
Journal of Algebra 381 (2013) 260–281
Contents lists available at SciVerse ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

On groups that have normal forms computable in logspace

Murray Elder a,∗, Gillian Elston b, Gretchen Ostheimer c

a School of Mathematical and Physical Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
b Department of Mathematics, Hofstra University, Hempstead, NY 11549, USA
c Department of Computer Science, Hofstra University, Hempstead, NY 11549, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 20 January 2012
Available online 26 February 2013
Communicated by Derek Holt

MSC:
20F65
68Q15

Keywords:
Logspace algorithm
Logspace normal form
Logspace embeddable
Wreath product
Baumslag–Solitar group
Logspace word problem

We consider the class of finitely generated groups which have a
normal form computable in logspace. We prove that the class of
such groups is closed under passing to finite index subgroups,
direct products, wreath products, and certain free products and
infinite extensions, and includes the solvable Baumslag–Solitar
groups, as well as non-residually finite (and hence non-linear)
examples. We define a group to be logspace embeddable if it
embeds in a group with normal forms computable in logspace.
We prove that finitely generated nilpotent groups are logspace
embeddable. It follows that all groups of polynomial growth are
logspace embeddable.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Much of combinatorial, geometric and computational group theory focuses on computing effi-
ciently in finitely generated groups. Recent work in group-based cryptography demands fast and
memory-efficient ways to compute normal forms for group elements [1]. In this article we consider
groups which have a normal form over some finite generating set, for which there is an algorithm
to compute the normal form of a given input word in logspace. We show that the class of finitely
generated groups having a logspace normal form is surprisingly large.

* Corresponding author.
E-mail addresses: Murray.Elder@newcastle.edu.au (M. Elder), Gillian.Z.Elston@hofstra.edu (G. Elston),

Gretchen.Ostheimer@hofstra.edu (G. Ostheimer).
0021-8693/$ – see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jalgebra.2013.01.036

http://dx.doi.org/10.1016/j.jalgebra.2013.01.036
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jalgebra
mailto:Murray.Elder@newcastle.edu.au
mailto:Gillian.Z.Elston@hofstra.edu
mailto:Gretchen.Ostheimer@hofstra.edu
http://dx.doi.org/10.1016/j.jalgebra.2013.01.036

M. Elder et al. / Journal of Algebra 381 (2013) 260–281 261
Definition 1. A deterministic logspace transducer consists of a finite state control and three tapes: the
first input tape is read only, and stores the input word; the second work tape is read–write, but is
restricted to using at most c logn squares, where n is the length of the word on the input tape and
c is a fixed constant; and the third output tape is write-only, and is restricted to writing left to right
only. A transition of the machine takes as input a letter of the input tape, a state of the finite state
control, and a letter on the work-tape. On each transition the machine can modify the work tape,
change states, move the input read–head, and write at most a fixed constant number of letters to the
output tape, moving right along the tape for each letter printed.

Since the position of the read–head of the input tape is an integer between 1 and n, we can store
it in binary on the work tape.

Definition 2. Let X, Y be finite alphabets. Let X∗ denote the set of all finite length strings in the
letters of X , including the empty string λ. We call f : X∗ → Y ∗ a logspace computable function if there
is a deterministic logspace transducer that on input w ∈ X∗ computes f (w).

Definition 3. A normal form L for a group G with finite symmetric generating set X is any subset
of X∗ that is in bijection with G under the map which sends a word w to the group element w
which it represents.

Definition 4. A logspace computable function f : X∗ → X∗ for which f (w) is the normal form word
for w , is called a logspace normal form function for (G, X).

Definition 5. We say (G, X) has a logspace normal form if it has a logspace normal form function.

We may sometimes say a normal form is logspace computable without reference to a specific
function.

As a simple first example, consider the infinite cyclic group 〈a | −〉 which has normal form {ai |
i ∈ Z}. Let f be the function that converts a word w in the letters a±1 into normal form. Then f can
be computed by scanning w from left to write updating a binary counter i, stored on the work tape,
and when the end of the input is reached, output a i times if i � 0 or a−1 i times if i < 0. So the
infinite cyclic group has a logspace normal form (with respect to the generating set {a,a−1}).

The word problem asks for an algorithm for a finitely generated group which takes as input a word
over the generating set, and decides whether or not the word is equal to the identity in the group.
In [2] Lipton and Zalcstein proved that all linear groups (groups of matrices with entries from a field
of characteristic zero) have word problem solvable in logspace. Since the class of linear group includes
all free groups and all polycyclic groups, it follows from their results that the word problem for any
such group can be decided in logspace. Simon extended this to linear groups over arbitrary fields [3].

One might expect the word problem to be computationally easier than computing a normal form.
Certainly if one insists on a geodesic normal form (with respect to some generating set) then this is
the case (see the end of this section).

The purpose of this article is to examine how broad the class of groups with normal forms com-
putable in logspace is. In Section 2 we prove that free groups have logspace normal forms, a result
which can be traced back to [4]. We then establish some basic properties of logspace normal forms,
including the fact that having a logspace normal form is independent of finite generating set, and
logspace normal forms can be computed in polynomial time. In Sections 3–5 we prove that the class
of groups with logspace normal forms is closed under direct product, finite index subgroups and su-
pergroups, finite quotients, and wreath product. It follows that finitely generated abelian groups, and
the so-called lamplighter groups, belong to the class. In Sections 6–7 we prove that the class is closed
under free product in certain cases and under certain infinite extensions, but in both of these con-
texts we must impose restrictions in order for our proofs to carry through. In Section 8 we present a
normal form for solvable Baumslag–Solitar groups that can be computed in logspace. In Section 9 we
define a group to be logspace embeddable if it is a subgroup of a group with logspace normal form,

262 M. Elder et al. / Journal of Algebra 381 (2013) 260–281
and prove various properties about the class of logspace embeddable groups, and in Section 10 we
show that finitely generated nilpotent groups are logspace embeddable.

The problem of logspace geodesic normal forms is decidedly more subtle, and in this article we
focus on normal forms that are not necessarily length-minimal. In Section 5 we show that wreath
products such as Z � Z2 have logspace normal forms, and comment that the problem of computing a
geodesic normal form for this group (with respect to the standard generating set) was shown to be
NP-hard in [5], so the existence of a logspace geodesic normal form for this group seems unlikely. On
the other hand many of the normal forms we present here, such as those for free groups described in
Proposition 1 and free abelian groups described in Corollary 9, are geodesic. We prove in Proposition 7
that a logspace normal form has length no more than polynomial in the geodesic length. Recent work
of Diekert, Kausch and Lohrey [6] extends the class of groups with logspace geodesic normal forms
to right-angled Artin groups and right-angled Coxeter groups, and gives a partial result for general
Coxeter groups.

It remains to see an example with polynomial time word problem that does not have a logspace
normal form. Note that by [7] a group has word problem in NP if and only if it is a subgroup of a
finitely presented group with polynomial Dehn function.

The authors wish to thank Gilbert Baumslag, Volker Diekert, Arkadius Kalka, Alexei Miasnikov and
Chuck Miller for very helpful insights and suggestions, and the anonymous reviewers for their careful
reading, corrections and suggestions.

2. Basic examples and properties of logspace normal forms

We begin with a key example of a class of groups with logspace normal form.
Consider the free group 〈a1, . . . ,ak | −〉 of rank k with normal form the set of all freely reduced

words over X = {a±1
1 , . . . ,a±1

k }. An obvious algorithm to convert a word in X∗ would be to scan
the word and when a canceling pair is read, delete it, step one letter back, and continue reading.
A logspace function can only read the input, not write over it, so such an algorithm would not be
logspace. Instead, the following algorithm makes use of the fact that free groups are linear, and so
have logspace decidable word problem.

Proposition 1. Let 〈a1, . . . ,ak | −〉 be the free group of finite rank k with normal form the set of all freely
reduced words over X = {a±1

i }. Then there is a logspace computable function f : X∗ → X∗ such that f (w) is
the normal form word for w.

Proof. Fix two binary counters, c1 and c2, and set them both to 1.

1. Read the letter at position c1 of the input tape (call it x).
2. Scan forward to the next x−1 letter to the right of position c2, and set c2 to be at the position of

this x−1.
3. Input the word from position c1 to c2 on the input tape into the logspace word-problem function

for the free group of rank k.
• If this function returns trivial, output nothing, set c1 = c2 + 1, and return to step (1).
• If it returns non-trivial, return to step (2).

4. If there is no next x−1 letter, write x to the output tape, set c1 = c1 + 1, and return to step (1).

In other words, the algorithm reads x and looks for a subword xux−1 where u evaluates to the iden-
tity. If it finds such a subword, it effectively cancels it by not writing it to the output and moving
forward to the next letter after xux−1. If there is no such subword starting with x, then x will never
freely reduce, so it outputs x, then repeats this process on the next letter after x on the input tape. �

This result can be traced back to [4]. The proof gives some indication of how one works in
logspace. In Proposition 19 below we prove a more general result, that the class of groups with a
normal form computable in logspace is closed under free products with logspace word problem.

The next lemma shows that logspace computable functions are closed under composition.

M. Elder et al. / Journal of Algebra 381 (2013) 260–281 263
Lemma 2. If f , g : X∗ → X∗ can both be computed in logspace, then their composition f ◦ g : X∗ → X∗ can
also be computed in logspace.

Proof. On input a word w ∈ X∗ , run the function f and when f calls for the jth input letter, run
g on w but instead of outputting, each time g would write a letter, add 1 to a counter (in binary).
Continue running g until the counter has value j − 1, at which point, return the next letter g would
output to f . �
Lemma 3. In a group that has a logspace computable normal form function f , the following basic group
operations can be performed in logspace:

1. we can test whether two words represent the same group element;
2. we can compute a normal form for the inverse of an element.

Proof. To test equality, compute f on each word simultaneously and check that successive output let-
ters are identical (without storing them). To compute the normal form for the inverse of an element,
compose f with the (logspace) function that on input w , computes the length n of w in binary, then
for i = 1 up to this length returns the formal inverse of the (n − i + 1)th letter of w . �

One might expect that algorithms using a small amount of space do so at the expense of time, but
it is well-known that this is not the case. To provide further context for the techniques employed in
our proofs, we include here the standard proof that logspace algorithms run in polynomial time.

Lemma 4. A deterministic logspace algorithm performs at most a polynomial number of steps.

Proof. Define a configuration of a logspace transducer to be the contents of the work tape (which
includes the position of the input tape read–head), and the current state of the finite state control. If
the work tape has k allowable symbols, and the finite state control has d states, the total number of
distinct configurations possible on an input word of length n is dkc log n = O (nc) where c logn is the
maximum number of symbols the work tape contains. If the machine were to take more than dkc log n

steps, then it would be in the same configuration twice during the computation, and so would enter
an infinite loop (since the machine is deterministic). The result follows. �

We next prove that the property of having a logspace normal form is invariant under change of
finite generating sets.

Proposition 5. Let X, Y be two finite symmetric generating sets for a group G. If (G, X) has a logspace normal
form, then so does (G, Y).

Proof. It suffices to show that adding or deleting a generator does not affect the existence of a
logspace computable normal form function. Suppose that Y = X ∪ {y, y−1}, where y /∈ X and that
w y ∈ X∗ such that w y = y. Let f : Y ∗ → X∗ be the function that takes a word in Y ∗ to the word
obtained by replacing each occurrence of y with the word w y , and y−1 by the formal inverse of the
word w y . Notice that f (u) = f (v) if and only if u = v , and that f can be computed in logspace.

We first suppose that g X is a logspace computable normal form function, we let gY = g X ◦ f ,
and we show that gY is a logspace computable normal form function. By Lemma 2, gY is logspace
computable, so we simply have to establish that it is a normal form function. Since f maps onto X∗ ,
and since g X is a normal form function, the natural map from gY (Y ∗) to G is onto. Let u, v ∈ Y ∗ such
that gY (u) = gY (v). Since g X is a normal form function, f (u) = f (v) and hence u = v . Hence the
natural map from gY (Y ∗) to G is injective. We have shown that gY is a normal form function.

We next suppose that gY is a logspace computable normal form function, we let g X = f ◦ gY . By
Lemma 2, g X is logspace computable, so we only have to show that g X is a normal form function.

264 M. Elder et al. / Journal of Algebra 381 (2013) 260–281
Let g ∈ G . There exists a v ∈ gY (Y ∗) such that v = g . Therefore, f (v) = g and hence the natural
map from g X (X∗) to G is onto. Let u, v ∈ X∗ such that g X (u) = g X (v). Then f (gY (u)) = f (gY (v)) so
gY (u) = gY (v). Since gY is a normal form function, u = v . Thus the natural map from g X (X∗) to G is
injective. �

It will be convenient to assume that the normal form for the identity element is the empty string.

Proposition 6. Let G be a group with finite symmetric generating set X , and let g X be a normal form for G
computable in logspace such that g X (λ)
= λ. Define a new normal form hX for G which is identical to g X

except that for words representing the identity, hX (w) = λ. Then hX is logspace computable.

Proof. Let u = g X (λ) be of length m > 0. Let f : X∗ → X∗ be the map sending u to λ and acting
as the identity on all other words. Since m is a fixed constant, we can store the word u in a finite
state control. Then f ∗ can be computed in logspace as follows: using a (binary) counter, scan the
input word to compute its length; if it has length m, for i = 1 to m, check that the ith input letter is
identical to the ith letter of u (stored in the finite state control); if it is, return λ, otherwise, move to
the start of the input tape and write each letter on the input tape from left to right onto the output
tape. Since hX = f ◦ g X , by Lemma 2, hX is also computable in logspace. �

The next proposition gives a restriction on what types of normal form languages can be calculated
in logspace; namely, the length of the normal form is bounded by a polynomial in the length of the
input.

Proposition 7. If G has a normal form over X∗ which can be computed in logspace, then there is a constant c
such that the normal form for an input word of length n has length O (nc).

Proof. Let p be the maximum length of a word written to the output tape in any one transition.
(Note there are a finite number of possible transitions.) By Lemma 4, on input a word of length n, the
computation takes a polynomial number of steps, O (nc), and in each step at most p letters can be
written to the output tape, so the maximum length of the output normal form word is O (pnc). �
3. Closure under direct product

Proposition 8. The set of groups with logspace normal forms is closed under direct product.

Proof. Let G and H be groups with symmetric generating sets X and Y , and with logspace normal
form functions g X and hY respectively. We may assume that X and Y are disjoint; let Z be their
disjoint union. Then Z is a finite set of symmetric generators for G × H . Define kZ : Z∗ → Z∗ as
follows. Let w be a word in Z∗ . Then there exist words u ∈ X∗ and v ∈ Y ∗ such that w consists
of u and v interleaved. We let kZ (w) = g X (u)hY (v). Note that kZ (Z∗) comprises a unique set of
representatives for G × H . We can compute kZ in logspace: read w once, ignoring all letters from Y
and computing g X (u); read w again, ignoring all letters from X and computing gY (v). �
Corollary 9. All finitely generated abelian groups have logspace normal form functions. In the case of Zn, if
t1, t2, . . . , tn is a set of free generators, the normal forms are of the form tα1

1 tα2
2 . . . tαn

n with αi ∈ Z.

Proof. The result follows from Propositions 8 and 1. �
4. Closure under passing to finite index subgroups and supergroups

Let G and H be finitely generated groups with G a finite index subgroup of H . The goal of this
section is to show that G has logspace normal form if and only H does. To do so, we will show that

M. Elder et al. / Journal of Algebra 381 (2013) 260–281 265
the standard Schreier rewriting process for H is logspace computable, and from this our desired result
will follow easily.

We define a rewriting process for G in the usual way (see, for example, [8]):

Definition 6. Let H be a group generated by a finite symmetric generating set Y . Let G be a subgroup
of H , and let W = {w1, w2, . . . , wm} be a set of words over Y that generate G . Let S be the set
of words over Y that represent elements of G . Let X = {x1, x2, . . . , xm, x−1

1 , x−1
2 , . . . , x−1

m } be a new
alphabet (disjoint from Y), which we take to be a generating set for G via the map that sends xi
to wi and x−1

i to w−1
i (the formal inverse of wi). A rewriting process for G with respect to W is a

mapping τ from S to X∗ such that for all words u ∈ S , u and τ (u) represent the same element of G .

When G has finite index in H , a set W of standard Schreier representatives of words over Y that
generate G can be defined as follows. Fix a set R of words over Y whose images in H form a set
of right coset representatives for G . For all r ∈ R and y ∈ Y , let gr,y be the word in S given by
gr,y = ryq−1, where q ∈ R represents the coset Gry. Then the set W = {gr,y | r ∈ R, y ∈ Y } generates G
(see, for example, p. 89 of [8]).

The Schreier rewriting process for G with respect to these generators can be described as follows.
Consider the Schreier graph for G in H (in which vertices are labeled with the coset representatives
from R and edges are labeled with generators from Y). For a given word w ∈ S , initialize τ (w) to λ.
Trace w through the Schreier graph. When traversing an edge from r labeled y, update τ (w) to
be τ (w)gr,y . Then τ is a rewriting process for H with respect to the Schreier generators (see, for
example, p. 91 of [8]). Since our sets R and W and the Schreier graph can all be stored in a finite
amount of space, it is clear that τ can be computed in logspace.

Proposition 10. Let G, H be finitely generated groups with G a finite index subgroup of H. Then H has logspace
normal form if and only if G has logspace normal form.

Proof. Throughout this proof we use the notation established above. We begin by assuming that H
has logspace normal form h. We define our normal form g for G as follows. Each word w over X can
be transformed into a word w ′ over Y by replacing the each occurrence of a letter xi with the corre-
sponding word wi from W , and by replacing each occurrence of a letter x−1

i with the formal inverse
of the word wi . Then g(w) can be defined to be τ (h(w ′)). Since h and τ can both be computed in
logspace, by Lemma 2, so can g .

Next we assume that G has logspace normal form g . For a word w over Y , we define h(w) to
be g(w ′)r, where r is the word in R representing the coset G w and w ′ = wr−1. To compute h(w)

in logspace, we trace w in the Schreier graph to compute and store r. We then call the normal form
function g . When it asks for the ith letter we supply it with the ith letter of wr−1. When it asks to
output a letter, we do so. Finally we output r. �
5. Closure under wreath product

In this section we prove that the property of having a logspace normal form is closed under
restricted wreath products. Propositions 5 and 6 allow us to assume from now on that generating
sets contain only non-trivial elements, and if f X is a logspace normal form function over a generating
set X then f X (λ) = λ.

Definition 7. Given an ordered alphabet X , let �SL denote the short-lex ordering on X∗ .

Lemma 11. Let G be a group with symmetric generating set X and logspace normal form function f X . The
short-lex order of the normal form of two words in X∗ is logspace computable.

Proof. Let (u, v) ∈ X∗ × X∗ be given. We need to decide whether

266 M. Elder et al. / Journal of Algebra 381 (2013) 260–281
• f X (u) = f X (v),
• f X (u) <SL f X (v), or
• f X (v) <SL f X (u).

We first call f X on u, but rather than write any output, each time a letter would be written to the
output tape, we increase a counter, stored in binary. We then do the same for v and compare the two
counters, if | f X (u)| < | f X (v)| or | f X (v)| < | f X (u)| we are done.

If not, call f X on u and v simultaneously to obtain the first letter of each output. If the letters
are the same, obtain the next letter. As soon as we encounter an i for which the ith letters do not
agree, we can deduce which word is greater in the short-lex ordering, and if not, we deduce that
f X (u) = f X (v). �

We now establish some notation that will be useful in defining our normal form for G � H . Let
G = 〈X〉 and H = 〈Y 〉 be groups with logspace normal form functions f X and fY respectively. We
may assume that X and Y are disjoint, finite symmetric generating sets.

Let w ∈ (X � Y)∗ . We will use X(w) to denote the word in X∗ obtained by deleting all letters not
in X from w , and similarly for Y (w). For w = a1a2 . . .an , a j ∈ X � Y , and 1 � i � n, we will let X(i, w)

(or Y (i, w)) denote the word X(a1a2 . . .ai) (or Y (a1a2 . . .ai)). For convenience, set X(0, w) = λ and
Y (0, w) = λ. Note that X(i, w) (and Y (i, w)) are computable in logspace: if w = a1 . . .an , set j = 0;
while j < i, increment j by 1 and if a j ∈ X , output a j .

Define V (w) = { fY (Y (s, w)) | 0 � s � n}. Then V (w) is a finite set of strings of Y ∗ . Note that
λ = fY (Y (0, w)) is the shortest element in V (w). Set v0 = λ. The next lemma tells us how to compute
the next element of V (w) in short-lex order in logspace, assuming the word w is written on the input
tape. First, we need a way to store a word in V (w) without using too much space, so to store a word
in V (w) corresponding to the element represented by Y (i, w), we merely store the value i. To recover
the word vi , we run fY on the word Y (i, w).

Lemma 12. Let w = a1 . . .an ∈ (X � Y)∗ be written on an input tape, and V (w) = { fY (Y (s, w)) | 0 � s � n}.
There is a logspace function which, given an integer p such that Y (p, w) = vi , computes q such that Y (q, w) =
vi+1 where vi+1 is the next largest word from vi in short-lex order, or returns that vi is the largest word
in V (w).

Proof. Feed (Y (p, w), Y (1, w)) into the algorithm in Lemma 11, and if

fY
(
Y (p, w)

)
<SL fY

(
Y (1, w)

)
,

set q = 1. So q encodes a word from V (w) that is larger in the short-lex ordering than vi encoded
by p.

For each 2 � j � n, read a j , and if a j ∈ Y , feed (Y (p, w), Y (j, w)) into the algorithm in Lemma 11.
If Y (j, w) is larger than Y (p, w), check to see if q has been assigned a value. If not, set q = j. If
q already has a value, feed (Y (q, w), Y (j, w)) into the algorithm in Lemma 11. If Y (j, w) is shorter
than Y (q, w), set q = j. So q encodes an element in V (w) that is greater than vi and less than the
previous Y (q, w).

When every j up to n has been checked, if q has not been assigned a value, then vi is the largest
word in V (w). Otherwise q encodes the next largest word vi+1 = Y (q, w). �
Definition 8 (Normal form for G � H). Let w = a1 . . .an ∈ (X � Y)∗ . Then

f X�Y (w) = uv1
1 uv2

2 . . . uvk
k fY

(
Y (w)

)
,

where vi ∈ fY (Y ∗) with vi <SL vi+1 and ui ∈ f X (X∗), ui
= λ. (Note that by uvi
i we mean viui fY (v−1

i).

Lemma 3 says fY (v−1
i) can be computed in logspace if fY can.)

M. Elder et al. / Journal of Algebra 381 (2013) 260–281 267
The words vi correspond to elements of H for which the factor of
⊕

h∈H Gh is non-trivial, so the
vi s are a subset of V (w). The words ui correspond to the non-trivial element of G at each position vi

in H . The prefix of the normal form word does the job of moving to each position in H and fixing the
value of G at that position. The short-lex ordering of V (w) allows us to do this in a canonical way
for any word representing an element of G � H . The suffix fY (Y (w)) takes us from the identity of H
to the final position in H .

Since we know how to compute the vi in short-lex order from Lemma 12, all we need now is to
compute the ui at each position.

Lemma 13 (Algorithm to compute ui). Let w = a1 . . .an ∈ (X � Y)∗ be written on an input tape, V (w) =
{ fY (Y (s, w)) | 0 � s � n}, and p an integer such that Y (p, w) = vi ∈ V (w). There is a logspace function that
decides whether the element of G in the factor corresponding to vi in

⊕
h∈H Gh is non-trivial, and a logspace

function that outputs the normal form f X of this element.

Proof. Define a function g X�Y : (X � Y)∗ → X∗ which computes a word in X∗ equal to the element
of G in the factor corresponding to vi = Y (p, w) in

⊕
h∈H Gh as follows.

1. Compute the length n of w and store it in binary.
2. Set a counter l = 0.
3. While l < n:

• Call the function in Lemma 11 on Y (p, w) and Y (l, w) to decide if they are equal or not. If
they are equal, set a boolean variable b to be true, and otherwise set it to be false.

• While l < n and the letter at position l + 1 is in X :
– if b is true, print the letter at position l + 1 to the output tape;
– increment l by 1.

Since the function in Lemma 11 is logspace then so is g X�Y . The algorithm works by scanning
the input word from left to right, and outputting only those letters from X(w) that are in the factor
corresponding to vi in

⊕
h∈H Gh .

Then f X ◦ g X�Y will output the normal form word in X∗ for the element of X in the copy of G cor-
responding to the element vi ∈ H . To decide if this element is trivial or not, run the above procedure
and test whether the output is λ or not. �
Theorem 14. The normal form function f X�Y for G � H can be computed in logspace.

Proof. Set p = 0 (so Y (p, w) = v0 = λ, the shortest element in V (w)). Set a boolean variable max to
be false. While max is false:

• Use Lemma 13 to determine whether the element in G at Y (p, w) is non-trivial. If it is, output
fY (Y (p, w)) = vi . Then output ui by running the algorithm in Lemma 13 again. Then output
fY (v−1

i) (apply Lemma 3 to function that computes fY (Y (p, w))).
• Run the algorithm Lemma 11 with input p. If the algorithm returns that Y (p, w) is maximal in

V (w), set the variable max to be true. Otherwise it finds q such that Y (p, w) = vi and Y (q, w) =
vi+1. Set p = q.

Finally, output fY (Y (w)). �
It follows that the class of groups with logspace normal form includes the so-called lamplighter

groups, and the group Z � Z2 (which Parry considered in [5], showing with respect to a standard
generating set finding a geodesic form for a given word is NP-hard, and so a geodesic normal form
for it is unlikely to be logspace computable).

268 M. Elder et al. / Journal of Algebra 381 (2013) 260–281
In [9] Waack gives an example of a group with logspace word problem that is not residually finite,
and hence non-linear. Theorem 14 allows us to construct non-linear and non-residually finite groups
having logspace normal forms.

Corollary 15. Not all groups with a logspace normal form are linear.

Proof. By Corollary 15.1.5 in [10], (Z � Z) � Z is not linear, but it has a logspace normal form by
Theorem 14. �
Corollary 16. Not all groups with logspace normal forms are residually finite.

Proof. Let G be the wreath product of the symmetric group S3 on three letters and Z = 〈t〉. By
Theorem 14, G has logspace normal form. But it is easy to show that G is not residually finite. Let θ

be a homomorphism from G to a finite group. We will show that θ kills the commutator subgroup
[S3, S3]. Let n be a positive integer such that tnθ = 1. Since [S3, Stn

3] = 1,

[S3, S3]θ = [
S3θ,

(
Stn

3

)
θ
] = [

S3, Stn

3

]
θ = 1. �

6. Closure under free products

Unfortunately we are not able to prove closure of logspace normal forms under free product in
general, but we are able to do so if the free product has logspace word problem, for example if it is a
free product of linear groups.

Let G = 〈X〉 and H = 〈Y 〉 be groups with logspace normal form functions g X and hY , and suppose
X and Y are disjoint. By Proposition 6 we can assume that g X and hY both have the property that
the normal form for a word representing the identity is λ. We will define a normal form function for
the free product G ∗ H , which is generated by X � Y .

We start with the following lemma.

Lemma 17. Let w = u1 v1u2 v2 . . . uk vk where ui ∈ X∗ and vi ∈ Y ∗ . Then w represents an element in G if and
only if wu−1

k u−1
k−1 . . . u−1

1 =G∗H 1.

Proof. We proceed by induction on k. For k = 1 we have u1 v1 ∈ G meaning v1 ∈ G , but since v1 ∈ Y ∗
with Y disjoint from X , we must have v1 = 1, so u1 v1u−1

1 = 1.
Assume the result is true for k, and let w = u1 v1 . . . uk+1 vk+1 represent an element in G . By the

normal form theorem for free products [11, p. 175], w has a unique reduced form consisting of a
single subword u ∈ X∗ , so we must have ui = 1 for some i > 1 or vi = 1 for some i < k + 1. If ui = 1
then

w = u1 v1 . . . ui−1(vi−1 vi)ui+1 . . . vk+1

and by the induction hypothesis

wu−1
k+1u−1

k . . . u−1
i+1u−1

i−1 . . . u−1
1 = 1.

Similarly if vi = 1.
The converse is clearly true. �
We define a normal form for G ∗ H recursively as follows.

M. Elder et al. / Journal of Algebra 381 (2013) 260–281 269
Definition 9 (Normal form for G ∗ H). Let w ∈ (X � Y)∗ .

1. Write w as a freely reduced word.
2. If w ∈ G , then define f X�Y (w) = g X (X(w)).
3. If w ∈ H , then define f X�Y (w) = hY (Y (w)).
4. Otherwise, let w1 be the longest initial segment of w such that w1 ∈ G , and let w ′ be the tail

of w , so w = w1 w ′ . Then
• if w1 has nonzero length, define

f X�Y (w) = g X
(

X(w1)
)

f X�Y
(

w ′).
• Otherwise, let w2 be the longest initial segment of w such that w2 ∈ H , and let w ′ be the tail

of w , so w = w2 w ′ . Note that if w2 = λ then the first case applies, so w2 has nonzero length.
In this case, define

f X�Y (w) = hY
(
Y (w2)

)
f X�Y

(
w ′).

Proposition 18. The normal form function f X�Y is well defined.

Proof. In case (1), by the previous lemma we have w =G∗H X(w) (the word obtained from w by
deleting all letters from Y). So the normal form function g X applies and gives a unique representative
for w . Similarly for case (2). So words that lie completely in one of the factors have a well-defined
normal form.

Now let w ∈ (X �Y)∗ be freely reduced, and assume w /∈ G and w /∈ H . Then w is non-trivial (since
it is not in G or H). For each non-identity element of G ∗ H , there is a unique way to represent it as
an alternating product of non-identity elements in G and H [11]. So write w =G∗H u1 v1u2 v2 . . . uk vk
where ui ∈ X∗ and vi ∈ X∗ . Since w does not lie in G or H , it has at least two factors.

If the alternating product starts with u1 ∈ X∗ , then we claim that any word representing w
has a longest initial segment that evaluates to an element of G , and this element is equal to u1.
If so, then the choice made by f X�Y is unique. Take the (freely reduced) word w and write
it as a1b1 . . .albl with ai ∈ X∗ and bi ∈ Y ∗ with only a1,bl allowed to be empty words. Then
v−1

k u−1
k . . . v−1

1 u−1
1 a1b1 . . .albl =G∗H 1, so by the normal form theorem [11] some term must repre-

sent the identity in G or H , and this term must involve u1. So w has a prefix which is equal to u1,
and since w /∈ G , v1 is not empty, so there is a longest prefix of w that equals u1, and cancels so that
v1 can then cancel.

A similar argument applies if the alternating product starts with v1u2. �
In Proposition 1 we proved that free groups of finite rank have logspace normal form, using the

fact that they have logspace word problem. We generalize this argument to show that the function
f X�Y can be computed in logspace, provided the word problem for G ∗ H can be decided in logspace.

Proposition 19. Let G = 〈X〉 and H = 〈Y 〉 be groups with logspace normal forms. Suppose furthermore that
G ∗ H has logspace decidable word problem. Then G ∗ H has logspace normal form.

Proof. Let w ∈ (X � Y)∗ be the freely reduced word equal to the input word (run the logspace algo-
rithm in Proposition 1 on the input word to obtain it). By Lemma 17 we can compute j such that
w1 = u1 v1u2 v2 . . . v j−1u j is the longest initial segment of w such that w1 ∈ G , by inputting

u1 v1u2 v2 . . . v j−1u−1
j−1 . . . u−1

1

into the logspace word problem function for G ∗ H .
Output the normal form g X for u1u2 . . . u j and move the input pointer to point to v j . For ease of

notation, we rename v ju j+1 v j+1 . . . uk vk to be our new w , and reindex so that w = v1u1 v2u2 . . . vrur .

270 M. Elder et al. / Journal of Algebra 381 (2013) 260–281
Compute j such that w1 = v1u1 v2u2 . . . u j−1 v j is the largest initial segment of our new w such that
w1 ∈ H . Output the normal form over Y for v1u1 v2u2 . . . u j−1 v j and move the input pointer to point
to u j . Continue in this way until the entire input has been processed. Note that at any one stage we
are only storing a constant number of pointers to the input. �
Corollary 20. Let F be a field, and let G and H be linear over F with a logspace normal form. Then G ∗ H is
also linear over F and it also has a logspace normal form.

Proof. The class of groups which are linear over F is closed under free products (see, for example,
Corollary 2.14 in [12]). All linear groups have logspace word problem (for the case when the charac-
teristic of F is 0, see [2]; for the positive characteristic case see [3]). The corollary follows. �
7. Closure under infinite extensions

In this section we prove that certain infinite extensions of groups with logspace normal forms also
have logspace normal form. If N is a normal subgroup of finitely generated group G = 〈X〉, if G/N
has logspace normal form, and if there is a logspace computable function to produce normal forms
for elements of N in terms of generators in X , then G has logspace normal form. This will enable us
to extend our class to include certain amalgamated products and one-relator groups.

Notice that for the following lemma, N need not be finitely generated, and we posit the existence
of a function similar to a normal form function for N in the sense that it produces unique representa-
tives for the elements of N , but different in the sense that it is defined on words over the generators
for the ambient group G .

Lemma 21. Let G be a group with normal subgroup N. Let X be a finite symmetric generating set for G. Let
S = {w ∈ X∗ | w ∈ N}. Suppose that

• G/N has logspace normal form; and
• there is a logspace computable function f : S → S such that f (w) = w and f (w1) = f (w2) if and only

if w1 = w2 .

Then G has logspace normal form.

Proof. Let XN = {xN | x ∈ X} be a generating set for G/N , and let h : (XN)∗ → (XN)∗ be the logspace
normal form function for G/N with respect to this generating set. Define two logspace functions
p : X∗ → (XN)∗ and q : (XN)∗ → X∗ by p(x) = xN for each x ∈ X , and q(xN) = x for each xN ∈ XN . Let
ι : X∗ → X∗ be the logspace function ι(a1 . . .an) = a−1

n . . .a−1
1 that computes the inverse of a word.

Define a function g : X∗ → X∗ as follows: On input w ∈ X∗:

1. Compute q(h(p(w))) writing the output word b1 . . .bk to the output tape, storing the integer k.
2. Call the function f , and when it asks for the ith input letter:

• if i � k, call ι(q(h(p(w)))) and return the ith letter of its output;
• if i > k, return the (i − k)th letter of w .

Since w ∈ wN , step (1) of the algorithm computes b = b1 . . .bk such that wN = (b1N) . . . (bk N)

and returns the letters b1, . . . ,bk . Then w = bn for some n ∈ N , and since n = b−1 w , step (2) of the
algorithm outputs f (b−1 w). �

We first explore some implications of Lemma 21 for amalgamated products. We are grateful to
Chuck Miller for his invaluable input into the remainder of this section.

Corollary 22. Suppose that G has logspace normal form, and that N is a normal subgroup such that G/N is
linear and has logspace normal form. Then the amalgamated product H of G with itself along N has logspace
normal form.

M. Elder et al. / Journal of Algebra 381 (2013) 260–281 271
Proof. Fix a finite generating set X for G , and define two new copies X1 and X2 of X as follows:
for each element x j ∈ X make two new generators (x j)1 and (x j)2, and for i = 1,2, let Xi = {(x j)i |
x j ∈ X}. Let G1 and G2 be two copies of G with generators X1 and X2 respectively, and let N1 and
N2 be corresponding normal subgroups of G1 and G2.

We have H/N = G1/N1 ∗ G2/N2 where Gi/Ni is linear and has logspace normal form. Hence by
Corollary 20, H/N has logspace normal form, with respect to the generating set X1 � X2.

Let S be the set of words w over X1 � X2 such that w ∈ N . Write w ∈ S as an alternating product
of subwords from X1 and X2. Since w ∈ N , w is equal in H to a word u ∈ X∗

1 with u ∈ N1. Then
wu−1 = 1 in H . Write wu−1 as an alternating product u1 v1 . . . uk vk with ui ∈ X∗

1, vi ∈ X∗
2 (with all

subwords nonempty except possibly u1 and vk). By the normal form theorem for amalgamated free
products [11], the alternating word contains a subword ui ∈ X∗

1 with ui ∈ N , or vi ∈ X∗
2 with vi ∈ N .

In the first case write ui as a word in X∗
2 by replacing each (x j)1 letter by (x j)2, and vi as a word

in X∗
1 by replacing each (x j)2 letter by (x j)1 in the second case. The resulting word is also equal to 1

in H , so if it contains letters from both generating sets, another subword can be rewritten, reducing
the number of alternating subwords, so that after a finite number of iterations the word wu−1 is
equal in H to a word obtained by replacing all letters (x j)2 by (x j)1.

It follows that w is equal in H to the word obtained from w by replacing each (x j)2 letter by
(x j)1. Let p : (X1 � X2)

∗ → (X1 � X2)
∗ be the map that performs this substitution, so clearly p can

be computed in logspace, and p(w) = w for all w ∈ S . Let g X1 be the logspace normal form function
for G1 (since G has logspace normal form it follows that G1 does). Then f = g X1 ◦ p is logspace
computable by Lemma 2.

Since p(w) is equal to w in H , and g X1 is a normal form function, we have f (w) = w . If f (u) =
f (v) then g X1(p(u)) = g X1(p(v)), so p(u) = p(v) since g X1 is a normal form function, which implies

u = v . Since we have satisfied the criteria of Lemma 21, the result follows. �
Corollary 23. Let F be the free group on two generators. Then the amalgamated product of F with itself along
the commutator subgroup has logspace normal form.

Proof. The abelianization of F is a free abelian group, and hence is linear and has logspace normal
form. �
Corollary 24. Let BS(1, p) be a Baumslag–Solitar group (as defined in Section 8). Then the amalgamated
product of BS(1, p) with itself along the commutator subgroup has logspace normal form.

Proof. The abelianization of BS(1, p) is cyclic, and hence is linear and has logspace normal form. �
We next explore some implications of Lemma 21 for torus knot groups.

Lemma 25. Let G = 〈a,b | am = bn〉, where m and n are positive integers, and let N be the subgroup of G
generated by am. Let

w = ar1 bs1ar2 bs2 . . .ark bsk

such that w ∈ N. Then m divides
∑k

j=1 r j , n divides
∑k

j=1 s j , and w = ami , where

i = 1

m

k∑
j=1

r j + 1

n

k∑
j=1

s j .

Proof. We proceed by induction on k. The case when k = 1 is clear. Assume that k > 1 and that
our result holds for k − 1. Then by the normal form theorem for free products with amalgamation

272 M. Elder et al. / Journal of Algebra 381 (2013) 260–281
[11, Theorem 2.6] either m divides ri for some i, or n divides si for some i. Let us assume the latter,
the argument being the same in either case. Since bsi is central, we may assume that

w = ar1 bs1ar2 bs2 . . .bsi−1ari+ri+1 bsi+1 . . .ark bsk+si .

Our result now follows from our inductive assumption. �
Corollary 26. The torus knot group G = 〈a,b | am = bn〉 for m,n positive integers has logspace normal form.

Proof. Let N be the subgroup of G generated by am , which is normal since N is central. G/N is the
free product of two finite cyclic groups, so by Corollary 20, it has a logspace normal form function.
Let S be the set of words representing elements of N . Let f : S → S be the function that takes a word
in S to its representative of the form ami . By Lemma 25 we can calculate f using two counters. This
can be done in logspace. The result then follows from Lemma 21. �

Note that the braid group on three strands has presentation 〈a,b | a2 = b3〉. Since braid groups
on n strands are linear, it would be interesting to know whether or not they admit logspace normal
forms for n > 3.

8. Solvable Baumslag–Solitar groups

Let G = 〈a, t | tat−1 = ap〉 for p � 2, and X = {a±1, t±1}. Note that G is isomorphic to the set of all
matrices of the form

(
pi m
0 1

)
,

where i ∈ Z and m ∈ Z[1
p], where the isomorphism is given by

t →
(

p 0
0 1

)
, a →

(
1 1
0 1

)
.

We obtain a normal form as follows. Write

(
pi m
0 1

)
=

(
1 m
0 1

)(
pi 0
0 1

)
.

Then m ∈ Z[1
p] has a unique p-ary expansion as either

• 0,
• η0

pα0 + η1
pα1 + · · · + ηk

pαk with 0 < η j < p and α0 > α1 > · · · > αk , or

• η0
pα0 + η1

pα1 + · · · + ηk
pαk with −p < η j < 0 and α0 > α1 > · · · > αk ,

where the p-ary expansion for m is written from least to most significant bits. Finally note that

(
1

η j

pα j

0 1

)
=

(
1

pα j 0

0 1

)(
1 η j
0 1

)(
pα j 0
0 1

)
= t−α j aη j tα j ,

so it follows that each element of G can be written uniquely in one of the following three forms:

M. Elder et al. / Journal of Algebra 381 (2013) 260–281 273
• ti ,
• (aη0)tα0

(aη1)tα1
. . . (aηk)tαk ti ,

• (a−η0)tα0
(a−η1)tα1

. . . (a−ηk)tαk ti ,

where i,k ∈ Z, k � 0, 0 < η j < p, α0 > α1 > · · · > αk , and xy = y−1xy.
For example, for p = 2,

(
8 11

4
0 1

)

can be written as (
1 1

22

0 1

)(
1 1

21

0 1

)(
1 21

0 1

)(
23 0
0 1

)
= at2

at1
at−1

t3.

Define the level of a letter in a word w ∈ X∗ to be the t-exponent sum of the prefix of w end-
ing with this letter. For example, the levels of the a letters in the word at2

atat−1
t3 are −2,−1,1

respectively.
If w ∈ X∗ , let texp denote the t-exponent sum of w , lmin the minimum level of any letter in w ,

and lmax the maximum level of a letter in w .

Lemma 27. If w ∈ X∗ is written on an input tape, then we can compute and store texp, lmin and lmax in
logspace.

Proof. We perform the following logspace algorithm:

1. Set binary counters texp, lmin, lmax to zero.
2. Scan the input from left to right:

• if the next letter is t , increment texp by 1, and set
lmax = max{texp, lmax};

• if the next letter is t−1, decrement texp by 1, and set
lmin = min{texp, lmin};

• if the next letter is a±1, do nothing.

When the end of the input is reached, the counters texp, lmin, lmax contain the required values for w ,
and have absolute value no more than the length of the input. �

We will use the fact that since G is metabelian, words of zero t-exponent sum commute in G .
For example, if u = atatatat−2at−2at , the subword tatat−2 has zero t-exponent sum, and so we may
commute it past the first a at level 1 to obtain at(tatat−2)aat−2at , as illustrated in Fig. 1. This means
we may collect together a±1 letters at the same level without changing the group element represented
by a word.

Let S ⊂ X∗ be the set of words of zero t-exponent sum. We define a function f S : S → S such that
f S(u) is a word of the form λ or

(
aη0

)tα0 (
aη1

)tα1
. . .

(
aηk−1

)tαk−1 (
aβ

)tαk
,

where α0 > α1 > · · · > αk , 0 < ηi < p, k � 0, and β ∈ Z, β
= 0, such that u and f S (u) represent the
same element in BS(1, p). Note that the level of each a±1 in the subword (aηi)tαi is −αi . Note also
that since β is allowed to range through all integers, the output here is not guaranteed to produce
a unique representative for each group element, so we do not claim f S is a normal form function.

274 M. Elder et al. / Journal of Algebra 381 (2013) 260–281
Fig. 1. Subwords of zero t-exponent commute with a letters.

Instead, we call f S(u) an approximation of the normal form for u. It is computed using the following
algorithm.

Algorithm 1 (Approximation Algorithm). On input u ∈ S:

1. Run the algorithm in Lemma 27 and store lmin and lmax in binary.
2. Set l = lmin,aexp = 0 and β = 0.
3. While l � lmax:

(a) set texp = 0;
(b) for each letter x of input, starting at the left most letter:

• if x = t , put texp = texp + 1;
• if x = t−1, put texp = texp − 1;
• if x = a and texp = l, put aexp = aexp + 1;
• if x = a−1 and texp = l, put aexp = aexp − 1;

(c) if l < lmax:
• compute and store (in binary) q, r ∈ Z

where aexp = pq + r and 0 � r < p;
• if r
= 0 write (ar)t−l

to the output tape, and set β = r;
• set aexp = q;
else:
• if aexp
= 0:

– set β = aexp;
– write (aβ)t−lmax to the output tape;

• set aexp = 0;
• increment l by 1;

(d) loop invariant: if v is word written on the output tape then we claim that

u = v
(
aaexp

)t−l [u]l,

where [u]l is the word obtained from u by ignoring all those occurrences of a and a−1 at
levels less than l.

Notice that we are effectively computing the p-ary expansion of the upper-right entry in our
matrix representation, and that to do so requires that “carrying” a-exponent sums from one level to
the next; this is the job of the variable aexp in the algorithm.

Note also that the variable β is changed in step 3(c) only if the new value is nonzero and some
a±1 letters are written to the output tape. So at the end of the algorithm β = 0 if and only if the
output word has no a±1 letters, and the algorithm has no output. If β
= 0 then the suffix of the
output word is (aβ)t−l

.
The next three lemmas show that Algorithm 1 computes the function f S as required, and in

logspace.

M. Elder et al. / Journal of Algebra 381 (2013) 260–281 275
Lemma 28. Let u be a word in X∗ with t-exponent sum equal to zero. Let m be the minimum level of any a or

a−1 in u. Let e be the exponent sum of those as in u which are at level m. Then u = (ae)t−m [u]m+1 .

Proof. Let a1,a2, . . . ,as be the a±1 letters in u that are at level m. Write u as u0a1u1a2u2 . . .asus
where all a±1 letters in ui are above level m, so u0u1 . . . us = [u]m+1. Then the t-exponent sum of u0
is m, the t-exponent sum of ui for 1 � i < s is zero, and for us is −m. Inserting t−mtm pairs before
and after each ai we obtain a word

v = u0t−m(
tma1t−m)

tmu1t−m(
tma2t−m)

tmu2 . . . t−m(
tmast−m)

tmus

with u = v . Put v0 = u0t−m, vi = tmuit−m for 1 � i < s and vs = tmus , so each vi has zero t-exponent
sum, and v = v0tma1t−m v1tma2t−m v2 . . . tmast−m vs . Then

v = tma1a2 . . .ast−m v0 v1 . . . vs

since words of zero t-exponent sum commute, where a1a2 . . .as = ae . Finally note that v0 v1 . . . vs =
u0t−mtmuit−m . . . tmus−1t−mtmus which after cancellation of t−mtm pairs is [u]m+1. �
Lemma 29. The approximation algorithm is correct.

Proof. It is clear that the format of the output word is correct, so it remains to show that the output
word is equal in the group to the input word. We will first show that the loop invariant defined in
step 3(d) is preserved under one iteration of the main loop. Let l, aexp and v represent the values
of these variables at the start of an iteration, that is, at the top of the loop, where v is the word

currently written on the output tape. Assume the loop invariant holds, so u = v(aaexp)t−l [u]l .
Let l′ , aexp′ and v ′ represent the values of these variables at the end of that iteration, that is, at

the point of the loop which is marked with the loop invariant. Note that l′ = l + 1.
Let e be the exponent sum of those a±1s at level l, the lowest level of any a±1 letters in [u]l . The

algorithm sets aexp′ = q where aexp + e = pq + r and writes (ar)t−l
to the output tape if r > 0. So

v ′ = v(ar)t−l (which includes the case r = 0).

By Lemma 28 we have [u]l = (ae)t−l [u]l′ . Then

u = v
(
aaexp

)t−l [u]l = v
(
aaexp

)t−l (
ae

)t−l [u]l′

= v
(
aaexp+e

)t−l [u]l′ = v
(
apq+r

)t−l [u]l′

= v
(
ar

)t−l (
apq

)t−l [u]l′ = v ′(apq
)t−l [u]l′

= v ′tl
(
apq

)
t−l[u]l′ = v ′tl

(
taqt−1

)
t−l[u]l′

= v ′tl+1
(
aq

)
t−l−1[u]l′ = v ′tl′(aq

)
t−l′ [u]l′

= v ′(aq
)t−l′ [u]l′ = v ′(aaexp′)t−l′ [u]l′ .

Thus we see that the invariant is preserved.
At the start of the main loop, the loop invariant holds, since v = λ, aexp = 0, l = lmin, and u =

[u]lmin . After the last iteration we have l = lmax + 1, [u]lmax+1 = λ and aexp = 0, so

u = v
(
aaexp

)t−l [u]l = v
(
a0

)t−l
λ = v,

so the word written to the output tape is equal in the group to the input word. �

276 M. Elder et al. / Journal of Algebra 381 (2013) 260–281
Lemma 30. The function f S can be computed in logspace.

Proof. At all times the integers aexp, |q| and |r| are at most the length of the input word, so can
be computed and stored in binary in logpsace, and each time the main loop is executed the stored
values can be overwritten. It follows that the algorithm described runs in logspace. �

For u ∈ S define βu to be the value of the variable β stored at the end of the algorithm comput-
ing f S(u).

Corollary 31. If u ∈ S and βu < 0, then f S(u−1) contains only a letters.

Proof. If βu < 0 then the top right entry of the matrix representing u is negative, so the top right
entry of the matrix representing u−1 is positive, so βu−1 is positive, so all a±1 letters output by
Algorithm 1 have positive exponent. �
Proposition 32. The normal form

• ti ,
• (aη0)tα0

(aη1)tα1
. . . (aηk)tαk ti ,

• (a−η0)tα0
(a−η1)tα1

. . . (a−ηk)tαk ti ,

where i,k ∈ Z, k � 0, 0 < η j < p, α0 > α1 > · · · > αk, and xy = y−1xy, can be computed in logspace.

Proof. Define a function hS on (nontrivial) words of the form

u = (
aη0

)tα0 (
aη1

)tα1
. . .

(
aηs−1

)tαs−1 (
aβ

)tαs

with β > 0,α0 < · · · < αs−1,0 < ηi < p as follows. Put

v = (
aη0

)tα0 (
aη1

)tα1
. . .

(
aηs−1

)tαs−1
,

so u = v(aβ)tαs . Write β = b0 + b1 p + · · · + bκ pκ with 0 � bi < p and bκ > 0. Then

hS(u) = v
(
ab0

)tαs (
ab1

)tαs−1

. . .
(
abκ

)tαs−κ

.

Since

aβ = (
ab0

)(
ab1

)t−1
. . .

(
abκ

)t−κ

it follows that u = hS (u). The following algorithm shows that hS(u) can be computed in logspace. On
input u = v(aβ)tαs :

1. Output v .
2. Store b = β and c = αs in binary.
3. While b > p:

• compute q, r so that 0 � r < p and b = pq + r;
• if r > 0, output (ar)tc

;
• set c = c − 1 and b = q;

4. Output (ab)tc
.

M. Elder et al. / Journal of Algebra 381 (2013) 260–281 277
Let ι : S → S be the logspace function that computes the inverse of a word given in the proof of
Lemma 21. Define τ : t �→ t , t−1 �→ t−1, a �→ a−1, which is computable with no memory.

We can compute the normal form as follows. Let w ∈ X∗ be a word written on an input tape. Run
the algorithm in Lemma 27 to compute texp and store it in binary. Run the approximation algorithm
on u = wt−texp, suppressing output.

1. If βu = 0, output ttexp.
2. If βu > 0, output hS(f S (u)), then output ttexp.
3. If βu < 0, output τ (hS(f S (ι(u)))), then output ttexp. �

Note that by Proposition 7, the length of a logspace normal form for an input word of length n is
at most a polynomial in n. In this case, for p = 2, the input word tk+1at−k−1a−1 of length 2k + 4, has
normal form aatat2

at3
at4

. . .atk
of length 1 + k + ∑k

i=1 2i = k + k(k + 1) = k2 + 2k + 1.

9. Logspace embeddable groups

We define a group to be logspace embeddable if it embeds in a group which has a logspace normal
form.

Our results from the previous sections give us:

Corollary 33. Being logspace embeddable is closed under direct product, wreath product, and passing to finite
index subgroups and supergroups.

Magnus proved in [13] that a free solvable group can be embedded in an iterated wreath product
of Z. (For a modern exposition of this result, see, for example, [14].) Thus we obtain the following
corollary of Theorem 14.

Corollary 34. All finitely generated free solvable groups are logspace embeddable. In particular, all finitely
generated free metabelian groups are logspace embeddable.

Corollary 35. If G is logspace embeddable, then the word and co-word problems for G are decidable in logspace
(and polynomial time).

Proof. By Lemma 3 we can decide if two words in a group with logspace normal form are equal or
not, and moreover by Lemma 4 the algorithm runs is polynomial time. Since the word and coword
problems pass to subgroups the result follows. �

While logspace embeddable groups have efficiently decidable word problem, the same cannot be
said for their conjugacy or generalized word problems.

Proposition 36. The generalized word problem and the conjugacy problem are not decidable for logspace
embeddable groups.

Proof. By [15] finitely generated subgroups of the direct product of two finitely generated free groups
can have unsolvable membership problem and unsolvable conjugacy problem. �

We are not able to say whether the class of logspace embeddable groups is strictly larger than the
class of groups having logspace normal forms. If we were able to prove that logspace normal form
implies solvable conjugacy problem, for example, then the proposition above would settle this.

Further, we know that all linear groups have logspace word problem by [2], but we are not able
to prove that they all have logspace normal forms.

278 M. Elder et al. / Journal of Algebra 381 (2013) 260–281
10. Nilpotent groups

In this section we prove that the group of unitriangular r × r matrices over Z has logspace normal
form, and obtain as a corollary that all finitely generated nilpotent groups are logspace embeddable.
It is important to remember that for our purposes, r is a constant, and in this respect our algorithms
are not uniform.

Let r � 2, and let UTrZ be the group of upper triangular matrices over Z with 1s on the diagonal.
For 1 � i < j � r, let Ei, j denote the elementary matrix obtained from the identity matrix by putting
a 1 in position (i, j) and let X be the set of all such elementary matrices and their inverses. UTrZ is
generated as a group by X , and we denote by w the image of w under the natural homomorphism
from the free group on X to UTrZ.

Lemma 37. If w is a word of length n over X, and if a is an entry in the ith super-diagonal of the matrix w,
then |a| � ni .

Proof. We proceed by induction on r. When r = 2,

E1,2 =
[

1 1
0 1

]

and UT2Z ∼= Z. It is clear that the entry in the off-diagonal of the matrix w has absolute value at
most n in this case, so the result holds.

Now let r � 3 and assume the result holds for r − 1.
Consider the homomorphism from UTrZ to UTr−1Z that takes an r ×r matrix to the (r −1)×(r −1)

matrix in the upper left-hand corner. The kernel of this homomorphism is isomorphic to Z
r−1, and

UTrZ is the split extension of UTr−1Z and this kernel, so with a slight abuse of notation we can
consider UTr−1Z as a subgroup of UTrZ. Furthermore, our chosen generating set is the disjoint union
of generators of the form E±1

i, j for j < r, and E±1
i,r , which generate UTr−1Z and Z

r−1 respectively. We
will denote by Xr the generating set for UTrZ.

Let w be a word in (Xr)
∗ of length n. We now proceed by induction on n. If n = 1, the result

is clear, since every entry a in the matrix w satisfies |a| � 1. When n � 2, we may assume that the
lemma holds for n − 1.

Let w ′ be a word of length n − 1 over Xr and let x be an element of Xr such that w = w ′x. Then
w ′ is of the form [

A u
0 1

]
,

where A is an element of UTr−1Z and u is a column vector in Z
r−1.

There are two cases for the generator x: either x = E±1
i, j with i < j < r, that is,

[
B 0
0 1

]
,

where B is of the form E±1
i, j ∈ Xr−1; or x = E±1

i,r , that is,

[
I v
0 1

]
,

where I is the identity matrix and v is a column vector of length r − 1 with one entry ±1 and the
rest 0.

M. Elder et al. / Journal of Algebra 381 (2013) 260–281 279
In the first case,

w ′x =
[

A u
0 1

][
B 0
0 1

]
=

[
AB u
0 1

]
.

The matrix AB is the product of n generators over Xr−1, so by inductive assumption on r the entries
in the ith super-diagonals have absolute value at most ni , and the entries in the last column

⎡
⎢⎢⎢⎢⎣

ur−1
ur−2

...
u1
1

⎤
⎥⎥⎥⎥⎦

satisfy ui � (n − 1)i < ni since they come from w ′ .
In the second case,

w ′x =
[

A u
0 1

][
I v
0 1

]
=

[
A Av + u
0 1

]
.

The entries in the upper left-hand corner satisfy the lemma since they come from w ′ . Let a be an
element of the kth super-diagonal of w , and suppose as well that a is in the last column of w . What
remains is to show that |a| < nk in this special case.

The column vector Av is either one of the columns of A, or a column of A multiplied by −1.
Suppose that Av is the jth column of A, or its negation, and denote the entries of Av as follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a j−1
a j−2

...
a1
1
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Denote the entries of u as follows: ⎡
⎢⎢⎣

ur−1
ur−2

...
u1

⎤
⎥⎥⎦ .

Note that ai and ui are on the ith super-diagonal of w ′ , so by our inductive assumption on n,
|ai |, |ui| � (n − 1)i . Note also that j � r − 1.

There are three cases to consider. For the first case, let us suppose that k < r − j. In this case
a = uk + 0 = uk and hence |a| � (n − 1)k < nk . For the second case, let us suppose that k = r − j. In
this case, a = uk + 1, and hence |a| � (n − 1)k + 1 � nk . In the remaining case, k > r − j. In this case
a = uk + am , where m = k − (r − j). Therefore |a| � (n − 1)k + (n − 1)k−(r− j) . Since j � r − 1, r − j � 1
and

|a|� (n − 1)k + (n − 1)k−1 = (n − 1)k−1(n − 1 + 1) = n(n − 1)k−1 < nk. �

280 M. Elder et al. / Journal of Algebra 381 (2013) 260–281
By listing those elementary matrices with a 1 on the first super-diagonal first, followed by those
elementary matrices with a 1 on the second super-diagonal next, and so on, we obtain the sequence

E1,2, E2,3, . . . , Er−1,r, E1,3, E2,4, . . . , Er−2,r, . . . , E1,r,

which is a polycyclic generating sequence for G and hence gives us a normal form g X for G .

Theorem 38. The normal form g X (w) can be computed in logspace.

Proof. We begin by describing our algorithm for computing g X (w). Compute and store the matrix w .
If the entries on the first super-diagonal are α1,α2, . . . ,αr−1, then g X (w) starts with the word

Eα1
1,2 Eα2

2,3 . . . E
αr−1
r−1,r,

so we write this word to the output tape. Next compute the matrix for

w1 = E
−αr−1
r−1,r . . . E−α2

2,3 E−α1
1,2 w.

The matrix w1 will have 0s along the first super-diagonal. Let β1, β2, . . . , βr−2 be the entries on the
second super-diagonal of w1. The next part of gx(w) starts with the word

Eβ1
1,3 Eβ2

2,4 . . . E
βr−2
r−2,r,

so we write this word to the output tape. Next compute the matrix for

w2 = E
−βr−2
r−2,r . . . E−β2

2,4 E−β1
1,3 w1.

The matrix w2 has 0s along the first two super-diagonals. Continue in this way, peeling off the super-
diagonals one at a time, obtaining at each stage a word wi such that wi has 0s along the first i
super-diagonals, and writing the part of the normal form g X (w) that corresponds to the ith super-
diagonal as you go.

To show that g X (w) can be calculated in logspace, it suffices to show that there exist constants D
and k such that for all 1 � i � r − 1, the length of wi is bounded by Dnk , since then by Lemma 37,
there exists a constant C such that the matrix wi can be stored in space r2 log (C(Dnk)r−1), which is
O (log n). We will define Di and ki inductively in such a way that for all i, the length of wi is bounded
by Dinki and Di and ki are constants in the sense that they do not depend on n. When i = 0, wi = w
and we can take D0 = 1 and k0 = 1. Now suppose that Di and ki are suitable constants for wi . Let
β1, β2, . . . , βp be the entries on the (i + 1)st super-diagonal of wi . By Lemma 37, each β j is bounded
in magnitude by C(Dinki)r−1. Therefore, the length of wi+1 is bounded by pC(Dinki)r−1 + Dinki , which
is itself bounded by rDr

i (C + 1)nkir . We let Di+1 = rDr
i (C + 1) and ki+1 = kir. Notice that neither Di

nor ki depends on n, so from our point of view they are constants. Thus, D = Dr−1 and k = kr−1 are
constants such that for all 1 � i � r − 1, the length of wi is bounded by Dnk . �
Corollary 39. All finitely generated nilpotent groups are logspace embeddable.

Proof. Let G be a finitely generated nilpotent group. Then G has a finite index subgroup N which
is torsion-free [16, Theorem 3.21]. There exists a positive integer r such that N embeds in UTrZ

[17, Theorem 2, p. 88]. Therefore N is logspace embeddable. Since by Proposition 10 the class of
logspace embeddable groups is closed under finite extension, G is logspace embeddable. �
Corollary 40. All finitely generated groups of polynomial growth are logspace embeddable.

M. Elder et al. / Journal of Algebra 381 (2013) 260–281 281
Proof. By Gromov’s theorem [18] if a finitely generated group has polynomial growth then it has a
nilpotent finitely generated subgroup of finite index. The result follows from the previous corollary
and Corollary 33. �
References

[1] A. Myasnikov, V. Shpilrain, A. Ushakov, Group-Based Cryptography, Adv. Courses Math. CRM Barcelona, Birkhäuser Verlag,
Basel, 2008.

[2] R.J. Lipton, Y. Zalcstein, Word problems solvable in logspace, J. Assoc. Comput. Mach. 24 (3) (1977) 522–526.
[3] H.-U. Simon, Word problems for groups and contextfree recognition, in: Fundamentals of Computation Theory (Proc.

Conf. Algebraic, Arith. and Categorical Methods in Comput. Theory, Berlin/Wendisch-Rietz, 1979), in: Math. Res., vol. 2,
Akademie-Verlag, Berlin, 1979, pp. 417–422.

[4] M. Lohrey, N. Ondrusch, Inverse monoids: decidability and complexity of algebraic questions, Inform. and Comput. 205 (8)
(2007) 1212–1234.

[5] W. Parry, Growth series of some wreath products, Trans. Amer. Math. Soc. 331 (2) (1992) 751–759.
[6] V. Diekert, J. Kausch, M. Lohrey, Logspace computations in graph groups and coxeter groups, in: D. Fernández-Baca (Ed.),

LATIN, in: Lecture Notes in Comput. Sci., vol. 7256, Springer, 2012, pp. 243–254.
[7] J.-C. Birget, A.Y. Ołshanskii, E. Rips, M.V. Sapir, Isoperimetric functions of groups and computational complexity of the word

problem, Ann. of Math. (2) 156 (2) (2002) 467–518.
[8] W. Magnus, A. Karrass, D. Solitar, Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Rela-

tions, 2nd edition, Dover Publications Inc., Mineola, NY, 2004.
[9] S. Waack, Tape complexity of word problems, in: FCT ’81: Proceedings of the 1981 International FCT-Conference on Funda-

mentals of Computation Theory, Springer-Verlag, London, UK, 1981, pp. 467–471.
[10] D.J.S. Robinson, A Course in the Theory of Groups, 2nd edition, Grad. Texts in Math., vol. 80, Springer-Verlag, New York,

1996.
[11] R.C. Lyndon, P.E. Schupp, Combinatorial Group Theory, Ergeb. Math. Grenzgeb., vol. 89, Springer-Verlag, Berlin, 1977.
[12] B.A.F. Wehrfritz, Infinite Linear Groups, Springer-Verlag, Berlin, 1973.
[13] W. Magnus, On a theorem of Marshall Hall, Ann. of Math. (2) 40 (1939) 764–768.
[14] A. Myasnikov, V. Roman’kov, A. Ushakov, A. Vershik, The word and geodesic problems in free solvable groups, Trans. Amer.

Math. Soc. 362 (9) (2010) 4655–4682.
[15] K.A. Mihaı̆lova, The occurrence problem for free products of groups, Mat. Sb. (N. S.) 75 (117) (1968) 199–210.
[16] K.A. Hirsch, On infinite soluble groups. III, Proc. London Math. Soc. (2) 49 (1946) 184–194.
[17] D. Segal, Polycyclic Groups, Cambridge Tracts in Math., vol. 82, Cambridge University Press, New York, 1983.
[18] M. Gromov, Groups of polynomial growth and expanding maps, Publ. Math. Inst. Hautes Études Sci. 53 (1981) 53–73.

	On groups that have normal forms computable in logspace
	1 Introduction
	2 Basic examples and properties of logspace normal forms
	3 Closure under direct product
	4 Closure under passing to ﬁnite index subgroups and supergroups
	5 Closure under wreath product
	6 Closure under free products
	7 Closure under inﬁnite extensions
	8 Solvable Baumslag-Solitar groups
	9 Logspace embeddable groups
	10 Nilpotent groups
	References

