CS 024, Discrete Structures II Induction Practice

Recall that N is the set of non-negative integers.

Theorem. Let f(n) be the function from N to N defined as follows:

- f(0) = 1;
- f(n) = f(n-1) + 2n 1 if n > 0.

Then $f(n) = n^2 + 1$ for all $n \in N$.

- 1. Re-order the following statements to make a valid proof. Your answer to this question must be an ordered list of letters.
 - (a) Therefore $f(n) = n^2 + 1$.
 - (b) For the inductive step, we assume that P(k) holds for all k < n, and we must prove that P(n) holds.
 - (c) We are given that f(n) = f(n-1) + 2n 1.
 - (d) Therefore $f(n) = (n-1)^2 + 1 + 2n 1$.
 - (e) Since n 1 < n, we know that $f(n 1) = (n 1)^2 + 1$.
 - (f) For the basis step, we must prove that P(0) is true.
 - (g) $(n-1)^2 + 1 + 2n 1 = (n^2 2n + 1) + 1 + 2n 1 = n^2 + 1$.
 - (h) Let P(n) be the statement " $f(n) = n^2 + 1$ ".
 - (i) This completes the proof.
 - (j) Since f(0) is defined to be 1, this is obvious.
 - (k) In other words, we assume that $f(k) = k^2 + 1$ for all k < n, and we must prove that $f(n) = n^2 + 1$.
 - (l) In other words, we must prove that $f(0) = 0^2 + 1$.

Your list of letters here:

- 2. Classify each statements according to whether they are assumptions, definitions, statements of intent or deductions. Write the classification to the left of each statement on the previous page.
- 3. In which statement is the inductive assumption used? Write the appropriate letter here:
- 4. True or false: $P(n) = n^2 + 1$.