Virtualization, multi-core, cloud computing, spin-lock synchronization, lock holder preemption, scheduling

1 INTRODUCTION

IN the cloud, the number of virtual CPUs (VCPUs) in a vir-
tual machine keeps increasing to effectively leverage the
computing power of multicore processors on the host com-
puter. For example, most VM instances in Amazon EC2
have multiple VCPUs; and a m4.10xlarge instance can have
as many as 40 VCPUs [1]. One challenge in hosting large
VMs (VMs with multiple VCPUs) is how to efficiently con-
trol the excessive spinning incurred by spin-lock synchroni-
zation in VMs. Excessive spinning can significantly degrade
application performance and reduce system throughput.
Spin-locks are often used in VMs when waiting is expected
to be brief. However, because the virtual machine monitor
(VMM) schedules VCPUs to make them share physical CPUs
(PCPUs), a VCPU may be preempted by another VCPU; and
thus the VCPUs waiting for the preempted VCPU must spin
for long time unexpectedly. A widely noticed problem caused
by spin-lock synchronization is the Lock-Holder Preemption
(LHP) problem [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12],
[13], [14], [15], [16]. The LHP problem is caused when a VCPU
holding a spin-lock is preempted and other VCPUs waiting
for the lock perform excessive spinning before the lock holder
VCPU is rescheduled and releases the lock. Another problem
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is Lock-Waiter Preemption (LWP) problem, which is caused
when ticket spin-lock is used. With a ticket spin-lock, lock
waiters queue up when waiting for the lock. Thus, when a
VCPU waiting for a ticket spin-lock is preempted, other
VCPUs waiting for the same lock after it in the queue will
have to spend more time spinning [17]. The LHP and LWP
problems can cause significant performance degradation.

A general approach to reducing the excessive VCPU spin-
ning caused by spin-lock synchronization is to use hardware
to monitor spinning VCPUs and stop them from spinning
excessively. Following this approach, spinning suppression
hardware facilities (e.g., Intel Pause-Loop-Exiting (PLE) [18]
and AMD Pause Filter (PF) [19]) are designed on processors,
and VCPU scheduling is improved in VMMs to utilize these
facilities. Specifically, with such hardware facilities, the VMM
sets a spinning threshold for the time spent on continuous
spinning on each processor. Then, the processor monitors the
instructions being executed by the VCPU on it to detect spin-
ning. It interrupts the VCPU and reports to the OS if spinning
exceeds the threshold on the VCPU, so that the VMM can pre-
empt the VCPU and schedule another VCPU on the processor.

Though such hardware facilities have been predominantly
utilized in most virtualization systems to control VCPU spin-
ning (e.g., Xen [20], KVM [21], VMWare ESX [22], etc.), using
these facilities in a manner that achieves the highest perfor-
mance is still a challenging issue, and receives little attention.
Two core problems must be solved. One is how to determine
the best time to preempt a spinning VCPU, i.e., spinning thresh-
old problem. The other is which VCPU should be scheduled
after the spinning VCPU is preempted, i.e., candidate VCPU
selection problem. As the paper will show (in Sections 2 and 4),
solutions to these problems have substantial impact on
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performance. Existing systems use some empirical solutions,
leading to suboptimal performance.

Due to the semantic gap between the VMM and the soft-
ware layers inside VMs, the VMM lacks adequate informa-
tion that is required to effectively address these two
problems. This makes these problems difficult to tackle. In
the spinning threshold problem, it is difficult for the VMM
to differentiate whether a VCPU is spinning normally
(e.g., waiting for a spin-lock to be released shortly) or is
spinning excessively (e.g., waiting for a spin-lock held by a
preempted VCPU). In the candidate VCPU selection prob-
lem, the VMM does not have the information on the opera-
tions inside VMs, and cannot identify which VCPU is
blocking the progress of other VCPUs and making them
spinning. Thus, it is difficult to schedule VCPUs in a man-
ner to minimize the overhead of synchronizations.

To make effective utilization of the spinning-suppression
hardware facilities equipped on processors, the paper pro-
poses a framework named AdaPtive Pause-Loop Exiting
and Scheduling (APPLES). The framework has two compo-
nents. One component is for addressing the spinning thresh-
old problem, named Adaptive Pause-Loop Exiting (APLE).
Instead of struggling with identifying whether spinning
VCPUs are waiting for preempted VCPUs, APLE measures
the overhead caused by wasteful spinning and wasteful
VCPU switches. Wasteful spinning is the spinning stopped
by processors when spinning thresholds are reached, since it
does not contribute to lock acquisition. Wasteful VCPU
switches are incurred by preempting spinning VCPUs and
rescheduling other VCPUs. The APLE component periodi-
cally measures the overhead of these wasteful operations
and adjusts spinning thresholds to minimize this overhead.

The second component in APPLES is a heuristic VCPU
scheduling (HVS) mechanism. It is to address the candidate
VCPU selection problem for VCPU scheduling. HVS
evaluates and schedules “ready” VCPUs in a VM based on
whether the scheduling of the VCPUs can effectively reduce
spinning. For example, scheduling a spin-lock holder VCPU
reduces the spinning of the VCPUs waiting for the lock. The
evaluation and scheduling is based on two heuristics: casu-
alty and preemption-time heuristics. The causality heuristic
uses the reasons why the VCPUs are preempted. It catego-
rizes “ready” VCPUs into two categories: resource-waiter
VCPUs, which have been preempted because of the deple-
tion of their time slices and are waiting for CPU resources to
resume execution, and lock-waiter VCPUSs, which are wait-
ing for a spin-lock and have been preempted because of
excessive spinning. It ranks and schedules resource-waiter
VCPUs before lock-waiter VCPUs. The preemption time
heuristic ranks VCPUs based on the time when the VCPUs
are preempted. When a VCPU is preempted, it is time-
stamped. HVS schedules resource-waiter VCPUs from the
ones with later timestamps, and then schedules lock-waiter
VCPUs from the ones with smaller timestamps.

The advantages of APPLES are multi-fold. First, it pro-
vides a holistic solution to the effective utilization of spin-
ning-suppression hardware facilities on modern processors,
with one component APLE to stop current VCPU spinning
when it becomes excessive and the other component HVS to
reduce potential VCPU spinning in the future. APLE and
HVS can work independently or be combined together to
achieve higher performance. Second, APPLES, particularly
APLE, directly targets end-to-end performance. Reducing
the overhead increases efficiency, since it makes more
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resources available to the operations that directly contribute
to the execution of the workloads. Finally, the implementa-
tion of APPLES incurs only minimal modification to exist-
ing VMM designs. The implementation based on KVM
added about 100 lines of new code to four existing source
files. This may help APPLES be quickly adopted by existing
virtualization systems.

The contributions of our work are as follows. First, the
paper systematically reviews and analyzes the problem
faced by almost all mainstream virtualization systems-how
to utilize hardware facilities to address the LHP and LWP
problems efficiently to achieve high performance. Second,
the paper proposes an innovative approach, named
APPLES, that controls and utilizes the hardware facilities so
as to effectively reduce excessive spinning caused by spin-
lock synchronization with low overhead. Third, we imple-
mented APPLES in KVM and tested its performance on a
16-core system. We show that, with APPLES, the perfor-
mance can be improved by up to 49 percent.

2 BACKGROUND AND MOTIVATION

In this section, we first introduce the problems caused by
spin-locks in virtual machines. Then, we introduce the
hardware facilities in processors for dealing with these
problems, and explain how existing virtualization systems
utilize these facilities, using Kernel-based Virtual Machine
(KVM) and Intel PLE support as examples. We show that
these hardware facilities must be better utilized by VMMs
to achieve higher performance.’

2.1 Problems Caused by Spin-Locks in VMs
Spin-locks are usually used to protect short critical sections.
While waiting to acquire a spin-lock, a thread repeatedly
checks the availability of the lock, because the waiting is
expected to be brief. With spinning, a lock can be acquired
as soon as it is released. At the same time, because the
thread does not block itself, the costly overhead associated
with context switches is avoided.

Ticket spin-lock is a special type of spin-lock that guaran-
tees the order of lock acquisitions to provide fairness and
avoid starvation among lock requests. A ticket spin-lock
uses a queue to manage the requests for the lock and sched-
ules the requests accordingly. Thus, a lock waiter cannot
acquire the lock until the lock waiter before it on the queue
releases the lock.

In a virtualized environment, because of the scheduling of
VCPUs, a thread running on a VCPU may not be able to con-
tinuously make progress as it does on a PCPU. When a VCPU
is preempted, the thread running on it also stops. Thus, if
a thread is holding a spin-lock and the VCPU is preempted,
the spin-lock cannot be released quickly until the VCPU
is rescheduled. Thus, other threads waiting for the lock have
to spin for unexpected long time. This is the lock holder pre-
emption (LHP) problem. The spinning causes a live-lock situ-
ation, where spinning VCPUs hold CPU resources and wait
for the lock, and the lock holder VCPU waits for CPU resour-
ces to resume execution. If the spinning cannot be stopped
promptly, system throughput may be significantly reduced.

1. Although the description in this section and the APPLES design
later in the paper are mainly based on Intel PLE, they can be applied
directly or with slight modification to the systems with AMD PF or
other similar hardware utilities, which detect and stop spinning based
on the thresholds set by the VMM.
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With ticket spin-lock, the situation is more complex. The
live-lock situation may be caused by not only lock-holders
but also lock-waiters. When the VCPU of a lock waiter is
preempted, all the subsequent lock waiters on the queue
have to spin for unexpected long time until the lock waiter
is rescheduled, even though the lock itself may be released
during the spinning. This is defined as the lock waiter
preemption (LWP) problem.

2.2 Hardware Facilities in Processors to Control
Excessive VCPU Spinning

Modern processors provide hardware support for virtuali-
zation to reduce overhead. On these processors, PLE and
other similar facilities are designed to control excessive
VCPU spinning. With PLE, a processor first detects spin-
ning VCPUs by examining the instructions executed by the
VCPUs. On X86 architecture, spin-lock primitives usually
repeatedly call PAUSE instructions to implement spinning.
To detect spinning, the processor checks the intervals
(in number of CPU cycles) between consecutive PAUSE
instructions executed by a VCPU. For a spinning VCPU, the
intervals are very short, since the VCPU only checks the
condition for stopping spinning between PAUSE instruc-
tions. Thus, the processor compares the lengths of the inter-
vals against a pre-set parameter PLE_gap. If the lengths do
not exceed PLE_gap, it determines that the VCPU is spin-
ning. If no PAUSE instruction is executed in an interval of
PLE_gap, it determines that the spinning stops.

When the spinning is continuing, the processor needs to
determine whether the spinning should be stopped. For this
purpose, it keeps track of the length of the spinning by
counting the number of cycles spent on PAUSE instructions
and the intervals between PAUSE instructions. If the length
of the spinning exceeds a pre-set spinning threshold PLE_
window, the processor will trigger a VM_EXIT to stop the
spinning and transfer the control to the VMM, so that
the VMM can deschedule the spinning VCPU and resched-
ule another VCPU.

AMD Pause Filter (PF) functions similar to the Intel PLE.
It also checks intervals between consecutive PAUSE instruc-
tions and considers PAUSE instructions with intervals
smaller than PAUSE Filter Threshold to be in the same loop.
It interrupts and reports to the OS the spin loops exceeding
PAUSE Filter Count intervals. Both PAUSE Filter Threshold
and PAUSE Filter Count are pre-set by software. For AMD
PF, PAUSE Filter Count acts as the spinning threshold.
Because of the similarity, we pick one—Intel PLE for our
APPLES design and experiments. But APPLES applies
equally well to the systems with AMD PF.

2.3 The Utilization of the Hardware Facilities in VMM
With PLE, when the two parameters PLE gap and PLE_
window are set, the processor detects and interrupts spinning
VCPUs autonomously. The VMM controls the PLE facility
by adjusting these parameters. It is relatively easy to find an
adequate value for PLE_gap since PAUSE instructions are
called much more frequently in spin-locks than in other sce-
narios. For example, KVM sets PLE_gap to 128 cycles by
default, which proves to be effective in practice. Thus, the
paper does not discuss the adjustment of PLE_gap parameter,
and focuses only on how to find an adequate value for the
spinning threshold PLE_window.
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Besides adjusting the parameters, the VMM must also
handle VM_EXITs caused by PLE facilities. The VMM takes
the chances to preempt spinning VCPUs, put them onto the
“ready” VCPU list, and schedule other VCPUs. For example,
when a spinning VCPU of a VM is preempted, KVM exam-
ines the “ready” VCPUs in the same VM. If it can find a
“ready” VCPU, which was not preempted due to spinning,
KVM schedules the VCPU. For brevity, this case is called
“successful yielding”, since the spinning CPU “yields” the
processor to a VCPU that can make progress. Otherwise,
KVM reschedules the VCPU that is just preempted. This case
is called “unsuccessful yielding”.

The adjustment of spinning thresholds and the selection
of VCPUs to schedule in are two key problems that a VMM
must solve to make effective utilization of the hardware
facilities controlling VCPU spinning. As we will show later
using KVM as an example, these two problems are challeng-
ing, and many ad-hoc methods have been tested in existing
VMMs. However, workloads with frequent spin-lock syn-
chronization still suffer substantial performance degrada-
tion on virtualized platforms.

2.3.1 Methods to Adjust Spinning Thresholds in KVM

In the past, KVM would use a system-wide spinning thresh-
old and set it to a fixed value selected empirically based on
the normal spinning time under some typical workloads.
The spinning time is measured when the VCPUs running the
workloads are not preempted. Thus, a threshold can be set
slightly higher than the normal spinning time, and any spin-
ning longer than this threshold is considered as abnormal,
indicating the occurrence of LHP or LWP problems.

A problem with a fixed spinning threshold was noticed.
When physical CPUs (PCPUs) are under-subscribed, pre-
empting spinning VCPUs cannot improve the utilization of
PCPUs, and thus incurs unnecessary overhead. The overhead
can be very high with large VMs. For example, experiments
have shown that it takes 369s to boot a 80-VCPU VM with
PLE enabled, while it takes only 25s with PLE disabled [23].

To improve the performance when physical CPUs
(PCPUs) are not over-subscribed, attempts have been made
to dynamically adjust spinning thresholds. The objectives
are to increase the spinning threshold when PCPUs are
under-subscribed and to restore the threshold when PCPUs
are over-subscribed. For example, one of such attempts
increases the threshold on “unsuccessful yieldings” and
decreases it on “successful yieldings” [24]. The rationale is
that “successful yieldings” indicate that there have been
some non-spinning VCPUs preempted (i.e., PCPUs are over-
subscribed) and “unsuccessful yieldings” indicate that there
is not a “ready” VCPU waiting to be scheduled (i.e., PCPUs
are under-subscribed).

In the latest design, KVM maintains a spinning threshold
for each VCPU. If a VCPU is preempted and switched out
because the VCPU runs out of the time slice, KVM determines
that the VCPU is sharing a PCPU with other VCPUs, and
quickly reduces the threshold of the VCPU to improve the uti-
lization of the PCPU. This is to deal with the situation in
which the PCPU is over-subscribed. For the situation in which
the PCPU is under-subscribed, increasing the spinning
threshold helps improving performance because this reduces
the interruption to VCPU execution. Thus, when a VCPU is
preempted because it spins and reaches the spinning thresh-
old, KVM gradually increases its spinning threshold [25].
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The above methods improve the performance when
PCPUs are under-subscribed. But CPU over-subscription is
a common practice [26]. These methods cannot appropri-
ately adjust spinning thresholds when PCPUs are over-sub-
scribed. We provide a quantitative illustration of the above
problem using a few representative experiments. We select
two benchmarks, ebizzy and dbench, and run them on a 16-
core machine. (Please refer to Section 4 for benchmark
description and machine configuration.) We use two 16-
VCPU VMs. For each benchmark, we run two instances of
the benchmark in parallel on the two VMs, one on each VM,
and collect the performance reported by the benchmark
(throughput for dbench and execution time for ebizzy). We
first run the benchmarks using the default KVM setting
with the mechanism adjusting spinning thresholds enabled.
We use this configuration as baseline. Then, we disable the
mechanism. We use the same spinning threshold for the
VCPUs in the two VMs and vary the spinning threshold
from 512 cycles to 32,768 cycles. We repeat the experiments
for each of the different threshold values, and show the nor-
malized performance relative to that with the baseline con-
figuration in Fig. 1.

The figure clearly shows that the performance of the two
benchmarks changes with the threshold. The performance
of benchmark dbench varies from 0.98 to 1.17, and the perfor-
mance of ebizzy varies from 0.88 to 1.13. At the same time,
different benchmarks achieve the best performance with
different spinning thresholds (4,096 cycles for dbench and
16,384 cycles for ebizzy). The experiments show that, to
achieve optimal performance, spinning thresholds must be
carefully tuned based on workloads. However, the current
KVM system cannot adjust the thresholds adequately, lead-
ing to suboptimal performance.

2.3.2 Candidate VCPU Selection in KVM

When a VCPU is preempted because the spinning thresh-
old is reached, the VMM must select a VCPU and schedule
it on the vacated computing core. In KVM, a directed yield
approach is used [27]. All the VCPUs in the same VM
form a circle. The KVM searches the VCPUs other than the
VCPU that is just preempted, following the circle. During
the search, only “ready” VCPUs are considered, which
include two types of VCPUs—the VCPUs preempted due
to the depletion of time slices and the VCPUs preempted
due to excessive spinning. For brevity, we call the first
type of VCPUs resource-waiter VCPUs and the second type
of VCPUs lock-waiter VCPUs.?

Resource-waiter VCPUs are more likely to make progress
than the lock-waiter VCPUs after rescheduled (i.e., granted
with resources). In KVM, resource-waiter VCPUs are more
preferred than lock-waiter VCPUs. When a resource-waiter
VCPU is found, it is selected to run unconditionally. But,
when a lock-waiter VCPU is found, it is selected to run if it

2. It is possible that a VCPU depletes its time slice while it is spin-
ning and waiting for a spin-lock. In such a case, the VCPU is
“misclassified” as a resource-waiter VCPU. However, the possibility of
such “misclassification” is slim, because spinning is capped by the spin-
ning threshold and is very brief (usually shorter than 10 microseconds),
and a time slice is much longer (at least a few milliseconds). At the
same time, with existing hardware support, the VMM is not aware of
VCPU spinning until it reaches the spinning threshold. Thus, it is not
able to put spinning VCPUs into the lock-waiter category if they are
preempted before they reach the spinning threshold.
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Fig. 1. The normalized performance of ebizzy and dbench when the
spinning threshold is varied from 512 cycles to 32,768 cycles, relative to
the performance with the default KVM configuration.

is labeled as “checked”; otherwise, it is labeled as “checked”
to be selected next time. The “checked” label is removed
when the VCPU is scheduled.

When a VCPU is selected, its location in the circle is
marked. Later, when more spinning VCPUs are preempted,
new searches will start from this location. Thus, consecutive
searches will traverse the circle and schedule resource-
waiter VCPUs in the first round. Then, in the second round,
lock-waiter VCPUs are also considered, because the mecha-
nism assumes that the preempted lock holders have been
scheduled in the first round and the lock-waiter VCPUs can
continue to make progress when scheduled. If there are not
VCPUs ready to run, KVM reschedules the VCPU that is
just preempted (i.e., “unsuccessful yielding”).

The main problem of the method is with the quality of
the candidate VCPUs selected by the method. First, it checks
the VCPUs in a VM based on the order in which they are
organized in the circle, instead of the possibility of the
VCPUs being the causes of excessive spinning. Excessive
spinning is usually caused by waiting for preempted
VCPUs, which are either holding spin-locks or waiting in
ticket spin-lock queues before other VCPUs. These pre-
empted VCPUs should be rescheduled before the VCPUs
waiting for them and other VCPUs making new requests
for the same spin-lock, so as to avoid additional spinning.
Thus, quickly rescheduling these VCPUs is the most effec-
tive method to prevent excessive spinning.

The current method in KVM cannot select VCPUs that
are more likely to reduce excessive spinning. Even worse,
though the method gives a slightly higher priority to
resource-waiter VCPUs, there is still a high probability that
lock-waiter VCPUs are selected and they continue spinning
after being rescheduled. This further decreases the quality
of the candidate VCPUs selected. This problem is caused
because there may be concurrent searches from the same
location on the VCPU circle of a VM—a search starting ear-
lier labels lock-waiter VCPUs as “checked” and another
search starting later selects a “checked” VCPUs as a candi-
date VCPU before the earlier search finds and reschedules a
resource-waiter VCPU.

This problem is as shown in Fig. 2. Ina VM with 8 VCPUs,
VCPU #0 and VCPU #1 run on two different PCPUs. VCPU
#0 is preempted and then VCPU #1 is preempted before a
VCPU is selected to replace VCPU #0. Thus, both the PCPUs
(i.e., the ones running and then preempting these two
VCPUs) start searching from the same location (marked as
“start point” in the figure). The PCPU preempting VCPU #0
starts earlier than the PCPU preempting VCPU #1. It checks
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checked

Fig. 2. Candidate VCPU selection in KVM.

VCPU #3 and VCPU #4, which are lock-waiter VCPUs, and
labels them as “checked”. Thus, the PCPU preempting
VCPU #1 can select VCPU #3 as candidate VCPU and sched-
ule it. With the low quality of VCPU candidates, potential
VCPU spinning cannot be effectively reduced.

3 APPLES DESIGN AND IMPLEMENTATION

As we have introduced earlier, to utilize the spinning sup-
pression hardware facilities equipped on current process-
ors, there are two problems that must be solved: 1) the
VMM must carefully adjust spinning thresholds for VMs;
and 2) when the hardware facilities preempt a spinning
VCPU, the VMM must select an appropriate VCPU to
occupy the vacated PCPU. To address these problems,
APPLES uses two components: Adaptive Pause-Loop Exit-
ing (APLE) to dynamically adjust spinning threshold; and
Heuristic VCPU Selection (HVS) to select candidate VCPUs
when spinning VCPUs are preempted.

In this section, we introduce each component by first
analyzing the problems and challenges and then describing
its design. After that, we introduce the implementation of
APPLES based on KVM and Linux.

3.1 APLE for Adjusting Spinning Thresholds

The adjustment of spinning threshold must make a difficult
trade-off between different types costs and benefits, which
makes it a challenging problem. On one hand, setting high
thresholds increases excessive spinning and leads to low
resource utilization. On the other hand, setting low thresh-
olds may interrupt normal spinning prematurely. Spin-
locks are used to protect short critical sections. Spinning
ensures that a lock can be acquired as soon as it is released.
At the same time, since spinning is expected to be brief, it
incurs lower overhead than blocking, which is considered
to be expensive because of the high cost of the context
switches associated with blocking operations. Interrupting
normal spinning increases synchronization overhead since
it actually turns spin-based synchronizations into block-
based synchronizations. If spinning thresholds are set too
low, the VCPUs that are spinning normally may be pre-
empted prematurely just before the lock holder is about to
release the lock, incurring costly context switches between
VCPUs. This can significantly increase synchronization
overhead and reduce system throughput.

3.1.1 Possible Approaches and APLE Basic Idea

When setting spinning thresholds, the VMM struggles
between two conflicting objectives. One is to stop VCPU
spinning as early as possible in case spinning VCPUs are
waiting for other VCPUs temporarily preempted. The other
is to avoid stopping VCPU spinning too early for efficient
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synchronization in case suspended VCPUs are not blocking
spinning VCPUs from making progress.

An intuitive approach for adjusting spinning thresholds
is to first determine the amount of time that a VCPU usually
spends on spinning when the lock holding VCPU is not pre-
empted and then set the thresholds slightly higher than this
amount. However, due to the semantic gap between system
layers, it would be “mission impossible” to estimate the
amount online. There are several reasons. First, the VMM
does not have information about lock operations in virtual
machines. Thus, it is not possible for the VMM to predict the
amount of spinning time (e.g., by profiling and modeling
the execution of the workloads). Second, the VMM is not
aware of VCPU spinning until it is notified when a pro-
cessor stops the spinning exceeding the threshold. Thus, it
is not possible for the VMM to determine adequate thresh-
olds by measuring the amount of spinning.® Finally, when a
processor stops a spinning VCPU, though the VMM knows
the amount of spinning, it cannot determine whether the
VCPU is waiting for a preempted VCPU or not. Thus, it still
cannot estimate the amount of spinning when the LHP or
LWP problem does not happen.

APLE is based on the following observations. If spinning
thresholds are set too low, some overhead is caused because
the time spent on spinning is wasted and extra time is
used on descheduling spinning VCPUs and rescheduling
other VCPUs. The overhead decreases if the thresholds are
increased. If spinning thresholds are set too high, spinning
VCPUs are preempted late. Overhead is caused by excessive
spinning and descheduling and rescheduling VCPUs. The
overhead decreases if smaller thresholds are used. Thus,
optimal thresholds can be approached by varying the
thresholds and choosing those leading to lower overhead.

APLE assumes that each workload runs in a VM and
assigns a spinning threshold to each VM. It does not use a
system-wide spinning threshold for all the VMs on the
same physical machine, because different workloads have
different locking behaviors and different spinning time
before getting a lock. A threshold that achieves optimal
performance for some workloads may cause serious perfor-
mance degradation for other workloads. It does not use a
per-VCPU spinning threshold because VCPUs sharing the
same lock have similar locking behavior, e.g., every VCPU
spins for longer time for longer critical section to finish.
APLE also dynamically adjusts spinning thresholds to
respond to workload changes in VMs.

3.1.2  Wasteful Spinning and Wasteful VCPU Switches

We use the LHP problem as an example to explain the ratio-
nale behind APLE. In Fig. 3, we compare the executions of a
VCPU under three different scenarios: (a) when the spin-
ning threshold is adequately set (Fig. 3A; (b) when the spin-
ning threshold is set too low (Fig. 3B); and (c) when the
spinning threshold is set too high (Fig. 3C). In the middle of
the execution, the VCPU requests a spin-lock that is cur-
rently held by another VCPU (not shown in the figure).
Thus, it spins before it enters the critical section. However,
the spinning incurs different overhead depending on the
spinning threshold and whether the lock-holding VCPU
has been preempted or not.

3. The spinning time may be measured with the collaboration from
guest OSs [28], which is not available on public cloud.

Authorized licensed use limited to: Hofstra University. Downloaded on March 18,2023 at 20:26:03 UTC from IEEE Xplore. Restrictions apply.



1816

Spinning  Lock lock-holding VCPU
nNNANN is not preempted
guuouyuyu -
lock-holding VCPU
Tl .
is preempted

Case 1

Wasteful spinning Preempt Spinning
Case 2 —————W — II ————— —
F T1 H{ Reschedule Lock

(A) Spinning threshold set adequately
lock-holding VCPU ma
Spinning or may not be preempted

Wasteful spinning

F T2%{ Preempt  Reschedule

(B) Spinning threshold set too low

Lock

Spinning  Lock

—=NNANN —_—
guuuuyu

— n —

lock-holding VCPU
is not preempted
lock-holding VCPU
is preempted

Case 1

Wasteful spinning ~ Preempt Reschedule

Spinning  Lock
Caned mmmmm Piancose—
f—n —

(C) Spinning threshold set too high

Fig. 3. The overhead from wasteful spinning and wasteful VCPU
switches under three scenarios, using the LHP problem as an example.
The figure only shows the VCPU requesting a spin-lock. The lock-
holding VCPU is not shown in the figure, but its status is shown in the
boxes. A “pause” symbol (parallel vertical bars) indicates that the corre-
sponding VCPU is preempted.

As illustrated in Fig. 3A, with the spinning threshold
adequately set (7'1), if the lock holding VCPU is not pre-
empted, the spinning will not be interrupted before the lock
is acquired. The spinning is considered normal spinning. In
this case, the execution is exactly the same as that on a phys-
ical machine, and there is no overhead incurred. However,
if the lock holding VCPU is preempted, the spinning will be
stopped when it reaches the threshold, and the spinning
VCPU is preempted. When the VCPU is rescheduled later,
it still needs to spin and wait for the release of the lock.
Since the spinning before the VCPU is preempted does not
lead to a lock acquisition, it is considered wasteful spinning.
Compared to the execution on a physical machine, the exe-
cution on the virtual machine incurs additional overhead
due to the VCPU switch (i.e., descheduling the spinning
VCPU and rescheduling another VCPU). Thus, the VCPU
switch is a wasteful VCPU switch.

As illustrated in Fig. 3B, if the spinning threshold is set
too low (12), the VCPU may be stopped prematurely, even
when the lock holding VCPU is not preempted. This incurs
the overhead through wasteful spinning and wasteful
VCPU switches. Compared to the scenario shown in Fig. 3A
(the spinning threshold is adequately set), setting the
threshold too low increases the chance that the spinning
VCPU is preempted. If the spinning VCPU is preempted,
next time when it is scheduled, the lock may still not be
available, though the lock-holder may have changed. Thus,
the VCPU must start over to wait for the release of the lock.
With a low threshold, it may be preempted prematurely
again. It is possible that the VCPU is descheduled and
rescheduled multiple times before it gets the lock, incurring
more wasteful spinning and VCPU switches.

If the spinning threshold is set too high (7'3), as shown in
Fig. 3C, the execution is similar to that in scenario (A), when
the lock-holding VCPU is not preempted. But, if the lock-
holding VCPU is preempted in the case when the spinning
threshold is set higher than that in scenario (A), the VCPU
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spins for longer time before its is preempted. Compared to
scenario (A), the spinning incurs higher overhead from
wasteful spinning.

Among these three scenarios, no matter whether the
threshold is set too low or too high, higher overhead will be
caused, compared to an adequately set threshold. Therefore,
the overhead can be a reliable indicator of the level of the
threshold.

Both wasteful spinning and wasteful VCPU switches are
visible to and handled by the VMM. Thus, their overhead
can be accurately measured in the VMM with low cost. This
is one of the advantages of APLE. Specifically, the overhead
of wasteful spinning can be determined by spinning thresh-
olds and the number of times the thresholds reached. The
overhead of each VCPU switch is the time between the cor-
responding VM_EXIT and VM_ENTRY events.

3.1.3 The Calculation of Inefficiency as a Metric

To adjust the threshold, APLE measures the overhead
caused by wasteful spinning and wasteful VCPU switches
for each VM. However, the amount of overhead cannot be
directly used in the adjustment, because the overhead is
affected by the factors other than the spinning threshold.
For example, the resources allocated to a VM change over
time on a over-committed system. With more resources (e.g.,
more PCPUs) allocated to a VM, the workload on it makes
faster progress and incurs higher overhead at the same time.

APLE calculates inefficiency, which is the ratio between
the time spent on wasteful spinning and wasteful VCPU
switches and the PCPU time consumed by the VCPUs.
APLE calculates inefficiency periodically and uses it as the
metric for the adjustment. Each time period is called an
epoch. In each epoch, APLE collects the CPU time allocated
to the VM. It also maintains a counter counting PLE events,
which it resets at the beginning of each epoch. Each time
spinning reaches the threshold, in the VM_EXIT event han-
dler (for PLE events), APLE increments the counter, and
timestamps the beginning and end of PLE event handling.
At the end of each epoch, APLE calculates the overhead of
wasteful spinning by multiplying the spinning threshold
with the value in the counter, and calculates the overhead
of VCPU switches by adding the time spent by PLE event
handling. Then, it divides the sum of the two types of over-
head by the total CPU time allocated to the VM, the result
being the inefficiency of the VM in the epoch.

3.1.4 APLE Algorithm

To achieve the best performance, with APLE, the VMM
periodically measures the inefficiency, and adjusts the spin-
ning threshold to minimize the inefficiency using the APLE
Algorithm below.

When a VM is launched, this algorithm sets an initial
value of the desired threshold 7} (e.g., 8,192 in our experi-
ments). While running, the VM tries the desired threshold
and the thresholds slightly lower and slightly higher than
the desired threshold, once for an epoch. For fast adjust-
ment, the difference between these thresholds § cannot be
too small. However, to keep the threshold close to the opti-
mal value, § cannot be too large either. Based on our experi-
ments, a value between 512 and 2,014 works best for the
adjustment. At the end of each epoch, APLE calculates the
inefficiency of the epoch. When these epochs with different
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thresholds finish, APLE compares the inefficiency of these
epochs. It uses the threshold of the epoch with the smallest
inefficiency to update the the desired threshold. Then, the
desired threshold is used for the next round of adjustment.

Algorithm 1. APLE Algorithm

Ty: desired spinning threshold of a VM

Tp: initial spinning threshold of the VM

T,: upper bound for the spinning threshold of the VM

Tj: lower bound for the spinning threshold of the VM

Td — TO

while the VM is running do
set the spinning threshold of the VM to 7
wait for the finish of an epoch Ej, and calculate the
inefficiency of the VM in E,
set the spinning threshold of the VM to min(T,,T; + §)
wait for the finish of an epoch Ej, and calculate the
inefficiency of the VM in E,
set the spinning threshold of the VM to max(T;, Ty — §)
wait for the finish of an epoch Ej, and calculate the
inefficiency of the VM in Ej
compare the inefficiency of epochs £, E,, and E;3
Ty — the spinning threshold of the epoch with smallest
inefficiency

Epoch lengths vary dynamically based on the frequency
at which VCPUs are preempted due to excessive spinning
(i.e., the frequency of VM_EXITs incurred by PLE events on
Intel platforms). Specifically, each epoch corresponds to a
fixed number of spinning VCPU preemptions. For example,
in our experiments, an epoch corresponds to 1,000 preemp-
tions of spinning VCPUs. Actual epoch lengths vary for dif-
ferent workloads. When the VM rarely uses spin-locks or the
server is under-subscribed, spinning VCPU preemptions are
rare, and thus epochs are long time intervals; when the VM
is spinlock-intensive and is competing for CPU resources
with other VMs, spinning VCPU preemptions are frequent,
and thus epochs are short time intervals. With short epochs,
APLE can quickly respond to execution phase changes. With
long epochs, APLE can minimize runtime overhead. At the
same time, this way of setting epoch lengths also guarantees
that there are enough sample events in each epoch so that the
inefficiency can be reliably calculated.

3.2 Heuristic VCPU Scheduling

The selection of candidate VCPUs has direct impact on per-
formance. Excessive spinning is usually caused by waiting
for preempted VCPUs. As explained in Section 2, for the
best performance, these VCPUs should be rescheduled as
quickly as possible to avoid additional spinning on the
VCPUs that are currently waiting for them or may wait for
them in the future before they are rescheduled. Specifically,
if excessive spinning is caused by the LHP problem,
the VCPU holding the spin-lock should be selected and
rescheduled first; if excessive spinning is caused by the
LWP problem, the VCPU waiting at the beginning of the
ticket-lock queue should be rescheduled first. However,
due to the semantic gap between the VMM and VMs, the
VMM does not have information to diagnose the root causes
of the excessive spinning or distinguish such VCPUs from
other preempted VCPUs. This make VCPU selection a chal-
lenging problem.
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Fig. 4. Three different scenarios of the LWP problem. The preempted
ticket-lock waiter in each scenario is illustrated using a solid circle in thick
line. A “pause” symbol in red color indicates that the corresponding
VCPU is preempted due to the depletion of its time slice, and a “pause”
symbol in green color indicates that the corresponding VCPU is pre-
empted due to excessive spinning.

The paper proposes a Heuristic-based VCPU Scheduling
algorithm to address candidate VCPU selection problem.
The HVS algorithm assumes that the spinning thresholds
have been appropriately set. Thus, spinning VCPUs will not
be preempted prematurely. While HVS can be implemented
to work independently, it achieves better performance when
utilized together with APLE, as we will show in Section 4.

The basic idea behind HVS is to evaluate and rank
VCPUs based on the possibility and effectiveness to reduce
spinning if they are rescheduled immediately. Similar to the
methods in KVM, we first categorize “ready” VCPUs into
two categories. Resource-waiter VCPUs are those preempted
because of the depletion of their time slices and are waiting
for CPU resources to resume execution; and lock-waiter
VCPUs are those waiting for a spin-lock and preempted
because of excessive spinning. A natural reason for such cat-
egorization is that resource-waiter VCPUs are ready to
make progress and rescheduling them before lock-waiter
VCPUs causes less spinning. A more important reason is
that HVS needs to rank and schedule VCPUs in these two
categories in different ways, as we will explain below.

HVS ranks the VCPUs in the same VM based on two heu-
ristics. One is the causality heuristic, which schedules resource-
waiter VCPUs before lock-waiter VCPUs. The rationale of the
heuristic is that, when there are VCPUs preempted due to
excessive spinning, they are directly or indirectly waiting for
other VCPUs that have been preempted due to the depletion
of time slices (i.e., resource-waiting VCPUs).

In a LHP problem, a spinning VCPU is preempted when
it is waiting for the preempted lock holder, which can be
found in the resource-waiter category. The cases with spin-
lock holders spinning in critical sections are rare.

When the spinning-suppression hardware facilities are
used, the LWP problem becomes more complex. As shown
in Fig. 4, in a LWP problem, a ticket-lock waiter may be
preempted in a few scenarios. First, a ticket-lock waiter is
preempted because it ran out of its time slice. In this case,
the ticket-lock waiter can be found in the resource-waiter
category. Second, a ticket-lock holder has been preempted,
and thus the ticket-lock waiter spins before it is preempted
due to excessive spinning. In this case, the ticket-lock holder
must be scheduled first, which is in the resource-waiter cat-
egory. The ticket-lock waiter is in the lock-waiter category.
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Third, a ticket-lock waiter W2 is preempted because another
ticket-lock waiter W1 located before it in the queue has been
preempted. In this case, W1 should be scheduled before
W2. W1is in the resource-waiter category (as in the first sce-
nario), or is in the lock-waiter category waiting for another
VCPU in the resource-waiter category (as that in the second
scenario). W2 is in the lock-waiter category.

Based on the analysis above, no matter whether the
excessive spinning problem is caused by preempted lock
holder or preempted ticket-lock waiter, a VCPU in the
resource-waiter category should be scheduled before the
VCPUs waiting for it in the lock-waiter category are sched-
uled. However, due to the semantic gap between the VMM
and VMs, the VMM cannot identify which resource-waiter
VCPUs are blocking other VCPUs from making progress.
Thus, a safe choice is to schedule all the resource-waiter
VCPUs before scheduling the lock-waiter VCPUs.

The other heuristic, preemption-time heuristic, is used to
rank the VCPUs in each category. When a VCPU is pre-
empted, it is time-stamped. The timestamps keep increasing.
HVS ranks resource-waiter VCPUs with larger preemption
timestamps before the ones with smaller timestamps; and
ranks lock-waiter VCPUs with smaller preemption time-
stamps before the ones with larger timestamps. This heuris-
tic is based on the following observations.

When a VCPU (4) is preempted due to excessive spinning
and resource-waiter VCPUs are examined, the resource-
waiter VCPU (B) causing A to spin is more likely to be the one
that is preempted recently. Critical sections and normal spin-
ning in spin-lock synchronizations are much shorter than
time slices. They are usually shorter than a few microseconds,
while time slices are longer than a few milliseconds. Thus, the
chance that spin-lock holders or spin-lock waiters are pre-
empted due to depleted time slices is small if spin-locks are
not frequently requested; and LHP and LWP problems are
usually incurred by the workloads with frequent spin-lock
synchronizations; for example, each VCPU many request a
spin-lock multiple times in a time slice. Therefore, when A is
preempted, B must have been preempted recently, later than
the time when last time A requests the lock.

When all the “ready” VCPUs are lock-waiter VCPUs and
there is still a VCPU being preempted due to spinning, the
VCPU must be waiting for another VCPU, which shares
the same ticket-lock with it and has been preempted earlier
due to spinning. This corresponds to the third scenario in
the LWP. Because all the VCPUs in the same VM use the
same spinning threshold, the order in which the VCPUs are
preempted by the hardware facilities reflects the order in
which they request the ticket lock, which in turn determines
their positions in the queue. Thus, these VCPUs should be
scheduled in the same order as they are preempted.

Based on these two heuristics, the HVS maintains two
lists, resource-waiter list and lock-waiter list, to organize
resource-waiter VCPUs and lock-waiter VCPUs, respec-
tively. HVS ranks the VCPUs on each list based on their pre-
emption timestamps and ranks the resource-waiter VCPUs
higher than lock-waiter VCPUs. When a VCPU needs to be
selected, it just selects the VCPU with the highest rank.?

4. Though preferentially scheduling spinning VCPUs with larger
preemption timestamps degrades performance (as shown in Fig. 13),
the “misclassification” of spinning VCPUs as resource-waiter VCPUs
hardly hurts performance, due to its low possibility of happening.
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3.3 APPLES Implementation

We have implemented APPLES based on KVM and Linux.
The implementation of APLE in KVM adds only about 80
lines of source code to 4 existing files, and the implementa-
tion of HVS adds about 30 lines of source code to one existing
file. Most changes are made inside the PLE event handler of
KVM. Other changes are mainly to collect event times and
other needed information (e.g., the preemption time of
VCPUs, the number of times that the VCPUs have been pre-
empted due to excessive spinning in each epoch, etc).

Every time when the spinning-suppression hardware
detects excessive VCPU spinning, the PLE event handler is
called to handle this issue. Inside the handler, APPLES first
uses HVS to select a candidate VCPU. Then, it checks
whether an epoch is finished or not. If an epoch is finished, it
adjusts the spinning threshold and changes the Virtual
Machine Control Structure (VMCS) of the VCPU accord-
ingly, before it schedules in the VCPU.

One issue we addressed in the implementation is to adapt
HVS to the method currently used in KVM to reschedule
VCPU candidates. Linux and KVM uses virtual run time to
schedule VCPUs. When a VCPU runs, its virtual run time
increases monotonically. When the virtual run time exceeds
any other VCPU’s virtual run time by a time quantum (usu-
ally very small), the VCPU is preempted. In KVM, when a
spinning VCPU (4) is preempted and another VCPU (B) is
selected, it uses a “yield_to” mechanism to temporarily boost
the priority of B, such that B can be rescheduled as soon as
possible. The virtual run time of B still keeps increasing. In
HVS, the latest preempted VCPU is selected first. Since the
latest preempted VCPU already has a large virtual run time
(larger than that of any other VCPUs when it is preempted).
Thus, it may be preempted again shortly after it is resched-
uled. Then, it may be selected again by HVS when another
spinning VCPU is preempted, though it is not blocking the
progress of other VCPUs. This forms a loop preventing HVS
from selecting VCPUs that can effectively reduce spinning.
In the loop, a VCPU is selected by HVS repeatedly as a candi-
date VCPU. Since its virtual run time is large and keeps
increasing, it is preempted shortly every time when it is
scheduled, giving it a higher probability of being selected
again by HVS. This not only lowers the quality of the candi-
date VCPUs selected by HVS, but also reduces the chances of
other VCPUs getting rescheduled, and may cause starvation
problem in the worst case.

To address this issue, the implementation in KVM pre-
vents a VCPU from being selected as a candidate VCPU
repeatedly. For this purpose, the implementation marks a
VCPU as “yielded” when it is selected as a candidate VCPU.
When a VCPU is preempted because its virtual run time is too
large, its “yielded” mark is checked. If there is not a “yielded”
mark, the VCPU is put onto the resource-waiter list. Other-
wise, the mark is removed, and the VCPU is put onto a
“yielded” VCPU list. The VCPUs on the “yielded” list are
selected by HVS as candidate VCPUs when the resource-
waiter list and lock-waiter list are empty. They may also be
selected to run when their virtual run time is surpassed by
that of other VCPUs.

4 EVALUATION

This section evaluates APPLES with a collection of multi-
threaded benchmarks. We first present the overall perfor-
mance of APPLES. Then, for each component in APPLES,
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we carry out experiments to show its performance advan-
tage and study in detail how it improves performance.

4.1 Experimental Setup

We conducted our experiments on a Dell PowerEdge R720
server with 64 GB of DRAM and two 2.40 GHz Intel Xeon
E5-2665 processors. Each processor has 8 cores. There are
16 cores in total. On the server, we created 4 VMs with
16 VCPUs. Each VM has 16 GB of memory. The VMM is
KVM [21]. The host OS and the guest OS are Ubuntu version
14.04 with the Linux kernel version updated to 3.19.8. The
VCPUs in each VM are one-to-one pinned to physical cores.
Our experiments show that the benchmarks achieve better
performance under this configuration than they do without
pinning the VCPUs. CPU power management can reduce
the performance of the applications running in VMs [29]. To
prevent such performance degradation, in the experiments,
we disabled the C states other than CO and C1 of the pro-
cessors, which have long switching latencies.

To evaluate APPLES, we used the benchmarks in PAR-
SEC 3.0 suite [30], including native PARSEC benchmarks
and SPLASH2X benchmarks in the suite. We attach a prefix
‘p.” before the name of each native PARSEC benchmark,
and attach a prefix ‘s.” before the name of each SPLASH2X
benchmark, in order to differentiate these two sets of bench-
marks. We also refer to native PARSEC benchmarks as PAR-
SEC benmarks for brevity. These benchmarks are mainly for
testing multicore processor designs in computer architecture
area. Most of them are computation-intensive and require
minimal system support. Therefore, we also selected a few
other applications that have been frequently used to study
LHP and LWP problems. Ebizzy [31] is multi-threaded and
generates workloads similar to those on common web appli-
cation servers. Dbench [32] is derived from an industry-stan-
dard benchmark NetBench. It is a utility that tests the ability
of a file system to service requests from clients. Hack-
bench [33] is a multi-threaded benchmark designed to test
Unix-socket (or pipe) performance. Kernbench [34] is a CPU
and memory intensive benchmark that measures and com-
pares the time used to compile Linux kernels. We selected
these applications not only because they incur frequent sys-
tem operations, but also because they are representative
workloads in diverse application domains.

We compiled the PARSEC and SPLASH2X benchmarks
using gcc with the default settings of the gcc-pthreads config-
uration in PARSEC 3.0. We built other benchmarks using
the make files/scripts coming with the benchmark pack-
ages. The gcc compiler and the libraries required by the
benchmarks are stock software components in the Ubuntu
Linux distribution. We used the parsecmgmt tool in the PAR-
SEC package to run the PARSEC and SPLASH2X bench-
marks with native input. In the experiments, we set the
number of threads in each benchmark equal to 32. We ran
each experiment five times and report the average result.

We ran the benchmarks using the default KVM configura-
tion and use their performance as the baseline performance.
Since different benchmarks may use different metrics (e.g.,
throughputs and execution times) and the absolute perfor-
mance numbers vary widely across benchmarks, we normal-
ize the performance measured in the experiments against the
baseline performance. Thus, the baseline performance is
always 1. To be consistent, we use large values to represent
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higher performance. Thus, if a benchmark reports through-
put, we present its normalized throughput in the paper. If a
benchmark reports execution time, we present its speedup in
the paper. For brevity, we use “performance” to refer to both
normalized throughput and speedup.

The LHP and LWP problems happen when PCPUs are
over-subscribed. Thus, we launch multiple VMs. We run
multiple instances of the same benchmark in parallel on
the VMs, one on each VM. different configurations, and
compare the performance. In our experiments with APLE
enabled, for all the VMs, the initial value of the desired
threshold T} is 8,192 cycles. The lower bound 7; is 4,096
cycles (the same as that in the default KVM setting). The
upper bound T;, is 32,768 cycles, and § is 1,024 cycles.

4.2 Overall Performance of APPLES

In this section, we first show the performance advantage of
APPLES over the stock KVM for spinlock-intensive bench-
marks. Then, we compare the overhead of APPLES and the
stock KVM.

For each benchmark, we launch two VMs and run two
instances of the benchmark in parallel, one on each VM. We
first run the benchmark using the stock KVM with PLE
disabled. Then, we enable the PLE support, and run the
benchmark with the stock KVM and APPLES, respectively.
We also manually set the PLE_window to 512 cycles, collect
inefficiency values during its execution, and average
the inefficiency values. If the average inefficiency value is
greater than 5 percent, the benchmark is considered to be
spinlock-intensive. We use spinlock-intensive benchmarks
to evaluate the effectiveness of APPLES and non-spinlock-
intensive benchmarks to test the overhead of APPLES.

Fig. 5 shows the performance of spinlock-intensive
benchmarks and their average performance under three sce-
narios, i.e., (1) with the PLE support turned off, (2) with the
stock KVM (PLE enabled), and (3) with APPLES (PLE
enabled). APPLES performs consistently better than the
stock KVM for these benchmarks. Compared to the stock
KVM, APPLES improves the performance of the bench-
marks by 14 percent on average and up to 49 percent.

Among these benchmarks, ebizzy, dbench, hackbench, and
kernbench incur the most frequent spin-lock operations.
Their performance suffers significantly from LHP and LWP
problems. Though the PLE support in the stock KVM can
significantly improve their performance, APPLES is more
effective and can further improve performance. For p.can-
neal, p.bodytrack, p.raytrace, and p.streamcluster, with the
stock KVM, enabling PLE even degrades their performance,
because the stock KVM cannot set spinning thresholds
adequately and preempts spinning VCPUs prematurely.
APPLES can avoid this problem. It achieves similar (for p.
raytrace) or higher (for the other three benchmarks) perfor-
mance, relative to that with the PLE support turned off. For
the remaining benchmarks, the spin-lock operations in their
executions are not as frequent as those in the first four
benchmarks. With PLE support, the stock KVM improves
their performance moderately, and APPLES can improve
the performance by larger percentages.

APPLES improves performance through the synergistic
collaboration of APLE and HVS, which significantly reduces
the total cost incurred by excessive spinning and preempt-
ing spinning VCPUs. We use ebizzy as an example to illus-
trate how APPLES with its components reduces the cost
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Fig. 5. Normalized performance of the spinlock-intensive benchmarks with KVM and APPLES (PLE support enabled) and PLE support disabled,
when two VMs co-run. Prefixes ‘p.” in benchmark names stand for PARSEC benchmarks, and prefixes ‘s.” stand for SPLASH2X benchmarks.

and how the performance is affected by the reduction of the
cost. To test one component of APPLES, we disable the
other component and use the default mechanism in KVM.

As shown in Fig. 6, compared to the stock KVM, the per-
formance of ebizzy is improved by 34 percent with APLE
alone, and is improved by 9 percent with HVS alone. With
APLE and HVS combined, the performance can be improved
by 49 percent. The percentage of improvement with APPLES
is even higher than the sum of percentages of improvement
with APLE and HVS alone. This is because HVS is more
effective with APLE than it with the default mechanism in
KVM to adjust spinning threshold, as we will show later in
Section 4.4. The figure also compares the average inefficiency
values of ebizzy executions under these scenarios. APLE and
HVS can reduce inefficiency by 32 and 18 percent respec-
tively, and reduce it by 58 percent when combined, relative
to the stock KVM. It is evident that performance is improved
when the inefficiency decreases.

We measure the overhead of APPLES with two sets of
experiments. The first set studies its overhead on under-
subscribed systems. For this purpose, we launch one VM,
and run spinlock-intensive benchmarks in the VM. On a
system that is under-subscribed, each VCPU gets a dedi-
cated physical core. Thus, lock holder/waiter VCPUs would
not be preempted, and there is no need to preempt spinning
VCPUs. Descheduling and rescheduling spinning VCPUs
degrades performance. Thus, the performance measured
with the PLE support disabled represents the best perfor-
mance these benchmarks can achieve. The performance
degradation caused by KVM and APPLES enabling and
handling PLE events represents their overhead. On average,
the benchmarks achieve similar performance with APPLES
and the stock KVM, and the performance difference is not
noticeable (less than 2 percent). Compared to the executions
with PLE support disabled, these benchmarks show only
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Fig. 6. Normalized performance and average inefficiency of ebizzy with
KVM, APLE, HVS, and APPLES when two VMs co-run.

slightly lower performance with KVM and APPLES (1~2
percent on average and up to 8 percent for kernbench). The
overhead of APPLES is similar to that of the stock KVM and
is acceptable when the system is under-subscribed.

The second set of experiments study the overhead of
APPLES on over-subscribed systems. We launch two VMs,
on which we run the benchmarks that do not incur frequent
spinlock operations. Fig. 7 shows the performance of these
benchmarks and their average performance. We use perfor-
mance tested with the stock KVM with PLE support disabled
as baseline performance. Both APPLES and the stock KVM
show similar performance as that with PLE support disabled
(difference <1 percent), indicating that their overhead is very
low for the benchmarks that rarely incur spinlock operations.

4.3 APLE Performance

To study in detail how APLE improves system perfor-
mance, we enable APLE and disable HVS in APPLES. We
select seven spinlock-intensive applications for the study.
We select ebizzy, dbench, hackbench, and kernbench, because
they are more spinlock-intensive than other benchmarks,
and their performance is more sensitive to the management
of PLE facility. We select p.raytrace and p.streamcluster,
because we want to investigate the reasons why APPLES
can maintain and improve the performance while the stock
KVM degrades their performance when PLE support is
enabled. Benchmark p.dedup is selected because its perfor-
mance is most sensitive to the management of PLE facility
among the remaining benchmarks, which are not as spin-
lock-intensive as the first four benchmarks.

We carry out experiments to compare APLE against the
mechanism which uses a fixed system-wide spinning
threshold. Since a benchmark shows different performances
with different spinning thresholds, we repeat experiments
and test different spinning thresholds from 512 cycles to
32768 cycles to get a scope of performance variation. Thus,
we can find the “best” performance and the “worst” perfor-
mance that the benchmark can achieve by selecting different
fixed spinning thresholds. In this section, we use “best” to
represent the case in which the selected spinning threshold
leads to the best performance, and use “worst” to represent
the case in which the selected spinning threshold leads to
the worst performance.

Please note that the “best” and “worst” performances are
only those achieved with fixed spinning thresholds. They
do not represent the real best and worst performance that
can be achieved with any possible methods. However, we
use the “best” performance and the “worst” performance to
show the potential of adjusting the spinning threshold and
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Fig. 7. Normalized performance of the non-spinlock-intensive benchmarks with KVM and APPLES (PLE support enabled) and PLE support disabled,
when two VMs co-run. Prefixes ‘p.” in benchmark names stand for PARSEC benchmarks, and prefixes ‘s.” stand for SPLASH2X benchmarks.

how much performance degradation could be caused if the
spinning threshold was not adequately set.

We also want to compare the “best” and “worst” perform-
ances against the performance that can be achieved with
the dynamic method in APLE, and show the necessity for
adjusting the spinning threshold dynamically based on
workloads. During the execution of a benchmark, there may
be different phases. A threshold leading to good perfor-
mance in one phase may lead to bad performance in another
phase. Thus, it is possible that, with a spinning threshold
adjusted dynamically, a benchmark achieves better/worse
performance than the “best” /“worst” performance achieved
with a fixed threshold used across different phases.

Fig. 8 shows the performance of these benchmarks when
two VMs co-run. The stock KVM cannot achieve the best
performance. Especially, with p.streamcluster, kernbench and
p.raytrace, it even achieves lower performance than the
“worst” performance obtained with a fixed spinning thresh-
old level. In contrast, APLE can achieve better performance
than “best”—the best performance that can be obtained by
smartly selecting a fixed spinning threshold. The average
performance achieved with APLE is 1.13, and the average
performance achieved by smartly selecting a fixed spinning
threshold (i.e., “best”) is 1.10. APLE improves the per-
formance of ebizzy by the largest percentage (34 percent rela-
tive to the stock KVM and 19 percent relative to “best”).
For p.raytrace and p.streamcluster, the “best” performance
is achieved when the thresholds are high (32,768 cycles).
The stock KVM degrades performance because it sets the
thresholds too low, such that spinning VCPUs are pre-
empted prematurely. APPLES avoids this problem since
premature VCPU preemptions increase wasteful VCPU
switches and thus inefficiency. The figure also shows that,
when selecting a wrong spinning threshold level, the
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Fig. 8. Normalized performance of the benchmarks with KVM, “best”,
“worst”, and APLE when two VMs co-run.

performance can be degraded by 16 percent on average and
up to 46 percent (for ebizzy), relative to that with spinning
thresholds adequately set by APLE.

Fig. 9 shows the performance of the benchmarks when
four VMs co-run. Compared to the executions with two
VMs, the performance difference between the stock KVM,
“best”, and APLE is much smaller. However, if the spinning
thresholds are set inadequately, application performance
still can be significantly reduced. For example, with dbench,
the performance difference between “best” and “worst” is
19 percent when two VMs co-run, and the difference is
increased to 35 percent when four VMs co-run.

To illustrate the correlation between system performance
and the inefficiency level and to show how adjusting spinning
threshold can reduce inefficiency and improve system perfor-
mance, we use ebizzy as an example, and compare the average
inefficiency values along with normalized performances
achieved by KVM, “best”, “worst”, and APLE when two VMs
co-run. The average inefficiency is the average of the ineffi-
ciency values measured in the epochs of the two VMs during
the two instances of ebizzy run in parallel in the VMs.

As shown in Fig. 10, in general the average inefficiency
reduces when the spinning threshold is increased from 512
cycles to 16,384 cycles. This is because the overhead of waste-
ful VCPU switches caused by preempting spinning VCPUs
prematurely can be reduced with larger spinning thresholds.
Meanwhile, with the decreasing of the average inefficiency,
the performance is improved accordingly. However, when
the spinning threshold is further increased, the average inef-
ficiency increases, since the overhead of wasteful spinning
starts to dominate, and thus the performance is degraded.

Fig. 10 also clearly shows that, with a fixed spinning
threshold, the “best” performance is achieved when the
average inefficiency is minimized by smartly selecting the
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Fig. 9. Normalized performance of the benchmarks with KVM, “best”
and “worst”, and APLE when four VMs co-run.
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Fig. 10. Normalized performance and average inefficiency of ebizzy

when a system-wide spinning threshold is changed from 512 cycles to
32,768 cycles, and when the stock KVM and APLE is used to adjust the
spinning threshold. Two VMs are used.
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Fig. 11. Spinning threshold adjusted by the stock KVM when two
VMs co-run.
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Fig. 12. Spinning threshold adjusted by APLE when two VMs co-run.

spinning threshold (16,384 cycles in this case). The default
KVM mechanism cannot achieve the best performance since
it cannot effectively reduce inefficiency. In contrast, APLE
reduces the average inefficiency by 32 percent, relative to the
stock KVM. Moreover, compared to “best”, APLE reduces
the average inefficiency by 11 percent, which is the reason
why APLE can achieve even higher performance than “best”.

In the above experiments, we also collected the spinn-
ing thresholds during the execution of the ebizzy instances.”
Figs. 11 and 12 show how spinning thresholds are adjusted
respectively for the scenarios with default KVM mechanism
and APLE. With APLE, there are about 900 epochs in the exe-
cution, while with KVM default mechanism there are about
1,600 epochs. This is because fewer VM_EXITs are incurred
by PLE events with APLE. With the default KVM mechanism,

5. The default KVM mechanism does not use epochs and sets a spin-
ning threshold for each VCPU. For fair comparison, we define epoch in
the same way as in APLE (i.e., 1000 VM_EXITs caused by PLE events),
and collect the average spinning threshold of all the VCPUs in a VM for
each epoch.
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Fig. 13. Normalized performance of the benchmarks with the stock KVM,
HVS, and three variants of HVS when two VMs co-run. The default
mechanism in KVM is used to adjust spinning thresholds.
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Fig. 14. Normalized performance of the benchmarks with the stock KVM,
HVS, and three variants of HVS when two VMs co-run. APLE is used to
adjust spinning thresholds for HVS and its variants.

the spinning threshold sticks round 4,200, which leads to the
poor performance similar to the one with fixed spinning
threshold of 4,096. This shows that the stock KVM cannot
effectively adjust the spinning threshold to achieve optimal
performance. However, with APLE, the spinning threshold
changes steadily around 12,000, which leads to the perfor-
mance that is even better than “best” performance achieved
with fixed spinning threshold of 16,384.

4.4 HVS Performance

In this section, we want to understand how the heuristics in
HVS help improve the performance. For this purpose, we
have implemented three variants of HVS, which intentionally
avoid selecting the candidate VCPUs suggested by a heuristic.
The name of the variants and their differences with HVS are:

e Counter Preemption-Time Heuristic on Resource-
waiters (CPTH-R): when selecting a candidate VCPU
from resource-waiter VCPUSs, the one with the small-
est preemption timestamp is selected.

e  Counter Preemption-Time Heuristic on Lock-waiters
(CPTH-L): when selecting a candidate VCPU from
lock-waiter VCPUs, the one with the largest preemp-
tion timestamp is selected.

e Counter Causality Heuristic (CCH): lock-waiter
VCPUs are selected before resource-waiter VCPUs.

We select the same set of benchmarks as we do for testing

APLE, and compare the performance of HVS with its
variants when we run the benchmarks in two VMs. Figs. 13
and 14 show their performance, relative to the stock KVM.
In Fig. 13, the data was obtained with the default mechanism
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in KVM to adjusting spinning threshold. In Fig. 14, the data
was obtained with APLE adjusting spinning thresholds.

As shown in Fig. 13, HVS performs slightly better than its
variants when the default mechanism in KVM adjusting
spinning threshold. The average performance is 1.08, 1.05,
0.97, and 1.03 for HVS, CPTH-R, CPTH-L, and CCH, res-
pectively. This indicates that the heuristics used in HVS
do help improving the performance, but they are not very
effective. The figure also shows that the preemption-time
heuristic applied to lock-waiter VCPUs helps improving
performance by the largest percentage. This is because, for
ticket spin-locks, the order in which lock-waiter VCPUs are
scheduled has great impact on performance.

We were surprised to see that the causality heuristic is not
as effective as the preemption-time heuristic. The benchmark
dbench even shows the same performance on HVS and CCH.
Our investigation shows that the default mechanism in KVM
tends to adjust the spinning thresholds to very low values
(Figs. 11 and 12), which preempt spinning VCPUs pre-
maturely even when LHP or LWP does not happen. Thus,
scheduling resource-waiter VCPUs first and scheduling
lock-waiter VCPUs first do not make much difference on per-
formance. Note that lock-waiter VCPUs are preempted when
their spinning thresholds are reached. Thus, if spinning
thresholds are set too low, lock-waiter VCPUs are preempted
even when they may get the locks shortly.

Thus, we repeated the experiments with APLE adjusting
spinning thresholds of the VMs. As shown in Fig. 14, the heu-
ristics in HVS become more effective when spinning thresh-
olds are adequately set. Not using these heuristics leads
to serious performance degradation. The average perfor-
mance is 1.20, 1.09, 1.01, and 0.43 for HVS, CPTH-R, CPTH-
L, and CCH, respectively. Specifically for the causality heu-
ristic, scheduling lock-waiter VCPUs before resource-waiter
VCPUs reduces the performance of dbench and hackbench by
more than 10x. This on one hand shows the importance of
VCPU selection and confirms the effectiveness of causality
heuristic, and on the other hand demonstrates the effective-
ness of APLE on selecting adequate spinning threshold
to accurately and promptly identify VCPUs waiting for
preempted lock holders or preempted lock waiters.

5 RELATED WORK

A large number of studies have been focused on the lock
holder preemption (LHP) and the lock waiter preemption
(LWP) problems. Various solutions have been proposed to
reduce performance degradation. Software-only solutions
include sophisticated VCPU scheduling algorithms [2], [3],
[4], [5], [6], [7], [8], [9], [10], [11], [12], improved synchroni-
zation primitives [17], and paravirtualization [13], [14]. On
current platforms, using spinning-suppression hardware
facilities, such as Intel PLE and AMD PF, has been domi-
nantly utilized on mainstream virtualization systems and
become a de facto standard solution [15], [16], [18], [19]. Our
work does not provide an alternative solution to the LHP
and LWP problem. Instead, it improves the solutions with
hardware facilities.

Targeting the problem of setting spinning thresholds
for the hardware facilities, there are studies showing that
spinning thresholds must be adjusted based on workloads
to achieve best performance [28], [35]. Besides APLE [36],
there are some other efforts to adjust spinning thresholds
dynamically. Zhang, Dong, and Duan [28] proposed a pro-
filing method that collects the average spin-lock cycles in
guest OSs and uses the information to adjust spinning
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thresholds. This approach requires the VMM to have
detailed and important information about guest OSs, such
as OS symbol tables, which should not be exposed to the
VMM for security reasons on the systems shared by multi-
ple users, e.g., public clouds. This seriously limits the scope
of the solution. Thimmappa [24] proposed a method to
adjust the spinning threshold based on whether or not
the resources freed by preempting spinning VCPUs can be
reallocated to other VCPUs for them to make progress.
Recently, KVM implemented a method to dynamically
grow/shrink the spinning threshold for each VCPU [25].
These two methods focus mainly on improving the perfor-
mance when the system is under-committed.

Targeting the problem of which VCPUs should be sched-
uled to replace spinning VCPUs, besides the directed yield
method currently used in KVM [27], and another Linux
online patch [37], which relies on modified guest OSs to
label VCPUs holding spin-locks, we cannot find any
research on selecting VCPUs for the efficient utilization of
spinning suppression hardware facilities.

The trade-off between busy waiting (spinning) and block-
ing in synchronization primitives is a classic yet challenging
problem, and has been intensively studied under different
scenarios [38], [39], [40], [41]. The problem we target in this
paper also needs to make a trade-off between busy waiting
and blocking. But, compared to the problems targeted in pre-
vious studies, the problem in this paper is more challenging,
since the VMM has limited information and cannot directly
control the spinning in synchronization primitives.

6 CONCLUSION

Mainstream virtualization systems rely on hardware facili-
ties, such as Intel PLE and AMD PF, to alleviate the per-
formance degradation due to excessive VCPU spinning.
However, it is still a challenging issue to effectively control
these facilities to minimize overhead and maximize
throughput, which requires the knowledge on the locking
behaviors of guest systems that is unavailable at the VMM
level, due to the semantic gap between the host and the
guests. Ineffective utilization of these hardware facilities
may even cause performance degradation.

The paper addresses this issue with a holistic solution
named APPLES. The two components in it solve two core
problems in the utilization of the hardware facilities. Specif-
ically, one component APLE maintains an adequate VCPU
spinning threshold for each VM, in order to promptly detect
and preempt VCPUs when they spin excessively. The key
idea is to measure the execution efficiency of each VM and
adjust the threshold in a way to maximize the efficiency.
The other component HVS carefully selects VCPUs and
schedules them in an order required by efficient synchroni-
zation. The key idea is to evaluate and rank VCPUs based
on the causality and time of VCPU preemptions.

Our experiments show that APPLES can improve system
performance by as much as 49 percent. Its implementation
incurs minimal modification to existing virtualization sys-
tem designs. We seek the adoption of APPLES in commer-
cial and open-source virtualization systems.
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