Excerpts from an Old Exam CSC-161, Dr. Ostheimer

1. Closure and Regularity:

Assume for this problem that L and M are languages over the alphabet $X = \{a, b\}$. For the following True-False questions, if your answer is false, produce languages L and M that prove it.

- (a) True or false: If L is finite, then L is regular.
- (b) True or false: If L is regular and M is regular. then $L \cup M$ is regular.
- (c) True or false: If L is regular and $L \cup M$ is not regular, then M is not regular.
- (d) True or false: If $L \cup M$ is regular, then at least one of L and M is regular.
- 2. Using Closure in Non-regularity Proofs: Let $X = \{a, b\}$. In class we have proven that PALINDROME(X) is not regular using pumping. For this problem, you may assume this is true. Let L be the set of all words in X^* of length 4 or less.
 - (a) True or false: L is finite.
 - (b) True or false: L is regular.
 - (c) Write a short proof that PALINDROME(X)-L is not regular. Recall that for sets A, B, A-B is the set of those elements of A that are not elements of B. Do *not* use pumping, but rather use what you know about closure. (Three or four complete sentences should suffice.)

- 3. Understanding Pumping: Answer the following True/False questions. If your answer is "True", provide an example.
 - (a) True or false: There exists a finite automaton A with 5 states over X such that $\text{language}(A) = \{a^i b^{3i} a^i \text{ s.t.} i = 0, 1, 2, 3, ...\}.$
 - (b) True or false: There exists a finite automaton A with 5 states over X such that $\text{language}(A) \supseteq \{a^i b^{3i} a^i \text{ s.t.} i = 0, 1, 2, 3, \ldots\}.$
 - (c) True or false: There exists a finite automaton A with 5 states over X such that $\text{language}(A) \subseteq \{a^i b^{3i} a^i \text{ s.t.} i = 0, 1, 2, 3, \ldots\}.$
 - (d) True or false: There exists a finite automaton A with 5 states over X such that A accepts aabbbbbbaa and $language(A) \subseteq \{a^i b^{3i} a^i \text{ s.t.} i = 0, 1, 2, 3, \ldots\}$.