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Abstract—On virtualized platforms, Lock Holder Preemption
(LHP) is known as a serious problem, which makes virtual CPUs
(VCPUs) spin excessively while waiting for locks and seriously
degrades performance. To address this problem, hardware facili-
ties, such as Intel PLE and AMD PF, are provided on processors
to preempt spinning VCPUs. Though these facilities have been
predominantly used on mainstream virtualization systems, using
them in a manner that achieves the highest performance is still
a challenging issue.

The core issue in dealing with the LHP problem is to
determine the best time to preempt spinning VCPUs (i.e., spinning
thresholds). Due to the semantic gap between different software
layers, the virtual machine monitor (VMM) does not have the
information about whether a VCPU is spinning normally (i.e.,
waiting for a lock to be released quickly) or is spinning excessively
(i.e., waiting for a lock which is currently held by a preempted
VCPU and cannot be released quickly). Thus, it cannot determine
adequate thresholds for preempting spinning VCPUs to achieve
high performance. Preempting spinning VCPUs late wastes
system resources. Preempting them prematurely incurs costly
context switches between VCPUs and delays lock acquisition.

The paper addresses the issue of preempting spinning VCPUs
with an end-to-end approach named Adaptive PLE (APLE).
APLE monitors the execution efficiency of each VM by collecting
the overhead incurred by wasteful spinning and wasteful VCPU
switches. Then, it periodically adjusts the spinning threshold
to reduce the overhead and increase the execution efficiency
of the VM. The implementation of APLE incurs only minimal
changes to existing systems (about 80 lines of code in KVM).
The experiments with multicore workloads show that APLE can
improve throughput by up to 68%.

Keywords—virtualization; virtual CPU scheduling; lock-holder
preemption; pause-loop exiting;

I. INTRODUCTION

In the cloud, virtual machines (VMs) with multiple virtual
CPUs (VCPUs) have become increasingly popular. At the
same time, the number of VCPUs in the same VM keeps
increasing. For example, Amazon EC2 now provides VM
instances with 40 VCPUs running on Intel Xeon E5-2676 v3
processors with hyperthreading [1]. On each VM, the “guest”
operating system (OS) manages a set of VCPUs and schedules
application threads on these VCPUs. In the cloud, a physical
machine is often shared by multiple VMs. To coordinate the
sharing of physical CPUs (PCPUs), on the host machine,
the virtual machine monitor (VMM) independently schedules
VCPUs onto the PCPUs.

Though a VCPU can run concurrently with other VCPUs,
due to the time-sharing of PCPUs, it may be descheduled by
the VMM to release the PCPU to another VCPU. It stops

making progress until it is rescheduled. Unfortunately, this
makes the behavior of the VCPUs not always match the
behavior of PCPUs, which are expected to make continuous
progress. Since the OS is designed and optimized for PCPUs,
the mismatch between the VCPU abstraction and PCPU behav-
ior introduces great challenges to synchronization and causes
serious performance issues, particularly for multithreaded ap-
plications running on multicore VMs. One such issue is known
as the Lock-Holder Preemption (LHP) problem, which has
been extensively studied [2]–[13].

The LHP problem is caused when a VCPU is descheduled
from the host platform while it is holding a spinlock. Since the
lock-holding VCPU cannot proceed to release the lock, other
VCPUs waiting on the lock cannot make progress until the
lock-holding VCPU is rescheduled to release the lock. These
VCPUs spin in spinlock primitives. The spinning (i.e., busy
waiting) occupies physical resources and prevents the lock
holding VCPU from being rescheduled quickly. Thus, the LHP
problem causes excessive spinning, which significantly reduces
system throughput.

To handle the LHP problem, hardware facilities are de-
signed on processors to detect and stop VCPUs from excessive
spinning, e.g., Intel Pause-Loop-Exiting (PLE) [14] and AMD
Pause Filter (PF) [15]. Now, most virtualization systems (e.g.,
Xen, KVM, VMWare ESX, etc.) rely on these facilities. With
such hardware facilities, the VMM sets a threshold for the
time spent on continuous spinning on each processor. Then,
the processor monitors the instructions being executed by each
VCPU to detect spinning and stops the spinning if it exceeds
the spinning threshold, so that the VMM can reallocate the
processor to another VCPU that can make progress.

Despite the wide adoption of such hardware facilities, it
is still a challenging issue to utilize these facilities to achieve
high performance. On a physical machine equipped with such
facilities, the VMM must carefully set spinning thresholds
for VMs. On one hand, setting the thresholds high increases
excessive spinning and leads to low resource utilization. On
the other hand, spinlocks are often used to protect short critical
sections in guest OSs and spinning ensures that a lock can be
acquired as soon as it is released. If spinning thresholds are
set too low, spinning VCPUs may be preempted prematurely.
This delays lock acquisition and incurs costly context switches
between VCPUs, which can significantly increase synchroniza-
tion overhead and reduce system throughput. Thus, the VMM
struggles between two conflicting objectives. One is to stop
VCPU spinning as early as possible in case the lock holding
VCPU has been preempted. The other is to avoid stopping
VCPU spinning too early for efficient spinlock synchronization
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in case the lock holding VCPU is running and is about to
release the lock. However, due to the semantic gap between
software layers, the VMM does not have the information about
whether a VCPU is holding a spinlock or whether the lock
holding VCPU is running. Thus, it is challenging for the VMM
to set spinning thresholds adequately.

To address this challenging issue of achieving high per-
formance with hardware utilities like PLE, the paper proposes
Adaptive PLE (APLE), with which the VMM can control the
hardware facilities and deal with the LHP problem efficiently
by dynamically adjusting spinning thresholds1. Instead of
struggling with identifying whether lock-holding VCPUs are
preempted, APLE measures the overhead caused by wasteful
spinning and wasteful VCPU switches. Wasteful spinning is
the spinning stopped by processors when spinning thresholds
are reached, since it does not contribute to lock acquisition.
Wasteful VCPU switches are incurred by preempting spinning
VCPUs and rescheduling other VCPUs. APLE periodically
measures the overhead caused by the wasteful operations and
adjusts spinning thresholds to minimize this overhead.

The advantages of APLE are three-fold. First, APLE di-
rectly targets end-to-end performance. Reducing the overhead
increases efficiency, since it makes more resources available
to the operations that directly contribute to the execution
of the workloads. Second, since both wasteful spinning and
wasteful VCPU switches are visible to and handled by the
VMM, their overhead can be accurately measured in the VMM
with low cost. Specifically, the overhead of wasteful spinning
can be determined by spinning thresholds and the number of
times the thresholds reached. The overhead of each VCPU
switch is the time between the corresponding VM EXIT
and VM ENTRY events. Third, the implementation of APLE
incurs only minimal modification to existing VMM designs.
Our implementation based on KVM adds only about 80 lines
of source code to 4 existing files. This may help APLE be
quickly adopted by existing virtualization systems.

The contributions of our work are as follows. Firstly,
the paper systematically reviews and analyzes the problem
faced by almost all mainstream virtualization systems — how
to utilize hardware facilities to address the LHP problem
efficiently to achieve high performance. Secondly, the paper
proposes an innovative approach named APLE that controls
the hardware facilities so as to minimize the overhead caused
by wasteful spinning and wasteful VCPU switches. Thirdly, we
implemented APLE in KVM and tested its performance on a
16-core system. We show that, with APLE, the performance
can be improved by 68%.

II. BACKGROUND AND MOTIVATION

In this section, we first introduce the hardware facilities
for dealing with the LHP problem. Then, we explain how the
existing virtualization systems utilize these facilities, using the
support in KVM for Intel PLE as an example. At the end of the
section, we present some performance results of a few standard
benchmarks to show that the hardware facilities must be better
controlled by VMMs to achieve better performance.

1Although the APLE design in the paper is based on Intel PLE, it can also
be used on systems with AMD PF or other similar hardware utilities, which
detect and stop spinning based on the thresholds set by the VMM.

A. Intel PLE and Other Similar Facilities

Modern processors provide hardware support for virtual-
ization to reduce overhead. On these processors, PLE and
other similar facilities are designed to deal with the LHP
problem. With PLE, a processor first detects spinning VCPUs
by examining the instructions executed by the VCPUs. On
X86 architecture, spinlock primitives usually repeatedly call
PAUSE instructions to implement spinning. To detect spinning,
the processor checks the intervals (in number of CPU cycles)
between consecutive PAUSE instructions executed by a VCPU.
For a spinning VCPU, the intervals are very short, since
the VCPU only checks the condition for stopping spinning
between PAUSE instructions. Thus, the processor compares the
lengths of the intervals against a pre-set parameter PLE gap.
If the lengths do not exceed PLE gap, it determines that the
VCPU is spinning. If no PAUSE instruction is executed in an
interval of PLE gap, it determines that the spinning stops.

When the spinning is continuing, the processor needs to
determine whether the spinning should be stopped. For this
purpose, it keeps track of the length of the spinning by count-
ing the number of cycles spent on PAUSE instructions and
the intervals between PAUSE instructions. If the length of the
spinning exceeds a pre-set spinning threshold PLE window,
the processor will trigger a VM EXIT to stop the spinning
and transfer the control to the VMM, so that the VMM can
deschedule the spinning VCPU and reschedule another VCPU
that can make progress.

AMD Pause Filter (PF) functions similar to the Intel
PLE. It also checks intervals between consecutive PAUSE
instructions and considers PAUSE instructions with intervals
smaller than PAUSE Filter Threshold to be in the same loop. It
preempts spin loops exceeding PAUSE Filter Count intervals.
Both PAUSE Filter Threshold and PAUSE Filter Count are
pre-set by software. For AMD PF, PAUSE Filter Count acts
as the spinning threshold. Because of the similarity, we use
Intel PLE in APLE design and experiments. But the proposed
methodology can be applied to the systems with AMD PF.

B. PLE Support in KVM

With PLE, when the two parameters PLE gap and
PLE window are set, the processor detects and preempts
spinning VCPUs autonomously. The VMM controls the PLE
facility by selecting/adjusting the values of the parameters.
It is relatively easy to find an adequate value for PLE gap
since PAUSE instructions are called much more frequently in
spinlocks than other scenarios. By default, KVM sets PLE gap
to 128 cycles, which proves to be effective in practice. How-
ever, it is difficult to find an adequate value for the spinning
threshold PLE window, as we will show in the next subsection.
Our work focuses on adjusting the spinning threshold.

Besides setting the two parameters, the VMM also needs to
handle VM EXITs caused by PLE facilities. Specifically for
KVM, when a spinning VCPU of a VM is preempted, KVM
examines the “ready” VCPUs in the same VM. If there is a
“ready” VCPU, which was not preempted due to spinning,
KVM schedules the VCPU. For brevity, this case is called
“successful yielding”, since the spinning CPU “yields” the
processor to a VCPU that can make progress. Otherwise, KVM
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reschedules the VCPU that is just preempted. This case is
called “unsuccessful yielding”.

In the past, KVM would use a system-wide spinning
threshold and set it to a fixed value selected empirically based
on the spinning time under some typical workloads. However,
the spinning time changes with workloads and with VM sizes
(VCPU counts). A value that achieves optimal performance for
some workloads may cause serious performance degradation
for other workloads. On large VMs, even when lock holding
VCPUs are not preempted, VCPUs may spend more time
on spinning than the selected spinning threshold and may be
preempted prematurely. This can significantly degrade perfor-
mance. For example, experiments have shown that it takes 369s
to boot a 80-VCPU VM with PLE enabled, while it takes only
25s with PLE disabled [16].

The problem with a fixed spinning threshold has been
noticed in the KVM community. There are attempts to dy-
namically adjust spinning thresholds. They mainly focus on
improving the performance when PCPUs are under-subscribed.
Since a lock holding VCPU will not be preempted when
PCPUs are under-subscribed, spinning thresholds should be set
high enough to prevent spinning VCPUs from being preempted
prematurely.

For example, an attempt increases the threshold on “un-
successful yieldings” and decreases it on “successful yield-
ings” [17]. The reasoning is that, if PCPUs are under-
subscribed, only “unsuccessful yieldings” can take place when
spinning VCPUs are preempted. Thus, the threshold should be
lifted on “unsuccessful yieldings” to prevent spinning VCPUs
from being preempted frequently. When PCPUs are over-
subscribed, “successful yieldings” indicate that there are some
non-spinning VCPUs preempted. These VCPUs may be lock
holders. Reducing the spinning threshold helps getting them
rescheduled quickly.

In the latest design, KVM maintains a spinning threshold
for each VCPU and increases the thresholds of spinning
VCPUs when they are preempted, and resets the thresholds
to a default value when there are switches between different
VCPUs [18]. When PCPUs are under-subscribed, there are
no VCPU switches, and increasing the thresholds can prevent
spinning VCPUs from being preempted prematurely. When
the system is over-subscribed with multiple VMs, the VMM
must switch VCPUs dynamically to time-share PCPUs. Thus,
it resets spinning thresholds to deal with the LHP problem2.

While these attempts can reduce the performance degrada-
tion caused by handling PLE events when PCPUs are under-
subscribed, they do not appropriately adjust spinning thresh-
olds when PCPUs are over-subscribed. For example, with the
first attempt, when PCPUs are over-subscribed, “successful
yieldings” may happen even when spinning thresholds are
set too low and lock holding VCPUs are running. In such
a case, further reducing the threshold degrades performance.
With the current implementation, thresholds may vary widely
when PCPUs are over-subscribed.

2The current KVM design also allows users to set the speed in which
spinning thresholds are reduced. However, there is not any guidelines on how
to set the speed, and resetting the thresholds is considered as the best choice
and is selected as the default method.

C. Some Motivating Experiments

We now provide a quantitative illustration of the above
problem using a few representative experiments. We select
two benchmarks, dbench and streamcluster, and run them on
a 16-core machine. (Please refer to Section IV for benchmark
description and machine configuration.) We use two 16-VCPU
VMs. For each benchmark, we run two instances of the
benchmark in parallel on the two VMs, one on each VM, and
collect the performance reported by the benchmark (throughput
for dbench and execution time for streamcluster). We first
run the benchmarks using the default KVM setting with the
mechanism adjusting spinning thresholds enabled. We use this
configuration as baseline. Then, we disable the mechanism.
We use the same spinning threshold for the VCPUs in the two
VMs and vary the spinning threshold from 512 cycles to 32768
cycles. We repeat the experiments for each of the different
threshold values, and show the normalize performance relative
to that with the baseline configuration in Figure 1.
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Fig. 1. The normalized performance of dbench and streamcluster when the
spinning threshold is varied from 512 cycles to 32768 cycles, relative to the
performance with the default KVM configuration.

The figure clearly shows that the performance of the two
benchmarks changes with the threshold. The performance of
benchmark dbench varies from 0.81 to 1.39, and the per-
formance of streamcluster varies from 0.90 to 1.16. At the
same time, different benchmarks achieve the best performance
with different spinning thresholds (8192 cycles for dbench
and 16384 cycles for streamcluster). The experiments show
that, to achieve optimal performance, spinning thresholds must
be carefully tuned based on workloads. However, the current
KVM system cannot adjust the thresholds adequately and
achieves suboptimal performance.

III. APLE DESIGN AND IMPLEMENTATION

In this section, we first explain the rationale behind APLE.
Then we introduce the algorithm in APLE for adjusting
spinning thresholds.

A. Possible Approaches and APLE Basic Idea

An intuitive approach for adjusting spinning thresholds on
a system is to first determine the amount of time that a VCPU
usually spends on spinning when the lock holding VCPU
is not preempted and then set the thresholds slightly higher
than this amount. However, due to the semantic gap between
system layers, it would be “mission impossible” to estimate the
amount online. There are several reasons. Firstly, the VMM
does not have information about lock operations in virtual
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machines. Thus, it is not possible for the VMM to predict
the amount of spinning time (e.g., by profiling and modeling
the execution of the workloads). Secondly, the VMM is not
aware of VCPU spinning until it is notified when a processor
stops the spinning exceeding the threshold. Thus, it is not
possible for the VMM to determine adequate thresholds by
measuring the amount of spinning3. Finally, when a processor
stops a spinning VCPU, though the VMM knows the amount
of spinning, it cannot determine whether the VCPU is waiting
for a lock which is currently held by a preempted VCPU or
not. Thus, it still cannot estimate the amount of spinning when
the LHP problem does not happen.

APLE follows a trial and error approach. It is based on the
following observations. If spinning thresholds are set too low,
some overhead is caused because the time spent on spinning
is wasted and extra time is used on descheduling spinning
VCPUs and rescheduling other VCPUs. The overhead reduces
if the thresholds are increased. If spinning thresholds are set
too high, spinning VCPUs are preempted late. Overhead is
caused by excessive spinning and descheduling and reschedul-
ing VCPUs. The overhead reduces if smaller thresholds are
used. Thus, optimal thresholds can be approached by varying
the thresholds and choosing those leading to lower overhead.

Spinning Lock

(A) Spinning threshold set adequately 

Wasteful  spinning

Preempt

Spinning

Lock

Wasteful spinning Preempt
Spinning Lock

Reschedule

Reschedule

Wasteful spinning Preempt Spinning

LockReschedule

T1

T1

(B) Spinning threshold set too low 

Spinning Lock

T3

T2

T3

(C) Spinning threshold set too high 

lock-holding VCPU 
is not preempted

lock-holding VCPU 
is preempted

lock-holding VCPU may 
or may not be preempted

lock-holding VCPU 
is not preempted

lock-holding VCPU 
is preempted

Fig. 2. The overhead from wasteful spinning and wasteful VCPU switches
under three scenarios.

B. Wasteful Spinning and Wasteful VCPU Switches

To explain the rationale behind APLE, we use Figure 2
to compare the executions of a VCPU under three different
scenarios: (a) when the spinning threshold is adequately set
(Figure 2(A); (b) when the spinning threshold is set too low
(Figure 2(B)); and (c) when the spinning threshold is set
too high (Figure 2(C)). In the middle of the execution, the

3The spinning time may be measured with the collaboration from guest
OSs [19], which is not available on public cloud.

VCPU requests a spinlock that is currently held by another
VCPU (not shown in the figure). Thus, it spins before it enters
the critical section. However, the spinning incurs different
overhead depending on the spinning threshold and whether
the lock-holding VCPU has been preempted or not.

As illustrated in Figure 2(A), with the spinning thresh-
old adequately set (T1), if the lock holding VCPU is not
preempted, the spinning will not be interrupted before the
lock is acquired. The spinning is considered normal spinning.
In this case, the execution is exactly the same as that on a
physical machine, and there is no overhead incurred. However,
if the lock holding VCPU is preempted, the spinning will be
stopped when it reaches the threshold, and the spinning VCPU
is preempted. When the VCPU is rescheduled later, it still
needs to spin and wait for the release of the lock. Since the
spinning before the VCPU is preempted does not lead to a
lock acquisition, it is considered wasteful spinning. Compared
to the execution on a physical machine, the execution on the
virtual machine incurs additional overhead due to the VCPU
switch (i.e., descheduling the spinning VCPU and rescheduling
another VCPU). Thus, the VCPU switch is a wasteful VCPU
switch.

As illustrated in Figure 2(B), if the spinning threshold is
set too low (T2), the VCPU may be stopped prematurely, even
when the lock holding VCPU is not preempted. This incurs
the overhead through wasteful spinning and wasteful VCPU
switches. Compared to the scenario shown in Figure 2(A) (the
spinning threshold adequately set), setting the threshold too
low increases the chance that the spinning VCPU is preempted.
The VCPU may have to be descheduled and rescheduled
multiple times before it gets the lock. Thus, more wasteful
spinning and wasteful VCPU switches are incurred.

If the spinning threshold is set too high (T3), as shown
in Figure 2(C), the execution is similar to that in scenario
(A), when the lock-holding VCPU is not preempted. But, if
the lock-holding VCPU is preempted in the case when the
spinning threshold is set higher than that in scenario (A), the
VCPU spins for longer time before its is preempted. Compared
to scenario (A), the spinning incurs higher overhead from
wasteful spinning.

Among these three scenarios, no matter whether the thresh-
old is set too low or too high, higher overhead will be
caused, compared to an adequately set threshold. Therefore,
the overhead can be a reliable indicator of the level of the
threshold.

C. The Calculation of Inefficiency as a Metric

APLE assumes that each workload runs in a VM. Since
different workloads have different locking behaviors, APLE
assigns a spinning threshold to each VM. To adjust the thresh-
old, APLE measures the overhead caused by wasteful spinning
and wasteful VCPU switches for each VM. However, the
amount of overhead cannot be directly used in the adjustment,
because the overhead is affected by the factors other than the
spinning threshold. For example, the resources allocated to a
VM change over time on a over-committed system. With more
resources (e.g., more PCPUs) allocated to a VM, the workload
on it makes faster progress and incurs higher overhead at the
same time.
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APLE calculates inefficiency, which is the ratio between the
time spent on wasteful spinning and wasteful VCPU switches
and the PCPU time consumed by the VCPUs. APLE calculates
inefficiency periodically and uses it as the metric for the
adjustment. Each time period is called an epoch. In each
epoch, APLE collects the CPU time allocated to the VM.
It also maintains a counter counting PLE events, which it
resets at the beginning of each epoch. Each time spinning
reaches the threshold, in the VM EXIT event handler (for
PLE events), APLE increments the counter, and timestamps
the beginning and end of PLE event handling. At the end of
each epoch, APLE calculates the overhead of wasteful spinning
by multiplying the spinning threshold with the value in the
counter, and calculates the overhead of VCPU switches by
adding the time spent by PLE event handling. Then, it divides
the sum of the two types of overhead by the total CPU time
allocated to the VM, the result being the inefficiency of the
VM in the epoch.

D. APLE Algorithm

To achieve the best performance, with APLE, the VMM
periodically measures the inefficiency, and adjusts the spin-
ning threshold to minimize the inefficiency using the APLE
Algorithm below.

Algorithm 1 APLE Algorithm

Td: desired spinning threshold of a VM
T0: initial spinning threshold of the VM
Tu: upper bound for the spinning threshold of the VM
Tl: lower bound for the spinning threshold of the VM

Td ← T0

while the VM is running do
set the spinning threshold of the VM to Td

wait for the finish of an epoch E1, and calculate the inefficiency
of the VM in E1

set the spinning threshold of the VM to min(Tu, Td + δ)
wait for the finish of an epoch E2, and calculate the inefficiency
of the VM in E2

set the spinning threshold of the VM to max(Tl, Td − δ)
wait for the finish of an epoch E3, and calculate the inefficiency
of the VM in E3

compare the inefficiency of epochs E1, E2, and E3

Td ← the spinning threshold of the epoch with smallest ineffi-
ciency

end while

When a VM is launched, this algorithm sets an initial value
of the desired threshold Td (e.g., 8192 in our experiments).
While the VM is running, it tries the desired threshold and the
thresholds slightly lower and slightly higher than the desired
threshold, one for an epoch. For fast adjustment, the difference
between these thresholds δ cannot be too small. However, to
keep the threshold close to the optimal value, δ cannot be too
large either. Based on our experiments, a value between 512
and 2014 works best for the adjustment. At the end of each
epoch, APLE calculates the inefficiency of the epoch. When
these epochs with different thresholds finish, APLE compares
the inefficiency of these epochs. It uses the threshold of the
epoch with the smallest inefficiency to update the the desired

threshold. Then, the desired threshold is used for the next
round of adjustment.

In APLE, the length of an epoch is not determined by
clock time. Instead, it is determined by the number of times
VCPUs are preempted (i.e., the number of VM EXITs for PLE
events on Intel Platforms). For example, in our experiments,
an epoch corresponds to 1000 VCPU preemptions. With this
method, when the VM rarely uses spinlocks, epochs are long
time intervals; when the VM is spinlock-intensive, epochs are
short time intervals. By using short epochs, APLE can quickly
respond to execution phase changes. With long epochs, APLE
can minimize runtime overhead. At the same time, this method
also guarantees that there are enough sample events in each
epoch so that the inefficiency can be reliably calculated.

IV. EXPERIMENTS

To test the performance of APLE, we have implemented
APLE in KVM. The implementation to the stock Linux kernel
added only about 80 lines of code in 4 existing files. In our
experiments, for all the VMs, the initial value of the desired
threshold Td is 8192 cycles. The lower bound Tl is 4096 cycles
(the same as that in the default KVM setting). The upper bound
Tu is 32768 cycles, and δ is 1024 cycles.

We conducted our experiments on a Dell PowerEdge R720
server with 64GB of DRAM and two 2.40GHz Intel Xeon E5-
2665 processors. Each processor has 8 cores. On the server,
we created 4 VMs with 16 VCPUs. Each VM has 16GB
of memory. The VMM is KVM [20]. The host OS and the
guest OS are Ubuntu version 14.04 with the Linux kernel
version updated to 3.19.8. CPU power management can reduce
the performance of the applications running in VMs [21]. To
prevent such performance degradation, in the experiments, we
disabled the C states other than C0 and C1 of the processors,
which have long switching latencies.

We selected six benchmarks, streamcluster, dedup, ray-
tracer, dbench, kernbench, and ebizzy, for evaluation. Among
these benchmarks, streamcluster, dedup, and raytracer are
from PARSEC 3.0 benchmark package [22]. All six bench-
marks are introduced below. We selected these benchmarks
because they incur frequent spinlock operations on VMs. With-
out PLE support, their executions on VMs suffer significant
performance degradation due to the LHP problem. With PLE
support, their performance on virtual machines are sensitive to
spinning threshold levels.

• streamcluster is a program to solve the online clustering
problem. For a set of points provided in a stream, it looks
for a number of medians, so that the points can be clustered
based on their nearest centers. It measures the clustering
quality by calculating the sum of squared distances.

• dedup compresses a data stream with a combination of
global and local deduplication. It uses a pipelined program-
ming model to mimic real-world deduplication, which is
widely used in new generation backup storage systems.

• raytracer renders a three-dimensional scene onto a two-
dimensional image plane using optimized ray tracing. A
hierarchical uniform grid is used to represent the scene for
efficient access, and early ray termination and antialiasing
are implemented in the benchmark.
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• ebizzy [23] is a multi-threaded program that generates work-
loads similar to those on common web application servers.

• dbench [24] is derived from an industry-standard benchmark
NetBench. It is a utility that tests the ability of a file system
to service requests from clients.

• kernbench [25] is a CPU and memory intensive benchmark
that measures and compares the time used to compile Linux
kernels.

We compiled the PARSEC benchmarks using gcc with the
default settings of the gcc-pthreads configuration in PARSEC
3.0. We built other benchmarks using the make files/scripts
coming with the benchmark packages. The gcc compiler and
the libraries required by the benchmarks are stock software
components in the Ubuntu Linux distribution. We used the
parsecmgmt tool in the PARSEC package to run the PARSEC
benchmarks with native input. In the experiments, we set the
number of threads in each benchmark equal to 32. We run
each experiment five times and report the average result.

We run the benchmarks using the default KVM configu-
ration and use the performance as the baseline performance.
Since different benchmarks may use different metrics (e.g.,
throughputs and execution times) and the absolute performance
numbers vary widely across benchmarks, we normalize the
performance measured in the experiments against the baseline
performance. Thus, the baseline performance is always 1.
To be consistent, we use large numbers to represent higher
performance. Thus, if a benchmark reports throughput, we
present its normalized throughput in the paper. If a benchmark
reports execution time, we present its speedup in the paper.
For brevity, we use “performance” to refer to both normalized
throughput and speedup.

We first launch one VM and run the benchmarks in the
VM. We run each benchmark under three different scenarios:
(1) with the default mechanism in KVM to adjust spinning
thresholds and default configuration, (2) with APLE method
to adjust spinning threshold, and (3) with the PLE support
disabled. When only one VM is launched, the performance
measured under scenario 3 represents the best performance
these benchmarks can achieve. On average, the benchmarks
achieve similar performance with APLE and the stock KVM
(scenarios 1 and 2), and the performance difference is not
noticeable (less than 2%). Compared to their executions under
scenario 3, these benchmarks show slightly lower performance
under the first two scenarios (1%∼2% on average and up to
8% for kernbench). The experiments show that, for a few
benchmarks (e.g., kernbench), processing PLE events may still
cause some performance degradation, though the degradation
is not large.

Then, we launch two VMs. We run two instances of
each benchmark in parallel on the two VMs, one on each
VM. We run each benchmark under three different scenarios:
(1) with the default mechanism in KVM to adjust spinning
thresholds and default configuration, (2) with APLE method to
adjust spinning thresholds, and (3) with both the default KVM
mechanism to adjust spinning thresholds and APLE disabled.
In scenario 3, we repeat the experiments for different spinning
thresholds from 512 cycles to 32768 cycles. A benchmark
shows different performance with different spinning thresh-
olds. Thus, we can find the best performance and the worst

performance that the benchmark can achieve by selecting
different spinning thresholds. We use the best performance to
show the potential of adjusting spinning threshold, and use
the worst performance to illustrate how much performance
degradation could be caused if the spinning threshold was not
adequately set.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

ebizzy
streamcluster

dbench

kernbench

dedup
raytrace

Pe
rfo

rm
an

ce

KVM Default
Best

Worst
APLE

Fig. 3. Normalized performance of the benchmarks in different scenarios
when 2 VMs co-run (“best” and “worst” are both under scenario 3 but with
different levels of spinning thresholds)

Figure 3 show the performance of these benchmarks under
these scenarios. As shown in the figure, the stock KVM cannot
achieve optimal performance. Especially, with dedup, it even
achieves lower performance than the “worst” performance
obtained with a fixed spinning threshold level. Generally,
APLE achieves similar performance as “best” — the best
performance that can be obtained by smartly selecting a fixed
spinning threshold for each VM. The average performance
achieved with APLE is 1.21, and the average performance
achieved by smartly selecting a fixed PLE window (i.e.,
“best”) is 1.23. Compared to the stock KVM, APLE improves
the performance of dedup by the largest percentage (68%).
The figure also shows that, when selecting a wrong spinning
threshold level, the performance can be degraded by 27% on
average and up to 42% (for dbench), relative to that when
spinning thresholds are adequately set.

We also repeated the above experiments with four VMs.
Specifically, for each benchmark, we run four instances of each
benchmark in parallel on the four VMs, one on each VM. We
run the benchmark under three different scenarios as described
above, and show the performance of the benchmarks under
these scenarios in Figure 4.

Compared to the executions with 2 VMs, the performance
difference between APLE, the stock KVM (“default”), and
the best performance (“best”) reduces with 4 VMs. This is
because, with more VMs, performance factors other than
spinning (e.g., contention for memory and I/O bandwidth) start
to dominate. Compared to the stock KVM, APLE improves the
performance of the benchmarks by 3% on average. It improves
the performance of raytrace by the largest percentage (8%).
The average performance of APLE is not as high as “best”.
The average performance achieved with APLE is 1.03, the best
performance the benchmarks can achieve is 1.09. This shows
that there is still some space for APLE to further improve
performance.
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The performance improvements achieved with APLE are
by reducing inefficiency. We use dbench as an example to
illustrate how APLE reduces inefficiency. Figure 5 compares
the average inefficiency values for the different scenarios
described above (i.e., scenarios with fixed PLE window sizes,
with the default KVM settings, and with APLE). Each value
in the figure is the average of the inefficiency values measured
in the epochs of the two VMs during two instances of dbench
run in parallel in the VMs in the corresponding scenario. As
shown in the figure, the average inefficiency reduces when
PLE window is increased from 512 cycles to 8192 cycles. This
is because the overhead of wasteful VCPU switches caused by
preempting spinning VCPU prematurely can be reduced with
larger PLE window sizes. However, when the PLE window
size is further increased, the average inefficiency increases,
since the overhead of wasteful spinning starts to dominate. The
default KVM mechanism cannot achieve the best performance
since it cannot effectively reduce inefficiency. In contrast,
APLE reduces the average inefficiency by 50%, relative to
the stock KVM.

In the above experiments, we also collected the
PLE window sizes during the execution of the dbench in-
stances4. Figures 6 and 7 show how PLE window sizes are
adjusted respectively for the scenarios with default KVM
mechanism and APLE. With APLE, there are about 900 epochs
in the execution, while with KVM default mechanism there
are about 1900 epochs. This is because fewer VM EXITs are
incurred by PLE events with APLE. With the default KVM
mechanism, the PLE window size swings back and forth in a
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Fig. 6. Spinning threshold (PLE window) adjusted by the default mechanism
in KVM when two VMs co-run

wide range between 4096 and 25000. However, with APLE,
the PLE window size changes steadily around 8192, which
leads to “best” performance.
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Fig. 7. Spinning threshold (PLE window) adjusted by APLE when two VMs
co-run

V. RELATED WORK

A large number of studies have been focused on the
lock holder preemption (LHP) problem. Various solutions
have been proposed to reduce performance degradation, for
example, sophisticated VCPU scheduling algorithms [2]–[7],
VCPU migration [8], improved synchronization primitives [9],
paravirtualization [10], [11], and hardware facilities to detect
and preempt spinning VCPUs [12]–[15]. On current platforms,
using hardware facilities, such as Intel PLE and AMD PF,
has become a de facto standard solution. Our work does not
provide an alternative solution to the LHP problem. Instead, it
improves the solution with hardware facilities, which has been
dominantly utilized on mainstream virtualization systems.

Targeting the solutions using hardware facilities, there are
studies showing that spinning thresholds must be adjusted
based on workloads to achieve best performance [19], [26].
There are also some efforts to adjust spinning thresholds
dynamically. Zhang, Dong, and Duan [19] proposed a profiling
method that collects the average spinlock cycles in guest OSs
and uses the information to adjust spinning thresholds. This
approach requires the VMM to have detailed and important
information about guest OSs, such as OS symbol tables, which
should not be exposed to the VMM for security reasons on
the systems shared by multiple users, e.g., public clouds. This
seriously limits the scope of the solution. Thimmappa [17],
[27] proposed a method to adjust the spinning threshold
based on whether the freed resources can be reallocated to a

4The default KVM mechanism does not use epochs and sets a PLE window
for each VCPU. For fair comparison, we define epoch in the same way as
that in APLE (i.e., 1000 VM EXITs caused by PLE events), and collect the
average PLE window of all the VCPUs in a VM for each epoch.
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VCPU that can make progress when a spinning VCPU is pre-
empted. Recently, KVM implemented a method to dynamically
grow/shrink the spinning threshold for each VCPU [18]. These
two methods mainly focus on improving the performance when
the system is under-committed. When a spinning VCPU is
preempted, the selection of a VCPU to occupy the freed
resources may also impact performance. Thimmappa [28]
studied this problem and proposed a method to quickly select
a candidate that is likely to be the lock holder. The method has
been accepted into Linux kernel and is orthogonal to APLE.

The trade-off between busy waiting (spinning) and block-
ing in synchronization primitives is a classic yet challenging
problem, and has been intensively studied under different
scenarios [29]–[32]. The problem we target in this paper also
needs to make a trade-off between busy waiting and blocking.
But, compared to the problems targeted in previous studies, the
problem in this paper is more challenging, since the VMM has
limited information and cannot directly control the spinning in
synchronization primitives.

VI. CONCLUSION

Almost all mainstream virtualization systems rely on hard-
ware facilities, such as Intel PLE and AMD PF, to alleviate
performance degradation caused by the lock holder preemption
problem. However, it is still a challenging issue to effectively
control these facilities to minimize overhead and maximize
throughput, which requires the knowledge on the locking
behaviors of guest systems that is unavailable at the VMM
level due to the semantic gap between the host and the
guests. Ineffective utilization of these hardware facilities may
even cause performance degradation. The paper addresses this
issue with APLE, which measures the execution efficiency of
each VM and controls the hardware facilities to maximize
the efficiency. Our studies show that APLE can effectively
control the hardware facilities to improve performance. The
methodology in APLE can be applied to any virtualization
system based on hardware assisted virtualization techniques.
Its implementation incurs minimal modification to existing
virtualization system designs. As future work, we aim to test
APLE with more extensive workloads and seek its adoption in
mainstream virtualization systems.
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