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Abstract. We present a new theoretical method and experimental re-
sults for direct recovery of the curvatures, the principal curvature direc-
tions, and the surface itself by explicit integration of the Gauss map.
The method does not rely on polygonal approximations, smoothing of
the data, or model �tting. It is based on the observation that one can
recover the surface restoring force from the Gauss map, and (i) applies
to orientable surfaces of arbitrary topology (not necessarily closed); (ii)
uses only �rst order linear di�erential equations; (iii) avoids the use of
unstable computations; (iv) provides tools for �ltering noise from the
sampled data. The method can be used for stable extraction of surfaces
and surface shape invariants, in particular, in applications requiring ac-
curate quantitative measurements.

1 Introduction

In this paper we consider a classical computer vision problem: to what extent
can we determine a surface and its properties from its Gauss map. We show
that given the Gauss map N by solving a linear system of �rst order di�erential
equations we can extract the mean curvature function H of the surface without
building a surface model or a surface parameterization. Then we turn around
and use H and N to determine the Gauss curvature, the principal curvature
axes, and ultimately a global parameterization of the surface. The presented
method works for orientable surfaces of arbitrary topology. The method is based
on the solution of �rst order linear di�erential equations and explicit quadratic
expressions. This leads to computationally stable discretization of the method.
A discrete version of the presented method is used to recover the curvatures, the
principal axes, and parameterizations from clouds of points and normals sampled
from actual surfaces.

Surface parameterizations are a convenient tool for analyzing surface proper-
ties. They are used in many computer vision tasks, for example, in matching and
for the computation of surface invariants. One typical approach is to, �rst, col-
lect a suÆciently dense set of sampled surface points using range sensors, stereo,
MRI, or CT techniques; second, to approximate the parameterization from an
estimated 3D surface model; and third, to compute the di�erential invariants
from the approximated surface. The 3D model is obtained by applying a march-
ing cubes method, a Delaunay triangulation, or some model �tting or smoothing



technique, [6, 7, 18, 2, 14, 17, 19]. The typical approaches do not come with ro-
bust and general error estimates. Another approach is to extract the curvature
invariants directly from range, stereo, or photometric data without building the
3D model [6]. Other powerful methods for obtaining global parameterizations of
closed surfaces involve superquadrics, deformable superquadrics, Brechb�uller's
constrained optimization algorithm for surfaces with spherical topology [13, 4].

Ultimately with all these methods di�erential invariants are computed us-
ing classical di�erential geometric methods. They involve taking second order
derivatives, and solving general characteristic polynomials. An additional source
of errors is the computational instability of the methods. For example, to com-
pute the principal curvature vectors and the principal curvatures, the methods
rely on diagonalizing general symmetric matrices (in fact the operators are of-
ten only close to symmetric due to noise and round o� errors). The standard
diagonalization routines introduce additional errors.

We set out to develop a method which (i) applies to orientable surfaces
of arbitrary topology (not necessarily closed); (ii) uses only �rst order linear
di�erential equations; (iii) avoids the use of unstable computations; (iv) provides
tools for �ltering noise from the sampled data.

The principal decision is what should be the data used to derive the surface
invariants and the parameterization. We chose the Gauss map of the surface
as the primary data from which everything else is inferred. The motivation for
this choice stems from geometry, physical intuition, and the current practice in
computer vision. Furthermore, the Gauss map is a �rst order invariant and so
takes an intermediate position between the parameterization and the curvature
invariants of a surface (one derivative in each direction).

The geometric motivation will be explained further in the next section but the
basic idea is that a generic surface is determined up to scaling and translation
by its Gauss map. The physics intuition is based on the realization that one
can obtain the mean curvature function H of a surface by solving a di�erential
equation involving only the Gauss map N. Thus given N we can get the vector
�eld HN. Ever since the times of Laplace and Young it is known that if we think
of the surface as an isotropic membrane with constant surface tension, then up
to multiplication by a constant the vector �eld HN determines completely the
restoring force which shapes the surface [16]. Finally the extraction of the Gauss
map of a surface is a staple of computer vision.

Motivated by these observations we take a new approach to surface and sur-
face shape recovery. First we remove outliers using integrability conditions, then
we compute the mean curvature directly from the Gauss map, and then turn
around and compute as many attributes as possible before we �nally recover
the immersion, instead of following the usual path, recover the immersion and
then compute the rest of the attributes. The point in our approach is to reduce
round o� errors and other numeric noise, and also to exploit other useful ingre-
dients which one can extract directly from the data set. An alternative discrete
procedure which avoids solving di�erential equations is presented in [10].



2 Parameterized Surfaces in R3

Here we outline the necessary background theory and terminology. For a detailed
exposition see [5]. A parameterized surface, S, in space is a vector-valued map,
f , from some two-dimensional domain M into Euclidean three space:

f :M ! R
3; S = f(M):

The domain M is often chosen to be a planar region endowed with some coordi-
nates (u; v) but one can use any smooth 2D manifold. The di�erential, dfp, of f

at a point p 2M is a linear map that maps tangent vectors to tangent vectors,
i.e., if u is the velocity (tangent) vector to a curve in M , dfp(u) is the velocity
(tangent) vector to the image of that curve in S = f (M). Thus

dfp : Tp(M)! Tf(p)(S) � R
3

where Tp(M) denotes the tangent plane to the abstract surface M and Tf(p)(S)
is the range dfp (Tp(M)) of the di�erential dfp, respectively. The tangent plane
Tp(M) to a surface M at a point p is the linear space, that best approximates
the surface at p. It is customary to omit the subscript p when discussing the
di�erential or the tangent plane, and so we do.

The map f is an immersion if its di�erential df is an isomorphism and we
say that S is an immersed parameterized surface.

2.1 Oriented Surfaces

In this paper, we consider only oriented surfaces, that is, there is a consistent
way of identifying positively oriented frames in the tangent plane. (See Chapter
2-6 in [5].) Intuitively, a surface is oriented if one has chosen a counterclockwise
direction of rotation in all tangent planes.

If S is an immersed parameterized surface and the domain M of the param-
eterization f is oriented, then we can de�ne a continuous unit vector �eld

N : M ! R
3

such that N(p) is perpendicular to the plane Tf(p)(S) � R
3 for every point p in

the domain M . The map N is called the Gauss map of the immersion.
The Gauss map N (the surface normal), the Gauss curvature, the mean

curvature, and all other di�erential invariants are expressed in terms of the map
f and its derivatives.

2.2 The Gauss Map

If M is an abstract oriented two dimensional manifold then the value of the
Gauss map at a point p 2M is de�ed by

N =
1

kdf(v1)� df (v2)k
df (v1)� df (v2)



where (v1;v2) is a positively oriented frame of the tangent plane Tp(M). Here
� is the usual cross product in R3. In particular, if M is a planar domain with
a �xed coordinate system (u; v), then

df =
@f

@u
du+

@f

@v
dv;

and the Gauss map is the vector-valued function

N =
1

k @f
@u

� @f
@v
k

@f

@u
�
@f

@v
: (1)

In general, it is convenient to think of the Gauss map as a map from M to the
unit sphere, S3,

N :M ! S3 � R3:

In our examples we use the �sh-scales method designed by �S�ara and Bajcsy in
[14] to extract samples of the Gauss map of surfaces in R3.

2.3 A Conformal Structure and a Complex Structure Induced by a

Parameterization

A conformal structure on a surface is a choice of angles between tangent vectors.
On an oriented surface, a conformal structure is equivalent to de�ning the oper-
ation, J , of rotating tangent vectors by ninety degrees counterclockwise in the
tangent plane. This operation is also called a complex structure. For the general
theory see [11].

A surface parameterization, f : M ! R
3, de�nes a complex structure Jf on

the domain M . Indeed, let v be a vector tangent to M at some point p 2 M ,
then Jf (v) is the unique vector tangent to the domain satisfying

df (Jf (v)) =N� df (v) :

Thus the de�ning relation for the complex structure Jf is

df Æ Jf = N� df : (2)

Suppose thatM is an abstract oriented 2D manifold equipped with a complex
structure J . A surface immersion f : M ! R

3 is called a conformal immersion
if the induced complex structure coincides with the abstract complex structure
J , Jf = J:

2.4 The Di�erential Invariants: Mean Curvature, Gauss Curvature,

Principal Axes and Principal Curvatures

Recall that the second fundamental form of f is a symmetric quadratic form
de�ned by

II(u;v) = � < dN(u)jdf(v) >



where < �j� > is the Euclidean scalar product in R3. At every point p 2M there
exists a positively oriented orthonormal frame fe1; e2 = Jf (e1)g ; kdf(ei)k = 1;
of Tp(M) in which the symmetric quadratic form II(�; �) is represented by a
diagonal matrix �

II(e1; e1) II(e1; e2)
II(e2; e1) II(e2; e2)

�

where

II(e1; e2) = 0

II(e2; e1) = 0 (3)

II(e1; e1) = �1

II(e2; e2) = �2:

The vectors e1 and e2 are called principal curvature vectors, they de�ne the
principal axes, and the numbers �1, �2 are the principal curvatures. The mean
curvature, H is the average of the principal curvature, and the Gauss curvature
is the product of the principal curvatures.

3 Computing the Di�erential Invariants: Theory

We now present the theoretical results for computing from the Gauss map and
the conformal structure, the mean curvature, the di�erential of the immersion,
the Gauss curvature, the principal axes, and �nally the immersion itself. All
proofs are in the Appendix. These results underline our new computational
strategy: clean up outliers in the Gauss map using Theorem 3.3, compute H

directly form N , then proceede to compute the rest. (For motivation see the last
paragraphs of Section 3.2.)

Theorem 3.1. Let N be the Gauss map of a parameterized surface f :M ! R
3

and let Jf be the induced complex structure. If f is twice continuously di�eren-
tiable then the di�erential dN of the Gauss map satis�es

dN = �Hdf + !; (4)

where H is the mean curvature, and ! is a R3-valued one form from the tangent
plane to the Euclidean three space,

! : T (M)! R
3; (5)

such that, for every vector v tangent to the domain M the image !(v) satis�es

!(v) ?N (6)

! (Jf (v)) = �N� !(v): (7)



Therefore we have the following corollaries expressing the di�erential invariants
in terms of the Gauss map and the complex structure.

Corollary 3.1. (Mean curvature) Let N be the Gauss map of a parameterized
surface f : M ! R

3 and let Jf be the induced complex structure. If f is twice
continuously di�erentiable, then

�Hdf =
1

2
(dN�N� dN Æ Jf ) (8)

We now come to the key observation that we can compute the mean curvature
of a conformal immersion directly from the Gauss map.

3.1 Computing the Mean Curvature

Theorem 3.2. LetM be an abstract 2D manifold equipped with a complex struc-
ture J , and N be the Gauss map of a conformal immersion of M in R3. Let �
be a the one-from de�ned by

� :=
1

2
(dN�N� dN Æ J) : (9)

Then

1. The mean curvature vanishes precisely when the form � is trivial, that is,
H(p) = 0 if and only if �p = 0.

2. Away from its zero locus, H is a non-vanishing solution of the linear system
of �rst order di�erential equations

H d� = dH ^ �; (10)

where ^ denotes the wedge product of 1-forms.

In local cooridnates (x; y) we represent the form � as � = �xdx+ �ydy and the
system (10) as

@H

@x
�y �

@H

@y
�x = H

�
@�x

@y
�
@�y

@x

�
:

The system (10) is over-determined and admits non-vanishing solutions only if
its coeÆcients satisfy competability conditions. These conditions amount to a
test whether a vector �eld N is indeed the Gauss map of an immersion. If the
conditions are satis�ed then one can integrate for H starting from the value at
an arbitrary chosen point. Note that the system of equations determines H up
to a constant non-zero multiple, so one needs initial data to nail down an unique
solution. This degree of freedom is a manifestation of the invariance of the Gauss
map under global scaling.

The competability conditions have an important application in computer
vision as a �lter.



3.2 The Gauss Map Filter

Theorem 3.3. Let N be Gauss map of a conformal immersion. Then at every
point p in the domain of the immersion, N must satisfy either the equations

1

2
(dNp �N(p)� (dNp Æ J)) = 0 (11)

or the system of equations

�
@2N

@x2
+
@2N

@y2

����N
�
=

����@N@x
����
2

+

����@N@y
����
2

(12)

�
@2N

@x2
+
@2N

@y2

�
�N =

�
@�x

@y
�
@�y

@x

�
(13)

where (x; y) is an arbitrary coordinate system de�ned in a neighborhood of p and

satisfying
@

@y
= J

�
@

@x

�
, and � is the 1-form de�ned in (9).

The system (12), (13) expresses the competability conditions necessary for
�nding non-vanishing solutions H of (10).

In practice we use the equations in Theorem 3.3 to �lter out noise in the
Gauss map sampled by the sensors and the Gauss map extraction algorithms.
A given sample is declared valid only if it satis�es at least one of the systems
within given a threshold range.

Once the mean curvature is computed we are ready to compute the Gauss
curvature the principal axes, and a parameterization (immersion). The usual
approach is to recover the immersion and then compute the rest using the ex-
pression for the immersion. We adopt a slightly di�erent tack. The motivation
for this twist comes from two directions. First we want to avoid computations
which may introduce round o� errors and other numeric noise { if we stuck with
the classical approach we would have to integrate and then di�erentiate numer-
ically. Second, once we have N and H we can extract other ingredients needed
for the computations directly from the sampled data. To clarify these points let
us look at the theory we propose to use to compute the Gauss curvature and the
principal axes.

3.3 The Gauss Curvature and the Principal Axes

For the rest of the paper let N be Gauss map of a twice di�erentiable conformal
immersion f . The complex structure J on the domain M of f coincides with the
induced structure Jf and so for the rest of the paper we use only the notation J
for the complex structure. Let ! be theR3-valued 1-form introduced in Theorem
3.1. Therefore ! = dN +Hdf . We show how to express ! purely in terms of dN
and the complex structure and relate it to the principal curvature axes and the
Gauss curvature.



Corollary 3.2. (The form ! and principal axes) Let N be the Gauss map of a
parameterized surface f : M ! R

3, and let J be the complex structure. If f is
twice continuously di�erentiable, then

! =
1

2
(dN+N� dN Æ J) : (14)

Furthermore, !(u) is collinear to df(u) if and only if the vector u is collinear to
a principal curvature vector. Thus the quadratic form < !(�)jdf(�) > is sym-
metric and trace-free (i.e., has zero trace), and its eigenvalues are precisely

�
1

2
(�1 � �2), where �1 and �2 are the principal curvatures.

We can estimate the principal curvature vectors by solving

1

2
(dN(u) +N� dN(J(u))) = � df(u) (15)

for the scalar � and the vector u. This amounts to diagonalizing a symmetric
trace free matrix representing the quadratic form < !(�)jdf(�) >. The diago-
nalization of such matrices is more stable than the diagonalization of general
matrices.

Corollary 3.3. (Gauss curvature:) Let N be the Gauss map of a parameterized
surface f : M ! R

3 and let Jf be the induced complex structure. Let H be
the mean curvature. Let f be twice continuously di�erentiable, ! be the one form
de�ned in (5), and �2 be the sum of the squares of the eigenvalues of the quadratic
form, < !(�)jdf(�) >. Then, the Gauss curvature, K, satis�es

K = H2 � �2: (16)

Equation (16) gives a stable method for computing the Gauss curvature K.
We do not need to diagonalize the quadratic form matrix. To compute �2, we
can chose any orthonormal basis of the tangent plane to the surface in R3, then
we represent the quadratic form < !(�)jdf(�) > as matrix A, and set �2 as follows

A =

�
a b

b �a

�
; �2 = a2 + b2: (17)

Remark 3.1. The upshot of all this is that to compute curvatures and principal
axes we need the Gauss map, the complex structure, and estimates for the dif-
ferential df . Furthermore, the computations are more stable then the ones based
on the usual geometric formulae.

Finally, we turn to estimating the di�erential df , and the immersion itself.
The idea is that in practice we can either solve for them or use estimates provided
from the data, or use a combination of both methods.



3.4 Recovering df and the Conformal Immersion

We begin by noticing that it is very easy to obtain df in the closure of the region
M 0 = fp jH(p) 6= 0g where the mean curvature is not zero,H 6= 0, that is, where
the form � de�ned in (9) is nondegenerate. Indeed, from (8) we get

df =
1

H
�; if H 6= 0:

By continuity we get df in the closed domain M 0. This leaves us with the task of
determining the di�erential df on open sets on which the mean curvature van-
ishes identically, if such exist. To do this precisely we solve a Dirichlet problem
for a linear elliptic di�erential equation. The boundary data is provided from
the boundary values of df along the boundary @M 0 and from assumptions about
the surface edge properties if the surface has boundary components where H
vanishes identically, or if the surface has an end within the region where H is
identically zero. The later case can be safely disregarded in computer vision ap-
plications because of the natural clipping that takes place as we sample surfaces
with sensors. The exact mathematical method will be presented in a forthcom-
ing paper. It is based on the classical Weierstrass representation techniques for
minimal surfaces and the new techniques introduced in a recent preprint [9].

In principle once we obtain the di�erential df then a parameterization is
obtained by integrating the di�erential. In practice of course, we have to use
quadratures to evaluate the integrals from the discrete data but that amounts
to using the di�erential itself to determine explicitly the displacements between
the discrete points on the surface recovered via the immersion.

In applications where the initial data set is a cloud of 3D points sampled
from the surface of the object we have been estimating df in the region where �
is degenerate, equivalently, where H � 0, directly from the local displacements
between sample points weighted by local scale units in available neighborhood
directions, [10]. See Fig. 1.

4 Examples and Future Work

The proposed method has been tested on various types of data: from MRI im-
ages, stereo images, range images, and computer generated surfaces. We show
examples of each of these categories here. In all cases, a �sh-scales procedure,
[14], extracts the Gauss map and neighborhood strati�cation from the 3D sam-
pled cloud of surface points.

MRI: The data sets are from the data base of Gill Barequet, Dept of CS,
Tel Aviv University and the surface points are extracted manually by Bernhard
Geiger, INRIA, Sophia Anapolis. The 3D surface points of human hip joint and
cartilage are extracted from MRI images. We show the normals at the sampled
points that are input for out method, and the results that the method has
produced, Fig. 2.

Stereo data: The 3D clouds of points sampled from human faces are ob-
tained using stereo [1, 14]. See Fig. 4 and Fig. 5.
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Fig. 1. Catenoid: (1)Gauss map; (2) and (3) the recovered mean curvature surface,
(x; y;H), and the Gauss curvature surface, (x; y;K); (4) the principal axes superim-
posed on the catenoid surface.

Computer generated: We have tested the approach on various computer
generated surfaces and reported the results elsewhere. Here we just show results
for the catenoid, Fig. 1. See [10] for details.

Range data: The 3D cloud of points is sampled from the surface of the head
of a mannequin. The 3D data are collected by a Cyberware scanner. The range
data set is generated at the GRASP Laboratory, University of Pennsylvania. For
our results see Fig. 3

Thus we demonstrated, that we can handle various types of input data, from
sparse (MRI example) to dense (Range data example), and from clean (Com-
puter generated example) to noisy (Stereo example). Our next goal is to do
rigorous performance evaluation of the method, including propagation of errors,
empirical evaluation based on ground truth, and empirical comparisons with
other existing methods.

Appendix: Proofs

Recall the de�nitions of the di�erential invariants from Section 2. Note that the
equations (3) are equivalent to

df (e1) ? df (e2) (18)
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Fig. 2. MRI data, human hip joint: (1) the 3D cloud of points extracted from the
MRI data; (2) the Gauss map; (3) the restored surface shaded by the recovered mean
curvature values; (4) the restored surface shaded by the recovered Gauss curvature;
(5) the principal directions at at the 3D surface points. The mean curvature values
range from �3:6622 to �0:0441 with a mean value of �1:4332. The Gauss curvature
values range from �6:4579 to 10:8133 with a mean value of 0:4488. Lighter shades in
(4) represent higher, positive Gauss curvatures.

dN (e1) = ��1 df (e1) (19)

dN (e2) = ��2 df (e2) (20)

Proof of Theorem 3.1 The form of equations (19) and (20) suggests that the
one form dN can be represented as

dN = Adf + ! (21)

for some coeÆcient A and some R3-valued one-from !. We decide to look for a
form ! satisfying the condition

!(Jf (u)) = �N� !(u): (22)

This choice for ! can be motivated by the decomposition of symmetric tensors
into diagonal and trace-free components. A direct way to motivate our choice is
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Fig. 3. Range data, mannequin head: (1) the 3D cloud of points extracted by Cy-
berware; (2) the Gauss map; (3) the restored surface shaded by the recovered mean
curvature values; (4) the restored surface shaded by the recovered Gauss curvature;
(5) the principal directions at at the 3D surface points. Lighter shades in (4) represent
higher, positive Gauss curvatures. One can clearly identify the curvature lines, despite
the bad Postscript conversion: in the electronic version of this image there were no
holes in the curvature lines.

to notice that the form df satis�es

df (Jf (u)) = N� df (u): (23)

That is, df relates a counter-clockwise rotation by ninety degrees in Tp(M) to
a counterclockwise rotation by ninety degrees around the axes N in R3. On the
other hand, the condition (22) guarantees that the form ! relates a counter-
clockwise rotation by ninety degrees in Tp(M) to a clockwise rotation by ninety
degrees around the axes N in R3. The representation (21) accounts for the
possibility that the one-form dN may be a combination of forms which rotate in
di�erent directions around the N axes. From (21) and (19) and (20) we obtain

! (ei) = (�i +A) df (ei) ; i = 1; 2:
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Fig. 4. Stereo data, "face". (1) The reconstructed 3D points, from stereo. (2) The
surface graph (x; y;H) of recovered mean curvature. (3) The recovered mean curvature
surface (x; y;H) frontal view. Note that we use as height the curvature values. (4)
and (5) The principal axes attached at the 3D points. We can identify well-formed
curvature lines in nonplanar regions (on the chin, the eyebrow areas, the cheeks).

These identities show that (6) holds. Furthermore combining the identities with
(22) and e2 = Jf (e1) we obtain

! (e2) = (�2 +A) df (e2)

�N� ! (e1) = N� (�2 +A) df (e1)

�N� (�1 +A) df (e1) = N� (�2 +A) df (e1)

The last identity implies that the tangential vector (�1 + �2 + 2A) df (e1) is
colinear to the normal N. This can only happen if it is the zero vector in R3,

that is, A = �
1

2
(�1 + �2) = �H.

Proof of Corollaries 3.1,3.2,3.3.
From (4), (2), and (22) we get

N� dN Æ Jf = �HN� (N� df)�N� (N� !)

= H df + !:

The identities (8) and (14) follow directly from (4) and the identityN� dNÆJf =
H df + !. Rewriting (4) in the form ! = dN +H df we conclude that !(u) is
colinear to df(u) if and only if the later is colinear to dN(u), that is, if and only
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Fig. 5. Stereo data, "face 2". (1) The reconstructed 3D points, from stereo. (2) The
surface graph (x; y;H). (3) The recovered surface shaded by mean curvature. (We used
a simple polygonization to render the surface.) (4) and (5) The principal axes attached
at the 3D points. We can identify well-formed curvature lines in non-planar regions
(on the chin, the eyebrow areas, the cheeks). In (4) we show the principle frames at
all sample points. In (5) we show only half the points. Note that the conversion to
Postscript lead to image quality loss.

if u is parallel to a principal curvature vector. Furthermore, from equations (19)
and (20) we obtain

! (e1) =
k2 � k1

2
df (e1) ; ! (e2) =

k1 � k2

2
df (e2) :

Proof of Theorem 3.2 Conclusion 1 follows directly from (8), that is, from

�Hdf = �: (24)

To obtain Conclusion 2 di�erentiate (24) and multiply both sides by H .

Proof of Theorem 3.3 In the regions where H = 0, that is, � is degenerate we
must have � � 0 which is the same as (11). The rest of the proof follows from
splitting the system Hd� = dH ^ � into pieces tangential and perpendicular to
N and restating them them in terms of the derivatives of the Gauss map.
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