Recursive Definitions, CSC-161, Dr. Ostheimer

- (1) Let L be a language over X, We define S(L) as follows;
 - $\Lambda \in S(L);$
 - if $u \in S(L)$ and $v \in L$, then $uv \in L$.
 - (a) Why is this called a recursive definition?
 - (b) True or False: $L \subseteq S(L)$. (Justify your answer.)
 - (c) True or False: $S(L) \subseteq L$. (Justify your answer.)
 - (d) True or False: $S(L) \subseteq X^*$. (Justify your answer.)
 - (e) We already gave S(L) a different name. What is that name?
 - (f) Which do you like better, the definition we had last week in class, or, rather, this one?
- (2) How could you modify the definition above to define the positive Kleene closure of L?
- (3) Let X be an alphabet. Create a recursive definition for X^* .
- (4) Let X be an alphabet. Let T(X) be defined as follows
 - $\Lambda \in T(X);$
 - For all $x \in X$, $x \in T(X)$;
 - For all $w \in T(X)$ and all $x \in X$, $xwx \in T(X)$.
 - (a) Why is this called a recursive definition?
 - (b) True or False: $X \subseteq T(X)$. (Justify your answer.)
 - (c) True or False: $T(X) \subseteq X$. (Justify your answer.)
 - (d) True or False: $T(X) \subseteq X^*$. (Justify your answer.)
 - (e) We already gave T(X) a different name. What is that name?
 - (f) Which do you like better, the definition we had last week in class, or, rather, this one?

1

- (5) Let $X = \{a, b\}, Z = \{\Lambda, \mathbf{a}, \mathbf{b}\}$ and $Y = \{(,), +, *\}.$
 - Let U(X) be the language over $Z \cup Y$ defined as follows:
 - For all $x \in Z, x \in U(X)$;
 - if $w \in U(X)$, then $(w) \in U(X)$ and $w^* \in U(X)$;
 - if $u, v \in U(X)$, then $uv \in U(X)$ and $u + v \in U(X)$.
 - (a) What is the cardinality of the alphabet $Z \cup Y$?
 - (b) Come up with 5 interesting words w over $Z \cup Y$ such that $w \in U(X)$.
 - (c) Come up with 5 interesting words w over $Z \cup Y$ such that $w \notin U(X)$.
 - (d) True or False: $Z \subseteq U(X)$. (Justify your answer.)
 - (e) True or False: $U(X) \subseteq Z$. (Justify your answer.)
 - (f) True or False: $U(X) \subseteq X^*$. (Justify your answer.)
 - (g) True or False: $U(X) \subseteq (Z \cup Y)^*$. (Justify your answer.)
 - (h) Read the definition at the bottom of page 35 in Cohen. So: what's the normal term for U(X)?
 - (i) Cohen emphasizes a versus **a**. What is the point of this?
 - (j) What is the difference between Λ and Λ ? What is the length of the word Λ ? What is the length of the word Λ ?
 - (k) How would you modify this definition to define the set of regular expressions over the alphabet $\{x, y, z\}$ instead of over $\{a, b\}$, as we have done here?