
Group work on divide and conquer
CS24, Dr. Ostheimer

(1) Here is a program that searches for a number x in a list a of numbers, returning True if x
is in a and False if not.

def linearSearch(a, x):

if len(a) == 0:

answer = False

else:

if a[0] == x:

answer = True

else:

answer = linearSearch (a[1:], x)

return answer

Let f(n) be the number of comparisons performed (in the worst case) if the length of a is
n.
(a) What is f(0)?
(b) Find a recursive formula for f(n) if n > 0.
(c) Find a big-O estimate for f .

(2) Here is another program that searches for a number x in a list a of numbers, returning
True if x is in a and False if not.

def binarySearch(a, x):

a is sorted from least to greatest

if len(a) == 0:

answer = False

else:

m = len(a)/2

if a[m] == x:

answer = True

else:

if a[m] < x:

answer = binarySearch(a[m+1:], x)

else:

answer = binarySearch(a[0:m], x)

return answer

Let f(n) be the number of comparisons performed (in the worst case) if the length of a is
n.
(a) What is f(0)?
(b) Find a recursive formula for f(n) if n > 0.
(c) Find a big-O estimate for f .

1

2 (3) Here is a program to merge two sorted lists.

def mergeRec(list1, list2):

if len(list1) == 0:

bigList = list2

else:

if len(list2) == 0:

bigList = list1

else:

if list1[0] < list2[0]:

bigList = [list1[0]] + mergeRec(list1[1:], list2)

else:

bigList = [list2[0]] + mergeRec(list1, list2[1:])

return bigList

Find a big-O estimate for the time complexity.
(4) Here is a program to sort a list. Note that it calls mergeRec above.

def mergeSort(list):

if len(list) <= 1:

answer = list

else:

m = len(list)/2

list1 = mergeSort(list[0:m])

list2 = mergeSort(list[m:])

answer = mergeRec(list1, list2)

return answer

Find a big-O estimate for the time complexity.

