Group Work on Section 3.3 Professor Ostheimer

- 1. Define \mathcal{NP} -complete.
- 2. This is all about reading comprehension. Read each question carefully. Read your index cards carefully. For this problem all you need to know about the *Graph Isomorphism* problem is that it is known to be in NP, it is not known if it is in P and it is not known if it is NP-complete. You need to know everything we learned in class about the *Knapsack* problem, including the fact that it is known to be NP-complete. Indicate whether each of the following statements is **True**, **False** or rather if we **Don't Know** if it's true or false.
 - (a) Graph Isomorphism is in \mathcal{P} .
 - (b) Knapsack is in \mathcal{P} .
 - (c) Graph Isomorphism is in \mathcal{NP} .
 - (d) Knapsack is in \mathcal{NP} .
 - (e) Graph Isomorphism is \mathcal{NP} -complete.
 - (f) Knapsack is \mathcal{NP} -complete.
 - (g) If Graph Isomorphism is in \mathcal{P} , then Knapsack Problem is in \mathcal{P} .
 - (h) If Knapsack is in \mathcal{P} , then Graph Isomorphism is in \mathcal{P} .
 - (i) If Graph Isomorphism is not in \mathcal{P} then $\mathcal{P} \neq \mathcal{NP}$.
 - (j) If Knapsack is not in \mathcal{P} then $\mathcal{P} \neq \mathcal{NP}$.