EXHAUSTIVE PRIMALITY TESTING: PROOF OF CORRECTNESS

Theorem. If for all integers x such that $2 \le x \le \sqrt{n}$, x does not divide n, then n is prime.

The following statements constitute a proof of the theorem above, but they are out of order. Order them.

(1) Therefore, $p \leq \sqrt{n}$.

(2) $p^2 \le pq$ and pq = n, so $p^2 \le n$.

- (3) Suppose that n is not prime.
- (4) n = pq for some p and q such that $2 \le p \le q$.
- (5) We will show that there exists an integer p such that $2 \le p \le \sqrt{n}$ and p divides n.