
Some notes on P and NP
CSC-024, Dr. Ostheimer

1. Definitions

Definition 1. A problem specification is a precise description of the desired input
and output for a particular problem.

Definition 2. A problem is a decision problem if its output is a single boolean,
True or False.

Definition 3. An algorithm description for a problem is a precise step-by-step
description of how to solve a particular problem on all valid inputs.

Definition 4. Algorithm analysis is the process of coming up with a worst-case
time-complexity function for a particular algorithm.

Definition 5. The worst-case time complexity function, f(n), for a particular al-
gorithm is a function that takes as input a positive integer n and returns a real
number f(n) which is the time it takes, in the worst case, for the algorithm to run
on any input of size n.

Definition 6. An algorithm has worst-case polynomial time complexity if there
exists a positive integer k such that the algorithm’s worst-case time complexity
function f(n) is O(nk).

Definition 7. A decision problem is in the class P if there exists an algorithm
to solve it with worst-case polynomial time complexity. Such problems are called
tractable.

Definition 8. A decision problem is in the class NP if there exists an algorithm
to check a certificatee of True with worst-case polynomial time complexity.

Definition 9. A decision problem R is NP-hard if R ∈ P implies that P = NP.

Definition 10. A decision problem R is NP–complete if R is in NP and R is
NP-hard.

1



Remarks:

(1) Be sure that you are clear on the difference between a problem specification,
and algorithm description and algorithm analysis. Students have a strong
tendency to blend these three things. A problem specification answers the
question “What problem are we trying to solve?”. An algorithm description
answers the question “How are we going to solve it?”. Algorithm analysis
answers the question “How long will it take to run the algorithm?”.

(2) Since an algorithm will typically take longer to run on larger inputs, al-
gorithm analysis really answers the question “How long will it take the
algorithm to run on inputs of a given size?”. That’s why this process pro-
duces a function f(n) to describe the time it takes to run the algorithm on
an input of size n.

(3) Sometimes, an algorithm might take longer to run on one input of a given
size than on another of the same size. Consider the decision version of the
Traveling Salesman Problem, for example, and the exhaustive algorithm
we came up with in class for solving this problem. For one input with 100
cities, the first tour that is tried might be under the given bound; in this
case the length of just one tour will be calculated. On the other hand, for
another input also with 100 cities, there might be no tours under the given
bound; in this case the lengths of all n! tours will be calculated.

(4) Notice that an “algorithm” (in order to be called an algorithm) must always
terminate in a finite amount of time on all legal inputs. However, the time
is typically unbounded: as the size n of the input approaches infinity, the
time it takes to run the algorithm approaches infinity as well. Nonetheless,
for any given n, the time it takes the algorithm to terminate on an input
of size n is finite.

(5) Focus carefully on the difference between P and NP. Notice that the P in
both P and NP stands for polynomial, but notice also that the N in NP
does not stand for “not”: in both cases we are asserting the existence of a
worst-case polynomial time algorithm. In the case of P, it is an algorithm
to solve the problem, and in the case of NP, it is an algorithm to check a
certificate of True for the problem.

(6) We have not defined what it means to “check a certificate of True” to a
problem. I will have to define this for you on a problem-by-problem basis.
This is because you are not ready to understand the true definition of the
class NP, so this intuitive definition is the best we can do at this point.

(7) Although we are focusing on worst-case time complexity, there are lots of
other kinds of complexity: average-case time complexity (where you look
at the average time it takes the algorithm to terminate on inputs of size n);
worst-case or average space complexity (where you look at the amount of
memory needed by the algorithm for inputs of size n); circuit complexity
(where you look at various measures of the complexity of a circuit to solve
the problem); and many more!



(8) It follows from the definition of P and NP that P ⊆ NP. We can’t
prove this since we don’t have a rigorous definition of NP, but I hope it is
intuitively clear that solving a problem is harder than checking a solution to
a problem, and hence that this relationship between P and NP is plausible.

(9) It is an open problem as to whether, in fact P = NP. This is one of the most
famous open problems in mathematics and theoretical computer science
today, and it has stumped the very best of our researchers for decades.



2. TSP – decision version

Problem Specification

• Input:

– a list of cities

– a table with the distance between every pair of cities

– a positive integer B

• Output: If there is a tour through the cities of length less than or equal
to B, return True; otherwise, return False.

Algorithm Description
Try every possible tour, calculating the length of each as you go. If you encounter
a tour of length less than or equal to B, stop and return True. If there is no such
tour, return False.

Algorithm Analysis
Let f(n) be the worst-case time-complexity function for the above algorithm, where
n is the number of cities. We proved in class that f(n) is O(n(n!)).

What it means to “check”
To check a certificate of True means to check that the length of a given tour is less
than or equal to B, We saw in class that this can be done in time O(n). Therefore,
the Traveling Salesman Problem is in the class NP.

Complexity
Not only is the Traveling Saleman Problem known to be in NP, it is also known
to be NP-hard. The proof of this (big!) theorem is beyond the scope of our class.


