
Class Notes on Type Inference Calculi
Chuck Liang

Hofstra University Computer Science

Background and Introduction

Many modern programming languages that are designed for applications programming
impose typing disciplines on the construction of programs. In constrast to untyped lan-
guages such as Scheme and Perl and weakly typed languages such as C, a strongly typed
language (C#/Java, Ada, ML, etc ...) places constraints on how programs can be written.
A type system ensures that programs observe logical structure. The origins of type theory
stretches back to the early twentieth century in the work of Bertrand Russell and Alfred
N. Whitehead and their “Principia Mathematica.” They observed that our language, if
not restrained, can lead to unsolvable paradoxes.

Specifically, let’s say a mathematician defined S to be the set of all sets that do not contain
themselves. That is:

S = {all A : A 6∈ A}

Then it is valid to ask the question does S contain itself (S ∈ S?). If the answer is yes,
then by definition of S, S is one of the ’A’s, and thus S 6∈ S. But if S 6∈ S, then S is one
of those sets that do not contain themselves, and so it must be that S ∈ S!

This observation is known as Russell’s Paradox. In order to avoid this paradox, the
language of mathematics (or any language for that matter) must be constrained so that
the set S cannot be defined. This is one of many discoveries that resulted from the careful
study of language, logic and meaning that formed the foundation of twentieth century
analytical philosophy and abstract mathematics, and also that of computer science. The
type theory used in computer science today is derived from a 1940 paper by Alonzo Church
called “A Formulation of the Simple Theory of Types.” It was given in the context of
Church’s λ-calculus.

The Syntax of Types

Programming languages have a variety of syntax for expressing types. In general, type
expressions are categorized into atomic or primitive types such as int, double, char, etc...,
and compound types that involves a type constructor. Examples of type constructors
include structs and classes. A struct (or class) containing an int and a char can be
represented as intXchar type (a cartesian product). Additional type constructors depends
on the language, such as * in C/C++ that indicates a pointer type. Functions have types of
the form A → B where A represents the type of its parameters (domain) and B represents
the return type (codomain). For example, a C function

1



int f(int x, char y)

can be said to have type (intXchar) → int. The → constructor associates to the right.
void is the empty set and can be given the label 0. The void type should be associated
with all formulas that generate side effects as opposed to returning a value. For example,
a cout statement in C++ can be said to have the void type.

We write S : τ if expression S has type τ . Such formulas are called type judgements.

Type Checking Expressions

To say that a program is “well-typed” is to be able to assign a type to every subexpression
of the program. A statement such as cout is well-typed if every expression processed by
the statement is well-typed. However, just because a program is well-typed does not mean
it’s correct, only that it is logically structured. Each typed language defines a set of rules
for determining what (if any) types each expression should have. All such languages are
based on the typed λ-calculus. The λ-calculus contains two basic forms of expressions:
applications of the form (A B) and abstractions of the form λx.A. Types for constants
are assumed: for example, 3 : int is assumed to always be a true type judgement. Built-
in functions are also considered constants: for example, ’+’ has type (intXint) → int.
Whether a function such as ’+’ is infix (in C) or prefix (in Scheme) is a purely syntactic
matter and is irrelevant here: what matters is that it’s a function that takes two integers
and returns an integer1.

Types for variables depend on a type environment, which is a set of type judgements of
the form x : τ . The type environment is usually labeled Γ. For example, if we make the
following declarations

int x, y;

char z;

double u;

Then Γ will include x : int, y : int, z : char, u : double for this section of the code.
The set Γ is referred to as a signature. Java/C# interfaces and C/C++ header files are
manifestations of the signature concept, but the idea of a signature is much more general
than either of these constructs.

Given a signature, type judgements are inferred using one of the following rules:

S : τ ∈ Γ
S : τ

id

1Of course, ’+’ is an overloaded operator that can also be used to add floats - which ’+’ we’re talking

about are often inferred from context.

2



A : σ → τ B : σ
(A B) : τ

app

A : τ with x : σ temporarily added to Γ

λx.A : σ → τ
abs

These rules can be read in both a forward and a backward (“goal-directed”) manner. The
first rule (id) simply says that if Γ already contains a judgement, then it’s trivial to infer
that judgement. For example, x : int can be inferred trivially from the C-style declarations
earlier. The second rule says that when you apply a function to an argument, the type
of the argument must match the type of the domain of the function, and that the result
of the application will be the type of the codomain (range) of the function. The third
rule is most interesting: it says that to show that a function has type σ → τ , temporarily
assume that its parameter has type σ, and under this temporary assumption show that
the body or return value of the function has type τ . Why temporarily? Because, as you
should know well by now, formal parameters (λ-bound variables) have LOCAL scope. We
must discard the assumption after applying this type inference rule so that it does not
interfere with other parts of the program. In other words, Γ here is our symbol table, or
compile-time STACK.

Product Types and Currying

When dealing with a cartesian-product type (for functions that take more than one para-
menters, for example), we need the following rules:

A : σ B : τ

(A,B) : σXτ

(A,B) : σXτ

A : σ

(A,B) : σXτ

B : τ

These rules will combine multiple parameters into one parameter. It also allows us to use
structs (or classes) that combine multiple elements into one object.

It is also always possible to convert a function that takes two (or more) parameters into
a function that takes one parameter using a process called “Currying”, after the logician
Haskell Curry. That is, a function of type AXB → C can be converted to a function of
type A → (B → C). The second function takes the first parameter and returns a function
that takes the second parameter. The technique also allows us to simplify our theory to
deal only with functions that take one parameter. The upcomming Perl version 6 will
include automatic currying of functions. That is, if a function that takes two parameters
is given only one actual parameter, a function that expects the other parameter will be
returned. Currying is also used in code optimization.

3



Application

The type inference rules above can be used in an algorithm to determine if a program is
well typed. For example, let Γ be the type signature {x : int, y : int, z : char, u : double}
We can infer that x + atoi(z) has type int using these rules2

x : int (∈ Γ)

z : char (∈ Γ) atoi : char → int

atoi(z) : int
app

(x, atoi(z)) : intXint + : intXint → int

x + atoi(z) : int
app

Note that if we had x+atoi(u) the inference above would fail because the app rule cannot
be applied to atoi(u), since double does not match the domain type of atoi (char). Also
note how we used the product rules to combine the two arguments of + into one.

Now let’s infer that the function f below

int g(int x, char y) { return x + atoi(y); } // assume well-typed

int f(int x)

{

return g(x,’a’);

}

is well-typed (that is, f has the type as declared). Note that f is just λx.(g x x). Assume
it’s already been established that function g has type intXchar → int.

x : int (assumed) ′a′ : char (constant)

(x,′ a′) : intXchar g : intXchar → int (previous inference)

g(x,′ a′), : int (assume x : int)
app

f : int → int
abs

The Curry-Howard Isomorphism

When we say that types ensure that programs follow logical structure, we’re not just using
the word logical gratuitously. Type theory holds a close relationship with formal, mathe-
matical logic. If we equate → with logical implication, product X with conjunction (and),
and every atomic type (int, char, etc) as true, then every type expression corresponds
to a logical formula. Applying the type checking rules above under a signature Γ then
corresponds to deducing that something is true under a set of logical assumptions. This
important correspondance is called the Curry-Howard Isomorphism. It formally equates

2
atoi is a C library function that converts ascii chars to ints.

4



the process of writing programs with the process of formulating mathematical proofs. A
particular consequence of this isomorphism is that the type of every typable pure lambda
term (combinator) is a propositional tautology.

Unfortunately, not every lambda term is typable. The untyped lambda calculus is powerful
enough to express all computations, but only a subset of computations are considered “type
safe.” In particular, the “bad” lambda term that has no normal form when applied to
itself, namely (λx.x x), is not typable. To see why, apply the type inference rules above
to try and derive a general type. We first associate some type variable σ temporarily with
x. But in applying the typing rule for applications (labeled app), we see that in order for
x x to be typable, x must have type σ and σ → τ for some type τ . These types are not
compatible. In fact, in pure typed lambda calculus every term is guaranteed to have a
normal form. You can’t have infinite loops! We cannot derive the fixed-point combinator
for recursion - we must import it as an addition to the calculus.

Typing Rules for Other Language Constructs

The rules above form the foundation of any type system. Specific langauges will of course
require additional rules, depending on the constructs that are in that language. For
example, to type an assignment statement (x=A;) you will need to introduce an inference
rule that checks that the left and right hand sides of = have the same type. Typing pointer
expressions in C/C++ will require the following rules:

A : τ
&A : τ∗

A : τ∗
∗A : τ

Constructs such as nested {}’s in C can be modeled directly using λ-terms, and can be
typed directly.

Conditionals such as if-else are interesting. We need to verify the types of three elements:
the boolean and the types of both options. In many languages, the options for if-else are
statements of type void. However, we should really consider the type of return construct
as the type of the value that it returns. To make matters consistent, we should not think
of if-else constructs as having type void, but rather the type of the values that it could
return.

A : τ
return A : τ

A : bool B : τ C : τ
if (A) B else C : τ

Indeed, in some languages (ML) you must have an else case for every if, since an if-only
expression implies it has both the type of the value returned in once case and void in the
other case. In any typed language, you cannot have expressions such as

if (A) return "abc"; else return 2;

5



although such expressions are legal (and sometimes useful) in untyped languages such as
Scheme and Perl. The down side of the flexibility of these languages is that it becomes
impossible for the compiler to detect type errors before runtime.

Typing Recursive Functions

Recursive functions are manifestations of mathematical induction in computing. In type
checking recursive code (tail or otherwise), we are essentially doing an inductive proof.
Consider the factorial function:

unsigned int f(unsigned int n)

{ if (n==1) return 1; else return n*f(n-1); }

To prove that this function is well-typed for all positive integers, we first show that f(1) is
well typed (the base case), and under the inductive hypothesis, that f(n−1) is well-typed:

n : uint (∈ Γ) f(n − 1) : uint (ind. hypothesis)

(n, f(n − 1)) : uintXuint ∗ : uintXuint → uint

n ∗ f(n − 1) : uint
app

Homework Assignment

Using the typing rules described here, and following the examples shown (both here and
in class), show that the following program fragments are well (or not well) typed:

1.

int f(double x, char y); // assume well-typed already

...

int x;

char y;

double z;

...

cout << (x+1) + f(z,y); // type check this cout’ed expression.

That is, under a type environment Γ containing the declared types for f, x, y, z, show that
the expression in the cout statement is well-typed.

2.

6



int g(int x, int y)

{

return 3 + (y*x);

}

Please pay careful attention to how the rules should be applied and write out everything
clearly and carefully. The type inference rules may seem tedious but they have to be in
order to form the basis of an implementation, so observe them carefully. Be mechanical.

Subtyping and Parametric Types

“Subtype” is the word used to describe inheritance in type-theoretic research. A subclass
is a subtype of the superclass. Types are related to sets in mathematics. However, when
we speak of a “class” we are really talking about the description of a set, not the set
itself. Thus the subclass is seen as larger than the superclass, but in fact it describes a
tighter set. Types such as int can also be considered a subtype of double, because there’s
a well-defined injective function from ints to doubles. If a term A is of type σ, which is a
subtype of τ , then A is also of type τ .

A parametric type is a type expressions with variables, such as seen in C++ templates
and upcomming extensions of Java and Microsoft CLR languages. Other well-structured
but less-popular languages such as ML, Eiffel and Ada also have notions of parametrized
types. C++ templates only look like parametric types on the surface. Underneath, the
mechanism is rather crude - being little more than editor macros. However, the rules

of type checking described above can also be used to check the consistency of

parametrically typed code. Because of the relationship between logic and type theory,
type expressions with variables are often written as being universally quantified with ∀.
For example, if a function is of type ∀a(a → a), then the function can accept a value of
any type as a parameter, as long as the value it returns is of the same type. If a function
f has type ∀a(a → a) but we write:

int x = f("abc");

then we know this code is not typable at compile time, because the single type variable a

cannot be instantiated with both int and string at the same time.

Type Inference

Just because a language has the syntax of types (C++) doesn’t mean it has a meaningful
type system. On the other hand, some languages may appear to not involve types, but in
fact the opposite is true. In the language ML, type expressions are seldom used directly by

7



programmers. Instead, they’re inferred from context. For example, the factorial function
is defined as:

fun fact 1 = 1

| fact n = n*f(n-1);

ML allows definitions of functions by cases, similar to Prolog predicates and to a certain
extent, the Visitor pattern in oop languages. But what is even more relevant is the absence
of typing keywords in the code (i.e, “int”). ML infers that the type of this function is
int → int. From the type of 1 and ∗, it infers that the parameter and the return types
must both be integers. The algorithm used for type inference is similar to the unification
algorithm used in Prolog and AI. Furthermore, ML is able to infer Hindley-Milner type
schemes, which are types with generic type variables. The significance of this ability
is profound. It means that ML can automatically recognize the naturally polymorphic
characteristics of programs. For example, one can define the length of a linked list in ML
(roughly) as follows:

fun length nil = 0

| length cons(head,tail) = 1 + length(tail);

ML is able to infer that the type of this function is ’a list -> int where ’a is a general
type variable. This means that the function can be applied to linked lists containing data
of any type. In stark contrast, the C++ type system is not powerful enough to even allow
the expression of natural polymorphism, let alone infer it. Templates are not statically
type checked. Instead, a new copy of the code is made for each new instantiation of the
type variables, regardless of whether a new piece of code is really necessary (such as in the
case of the length function). The forthcoming generics extension of .Net CLR will include
a limited form of type inference.

ML is the language with which most of the applications of type theory was researched.
One can think of ML as a typed version of Scheme: it is based on the typed lambda
calculus. Slowly but surely, as technology becomes available to support the overhead
of advanced language features, the research done with ML is finding its way into more
popular, conventional languages. Parametric types were added (finally!) to Java with
the release of JDK 1.5 in September 2004. C# .Net version 2.0, which include a similar
system, is still in beta-release form but will also be finalized soon.

8


