Summary of finite automata CS 161, Dr. Ostheimer

Definition 1. Let Σ be an alphabet. A finite automaton over Σ is a collection of 2 things:

- (1) a finite set S of states including
 - exactly one *initial state*
 - zero or more final states
- (2) for each state $s \in S$ and for each $\sigma \in \Sigma$, exactly one directed edge leaving s labeled σ .

Definition 2. Let A be a finite automaton over Σ . The language accepted by A is the set of words $w \in \Sigma^*$ such that the path starting at the initial state and labeled w ends at a final state.

Remark 1. Note that by the definition of finite automaton, for a given word $w \in \Sigma^*$, there is one and only one path starting at the initial state labeled w; therefore, the previous definition makes sense.

Definition 3. Let Σ be an alphabet. A generalized transition graph over Σ is a collection of 2 things:

- (1) a finite set S of states including
 - zero or more *initial states*
 - zero or more final states
- (2) for each pair $s, t \in S$, zero or more directed edges, each labeled with a regular expression over Σ .

Definition 4. Let G be a generalized transition graph over Σ . The language accepted by G is the set of words $w \in \Sigma^*$ such that **there exists** a path

- starting at an initial state and ending at a final state, that is
- labeled with a regular expression r such that w is in the language defined by r.

Remark 2. Note for a generalized transition graph G over Σ and a word $w \in \Sigma^*$, many things can happen, including

- (1) there might not be any paths labeled r such that $w \in language(r)$ from an initial state;
- (2) there might be many paths labeled r such that $w \in language(r)$ from an initial state to a final state and at the same time there might be many paths labeled r such that $w \in language(r)$ from an initial state to a non-final state;

This is a source of what we call nondeterminism – we may have choices about how to trace w.

Definition 5. A generalized transition graph G over Σ is also called a transition graph if all of the edge labels are words Σ^* .