
Initial Setup
git config --global user.name "Foo Bar"
git config --global user.email

"foo.bar@example.com"
ssh-keygen -t rsa
cat ~/.ssh/id_rsa.pub

Then copy and paste the output to
your SSH keys on the remote server.

Creating a New Repository
mkdir myrepo
cd myrepo
git init
create or add files
echo "hello" > foo.txt
git add .
git commit -m "initial commit"

Push Existing Repo to Remote
git remote add origin remote-repo
git push --all –u origin

Downloading a Repository
git clone remote-repo

where remote-repo is a path of the
form user@server:/path/to/repo

Viewing Changes
git status View list of changed files
git diff View changes to files in the

working directory
git diff --cached View changes in

index from HEAD commit

Committing Changes
git add file Add changes in file to index
git commit Commit staged changes in

the index to the local repo

git commit file
Same as above two commands,
except file must already be tracked

To commit all changes to tracked files and
new or removed files:
git add --all
git commit -m "commit message"

Commit all changes (to tracked files only):
git commit -a -m "commit message"

TM Quick Reference
COMMAND OVERVIEW

Git logo by Jason Long licensed under Creative Commons
Attribution 3.0 Unported (bit.ly/cc-by). All other trademarks
are property of their respective owners. #1071

 Concepts and Definitions
repository a project tracked by Git,

consisting of commits & branches,
usually stored with project files and
directories in a working directory

working directory
aka. working tree or workspace,
the directory containing a working
copy of project files and directories

index aka. cache or stage,
staging area for building a commit
of changes in the working directory

commit history
a database storing past commits

commit a snapshot or record of
changes to files in the working
directory at some point in time

branch a reference to a commit at
the end of a chain of commits

HEAD a reference to the commit
that is currently checked out

merge a commit joining divergent
development paths or branches

merge conflict
a condition that arises from a failed
automatic merge; requires manual
editing to resolve the conflict

Ref Notation
HEAD Reference to the commit

currently checked out
ref placeholder for branch, tag,

or commit SHA-1 hash
ref^n the nth parent of ref,

where n=1 when omitted
(only merge commits
have multiple parents)

ref~n the nth ancestor of ref,
where n=1 when omitted

ref@{n} the nth reflog entry of ref

Examples:
HEAD^ denotes parent of HEAD
master~3 great grandparent of the

latest commit on master
HEAD~5^2 HEAD’s great-great-great

grandparent’s 2nd parent
HEAD@{1} previous value of HEAD
0c708f Refers to a commit by its

SHA-1 hash (unique ID)

Pushing and Pulling
git push Upload commits to default

upstream remote repository
(To set default upstream:
git push -u remote branch)

git push remote branch
Push new commits on
branch to remote, e.g.
git push origin master

git pull Pull latest changes from
origin (does fetch & merge)

git pull remote branch
Pull latest commits on
branch from remote

Restoring Files
git checkout commit -- file

Restore file from the given commit
git checkout HEAD -- file

Discard uncommitted changes to file
git reset --hard HEAD

Discard all uncommitted changes

Staging Files
git add file Add changes in file to index
git reset file Unstage file, i.e. remove file

from index, e.g. to keep it
from being committed
when you do git commit

Resolving Merge Conflicts
git status List the files with conflicts
vim file Edit files to fix conflicts…

problematic areas are marked as follows:
<<<<<<< HEAD
text changed in current branch
=======
text changed in other-branch
>>>>>>> refs/heads/other-branch

…or use a dedicated merge tool:
git mergetool

Then, git add file to mark each file
resolved and finally git commit to
conclude the merge. Alternatively, run
git merge --abort to cancel the merge.

History

git commit

git reset file

IndexWorking
Directory

git add file

git checkout file

TM Quick Reference
COMMAND OVERVIEW

 Branches
git branch branch

Create new branch named branch
at the HEAD (current commit)

git checkout branch
Check out (i.e. switch to) branch

git checkout -b branch
Same as above two commands, i.e.
create new branch named branch
at current commit and check it out

git branch -d branch
Delete branch named branch

Merging
To merge branch2 into branch1:
git checkout branch1
git merge branch2

Undoing Commits
git reset commit

Rewind current branch to commit,
e.g. HEAD^ (never do this on
published commits!)

git revert commit
Does not do what you would think
it does – creates a new commit to
undo changes of a previous commit

Viewing History
git log List commit history of

the current branch
git log --oneline Show one per line
git log --follow file Show history of file
git show ref View changes in commit
git blame file See who changed what

(and when) in given file
git diff A… B Compare two branches

Rebase
Doing a rebase sequentially regenerates
a series of commits onto another branch.
git checkout B
git rebase A Rebase branch B onto A

git rebase --onto A C [B]
Rebase branch B starting at commit
C onto branch A. If B isn’t specified,
rebase up to and including HEAD.

A
B

Before A BAfter

git.cs.hofstra.edu

branch2
branch1

