Group Work CSC-024, Prof. Ostheimer

Several of the questions below refer to this definition (and the rest do not!):

Definition 1 Let $f, g : \mathbf{N} \to [0, \infty)$. f is friendly toward g if and only if there exist constants C and k such that

$$f(x) \le Cg(x)$$

for all $x \geq k$. C and k are called witnesses to the fact that f is friendly toward g.

- 1. True or false: there exists an $x \in \mathbb{N}$ such that $3x^2 + 17 \le x^2$.
- 2. True or false: there exists a constant k such that $3x^2 + 17 \le x^2$ for all $x \ge k$. If your answer to this is "true", find a k that works.
- 3. True or false: $3x^2 + 17 < 15x^2$ for all $x \in \mathbb{N}$.
- 4. True or false: $3x^2 + 17 \le 15x^2$ for all $x \ge 10$.
- 5. True or false: There exists a constant k such that $3x^2 + 17 \le 15x^2$ for all $x \ge k$. If your answer is "true": find a k that works.
- 6. Read the definition of friendly out loud.
- 7. Many students ask me this: "What's the difference between x and k in the definition"? How would you answer that question?
- 8. True or false: $3x^2 + 17$ is friendly toward x^2 .
- 9. True or false: There exists a constant k such that $3x^2 + 17 \le 4x^2$ for all $x \ge k$. If your answer is "true": find such a k.
- 10. Prove that $3x^2 + 17$ is friendly toward x^2 .
- 11. For which of the questions above did you actually need to know the definition of "friendly" in order to answer them?
- 12. Why do you think C and k are called "witnesses"?
- 13. Some of you have already been exposed to this concept of "friendly" in your other classes. Have you? If so, what's the real name of the concept being defined here?