
1

Math 1 Hofstra University – CSC171A 1

Modeling Objects by Polygonal
Approximations

n Define volumetric objects in terms of surfaces
patches that surround the volume

n Each surface patch is approximated set of polygons
n Each polygon is specified by a set of vertices
n To pass the object through the graphics pipeline,

pass the vertices of all polygons through a number
of transformations using homogeneous coordinates

n All transformation are linear in homogeneous
coordinates, thus a implemented as matrix
multiplications

Math 1 Hofstra University – CSC171A 2

Linear and Affine Transformations (Maps)

n A map f () is linear if it preserves linear combinations, I.e.
the image of a linear combination is a linear combination
of the images with the same coefficients, that is , for any
scalars α and β, and any vectors p and q,

f(αp+ βq) = αf(p)+ β f(p)

n Affine maps preserve affine combinations of points, I.e.
the image of an affine combination is an affine
combination of the images with the same coefficients, that
is, for any scalars α and β, where α+β =1, and any points P
and Q,

f(αP+ βQ) = α f(P)+ β f(Q).

2

Math 1 Hofstra University – CSC171A 3

Linear and Affine Maps

§ Recall that a line is an affine combination of two pints
(thus an image of a line is a line under affine map).

§ A polygon is a convex combination of its vertices, thus
under an affine map, the image of the polygon is a
convex combination of the transformed vertices.

n The vertices (in homogeneous coordinates) go through
the graphics pipeline

n At the rasterization stage, the interior points are
generated when needed and their color is obtained by
bilinear interpolation

n Affine transformations compositions of some rotations,
translations & scalings in some order

n Graphics API provide functions for translation, rotation,
scale, anything else you get from these by composition

Math 1 Hofstra University – CSC171A 4

Bilinear Interpolation

n Given the color at polygon vertices, assign
color to the polygon points via bilinear
interpolation:
n An edge QR is convex combination of the two

vertices Q and R, 0 ≤ α ≤ 1,

n The color at an edge point is a linear
interpolation of the color at the vertices

RQP ααα +−=)1()(

RQP CCC ααα +−=)1()(

)(αPC)(αP

RQ CC ,

3

Math 1 Hofstra University – CSC171A 5

Bilinear Interpolation (cont)

n The color at an interior point is bilinear interpolation of
the color at two edge points.

The polygon color is filled only when
the polygon is displayed, during the
the rasterization stage. The projection
of the polygon is filled scan line by scan

line. Each scan line intersects exactly 2 edges,
thus color of an interior point is well-defined as bilinear
interpolation of scan line intersections with the edges.

Math 1 Hofstra University – CSC171A 6

Modeling

4

Math 1 Hofstra University – CSC171A 7

Affine Transformations
n Every affine transformation can be represented as a

composition of translations, rotation, and scalings (in
some order)

Math 1 Hofstra University – CSC171A 8

Translation

n Translation displaces points by a fixed distance
in a given direction

n Only need to specify a displacement vector d
n Transformed points are given by

P′ = P + d

5

Math 1 Hofstra University – CSC171A 9

2D Rotations

Every 2D rotation has a fixed point

Math 1 Hofstra University – CSC171A 10

First: Matrix representation of 2D rotation
around the origin

We want to find the representation of the transformation
that rotates at angle about the origin.

Since we talk about origin, we have fixed a frame.

Given a point with coordinates (x,y), what are
Coordinates (x’,y’) of the transformed point?

θ

6

Math 1 Hofstra University – CSC171A 11

2D Rotation on angle around the origin























 −
=













′
′

y

x

y

x

θθ
θθ

cossin

sincos

),(yx

),(yx ′′

θ)sin(

)cos(

sin

cos

ϕθ
ϕθ

ϕ
ϕ

+=′
+=′

=
=

ry

rx

ry

rx

θ

r
ϕ

matrix representing the rotation

Rotations are represented by
orthogonal matrices:

The rows (columns) are
orthonormal.

Math 1 Hofstra University – CSC171A 12

3D Rotation around the z axis

n The origin is unchanged, called the fixed point of the
transformation

n 2D rotation in the plane is equivalent to 3D rotation
about the z axis: each point rotates in a plane
perpendicular to z axis (I.e. z stays the same)

n Extend 2D rotation around the origin to 3D rotation
around the z axis. Use the right-handed system.
Positive rotation is counter clockwise when looking
down the axis of rotation toward the origin

n Every rotation in 3D fixes and axis (I.e. is a rotation
around a line)

7

Math 1 Hofstra University – CSC171A 13

3D rotation on angle around the z axis
n The z axis is fixed by the rotation, the matrix

representing the rotation is















 −
=

100

0cossin

0sincos

θθ
θθ

R

PP

z

y

x

z

y

x

R=′






























 −
=

















′
′
′

100

0cossin

0sincos

θθ
θθ

θ

OpenGL: glRotatef(theta, 0.0, 0.0, 1.0);

Math 1 Hofstra University – CSC171A 14

Rotation in 3D around arbitrary axis

Must specify:
- rotation angle θ
- rotation axis, specified by
a point Pf,, and a vector v

Note: openGL rotation is
always around an axis
through the origin

OpenGL: rotation around an axis u through the origin
glRotatef(theta, u_x, u_y, u_z);

8

Math 1 Hofstra University – CSC171A 15

Rigid Body Transformation
•Rotation and translation are rigid-body transformations
•No combination of these transformations can alter the
shape of an object

Non-rigid-body transformations

Math 1 Hofstra University – CSC171A 16

Scaling

non-uniform

uniform

9

Math 1 Hofstra University – CSC171A 17

Scaling

n Must specify:
- fixed point Pf

- direction to scale
- scale factor α

n α > 1 larger
0 ≤ α < 1 smaller
- α reflection

n Note: openGL scale more
limited, allows simultaneous
independent scale in each of the
coordinate directions only.
The fixed point is the origin.

Math 1 Hofstra University – CSC171A 18

Scaling with fixed point the origin

n Scaling has a fixed point
n Let the fixed point be the origin
n Independent scaling along the coordinate axes

x′ = βx x
y′ = βy y
z′ = βz z

n OpenGL:
glScalef(beta_x, beta_y, beta_z);

10

Math 1 Hofstra University – CSC171A 19

Reflections

Math 1 Hofstra University – CSC171A 20

Transformations in Homogeneous
Coordinates

n Graphics systems work with the homogeneous-
coordinate representation of points and vectors

n This is what OpenGL does too
n In homogeneous coordinates, an affine

transformation becomes a linear transformations and
as such is represented by 4x4 matrix, M .

n In homogeneous coordinates, the image of a point P,
is the point MP, the image of a vector u , is the
vector Mu .

11

Math 1 Hofstra University – CSC171A 21

Transformations in Homogeneous
Coordinates

n In homogeneous coordinates, each affine
transformation is represented by a 4 x 4 matrix
(of a special form) and acts as matrix
multiplication

n In affine coordinates, not every affine
transformation can be represented by a matrix,
but it could be expressed in the form





















=

1000
34333231

24232221

14131211

αααα
αααα
αααα

M

ions translat,

scalings and rotations ,

,,,,
1 311333

d

A

0dA
0

dA
M ×××








=

,Muv =

dAuv +=

Math 1 Hofstra University – CSC171A 22

Translation

n Translation is an operation that displaces
points by a fixed distance and direction given
by a vector d

n Transformed points are given by
P′ = P + d,

n In homogeneous coordinates, this is
p′′ = p + d

which can be represented as…

12

Math 1 Hofstra University – CSC171A 23

Translation by displacement d

,Tpp =′ where

Matrix form of the homogeneous coordinate equations:

T is called the translation matrix, the transformation is
usually written as T(d) or





















=

1000

100

010

001

z

y

x

α
α
α

T

),,(zyx αααT

,

0

,

1

,

1


















=



















′
′
′

=′



















=
z

y

x

z

y

x

z

y

x

α
α
α

dpp

OpenGL: glTranslatef(alpha_x, alpha_y, alpha_z);

Math 1 Hofstra University – CSC171A 24

Translation

We can return to the original position by a
displacement of –d, giving us the inverse:



















−
−
−

=−−=

1000

100

010

001

),,),,
z

y

x

zyxzyx α
α
α

αααααα T(-(T 1-

Translations commute, I.e. order does not matter

glTranslatef(dx,dy,dz);

If d1 and d2 are vectors, T(d1+d2)=T(d1)T(d2)

13

Math 1 Hofstra University – CSC171A 25

Scaling with fixed point the origin

n Scaling has a fixed point
n Let the fixed point be the origin
n Independent scaling along the coordinate axes

x′ = βx x
y′ = βy y
z′ = βz z

Math 1 Hofstra University – CSC171A 26

Scaling with fixed point the origin

,Spp =′
where

The homogeneous-coordinate equations in matrix form





















==

1000

000

000

000

),,
z

y

x

zyx β
β

β

βββS(S

)
1

,
1

,
1

),,
zyx

zyx βββ
βββ S((S =1-

Two scale transformations with the same fixed point
commute.
OpenGL: glScalef(beta_x, beta_y, beta_z);

14

Math 1 Hofstra University – CSC171A 27

Rotation About an Arbitrary Axis f = (p_f,u)

Move the axis f so it goes
through the origin, do this by
moving the point, p_f, on the
axis to the origin. Next apply a
rotation around the new axis,
u, at the origin. Finally move
back the axis from origin to
the original position, p_f.

)()()(fuf pTRpT −θ

Math 1 Hofstra University – CSC171A 28

Rotation About an Arbitrary Axis f = (p_f,u)

)()()(fuf pTRpT −θ
OpenGL:

glTranslatef(pf_x, pf_y, pf_z);
glRotatef(theta, u_x, u_y, u_z);
glTranslatef(-pf_x, -pf_y, -pf_z);

15

Math 1 Hofstra University – CSC171A 29

Example: Rotation around an axis f parallel to z axis

Move the axis f so it goes
through the origin, achieve
this by moving a point, p_f, on
the axis to the origin. Next
apply a rotation around the z
axis. Finally move back the
axis to the original position.

)()()(fzf pTRpT −θ

Math 1 Hofstra University – CSC171A 30

Rotation around an axis parallel to z axis

)()()(fzf pTRpT −θ

OpenGL:
glTranslatef(p_x,p_y,p_x);
glRotatef(theta,0,0,1);
glTranslatef(-p_x,-p_y,-p_z);

16

Math 1 Hofstra University – CSC171A 31

Scaling with an arbitrary fixed point
n We know how to scale with a fixed point origin. How do we scale

fixing an arbitrary point P?
beta = [beta_x beta_y beta_z]’ gives the scale factors in each

of the coordiante directions.

n Translate so that P goes to the origin, T(-P)
n Scale now with respect the origin
n Translate back to P, T(P)
n The composition represented by the matrix product

T(P)S(beta)T(-P)

n OpenGL

glTranslatef(p_x, p_y, p_z);

glScalef(beta_x, beta_y, beta_z);

glTranslatef(-p_x, -p_y, -p_z);

Math 1 Hofstra University – CSC171A 32

Composing Transformations
n Be careful when composing (concatenating)

transformations: matrix multiplication is not
commutative, and transformations composition is not
commutative

First rotate, then
translate

First translate, then rotate

17

Math 1 Hofstra University – CSC171A 33

Concatenation of Transformations
n We can multiply together sequences of

transformations – concatenating
n Works well with pipeline architecture
n e.g., three successive transformations on a

point p creates a new point q
q = CBAp

n In code:
C
B
A
Draw p

Math 1 Hofstra University – CSC171A 34

Concatenation of Transformations.

n If we have a lot of points to transform, then
we can calculate

M = CBA
and then we use this matrix on each point

q = Mp

18

Math 1 Hofstra University – CSC171A 35

Instance Transformation

object
prototype

instance

Math 1 Hofstra University – CSC171A 36

Instance Transformation

//generate new apple
glTranslatef(…);
glRotatef(…);
glScalef(…);
DrawSampleApple();

New apple

MODEL apple

19

Math 1 Hofstra University – CSC171A 37

Instance Transformations

n Specify the affine transformation that will move the square so
that its lower left corner will be at P, the vertical side will be
parallel to u, and the size will be half the original size

u

P
.

Math 1 Hofstra University – CSC171A 38

Current Transformation Matrix

n Current Transformation Matrix (CTM) – defines the
state of the graphics system. All drawings,
(vertices) defined subsequently undergo that
transformation.

n Changing the CTM, alters the state of the system.
n 4x4 matrix that can be altered by a set of functions

provided by the graphics package
n Common to most systems. Part of the pipeline
n If p is a vertex, the pipeline produces Cp

20

Math 1 Hofstra University – CSC171A 39

Current Transformation Matrix
Let C denote the CTM. It is set to the 4x4 identity matrix,
initialliy
CTM=I, glLoadIdentity()
CTM=M (resets it), glLoadMatrixf(pM)
CTM=CTM*M (post multiplies CTM by M), glMultMatrixf(pM)

Application of the gl functions, post-multiplies CTM
glLoadIdentity(); //1. CTM=I
glMultMatrixf(pL); //2. CTM=I*L
glMultMatrixf(pM); //3. CTM=I*L*M
glBegin(GL_POINTS);

glVertex3fv(v);
glEnd();

The point will be transformed according to CTM at 3.

Math 1 Hofstra University – CSC171A 40

Current Transformation Matrix
In OpenGL the CTM is the product of model-view
matrix (GL_MODELVIEW) and projection matrix
(GL_PROJECTION).
The model-view matrix is product of modeling
transformations (affine transformations on the objects
) and viewing transformations (positioning and
orienting camera).
The projection matrix is responsible for 3D to 2D.

The CTM is the product of these matrices!

21

Math 1 Hofstra University – CSC171A 41

Order of Transformations
n Transformation specified most recently is the one

applied first to the primitive

// the transformed polygon
glMatrixModel(GL_MODELVIEW)
glLoadIdentity();
glTranslatef(4.0, 5.0, 6.0);
glRotatef(45.0, 1.0, 2.0, 3.0);
glTranslatef(-4.0, -5.0, -6.0);

glBegin(GL_POLYGON); // sample polygon

…

glEnd();

Math 1 Hofstra University – CSC171A 42

World and Local Coordinate Systems

n An object moving relative to another moving
object has a complicated motion:
n A waving hand on a moving arm on a moving body
n A rotating moon orbiting a planet orbiting a star

n Directly expressing such motions with
transformations is difficult

n More indirect approach works better

22

Math 1 Hofstra University – CSC171A 43

Example: planetary system

Math 1 Hofstra University – CSC171A 44

Example: solar system
#define RADMOON 0.3#define RADMOON 0.3

#define RADSUN 1.0#define RADSUN 1.0

#define RADORBIT 3.0#define RADORBIT 3.0

static static intint day, year;day, year;

voidvoid myinitmyinit();();

void display();void display();

void idle();void idle();

void idle()void idle()

{{

day = (day+5)%360;day = (day+5)%360;

year=(year+1)%360;year=(year+1)%360;

glutPostRedisplayglutPostRedisplay();();

} }

void init()void init()

{ {

glClearColorglClearColor(0,0,0,0);(0,0,0,0);

glMatrixModeglMatrixMode(GL_PROJECTION);(GL_PROJECTION);

glLoadIdentityglLoadIdentity();();

glOrthoglOrtho((--2.25*RADORBIT,2.25*RADORBIT,

2.25*RADORBIT, …);2.25*RADORBIT, …);

glMatrixModeglMatrixMode(GL_MODELVIEW);(GL_MODELVIEW);

glEnableglEnable(GL_DEPTH_TEST); (GL_DEPTH_TEST);

}}

23

Math 1 Hofstra University – CSC171A 45

Example: solar system

intint main(main(int argcint argc, char **, char **argvargv))

{{

glutInitglutInit(&(&argcargc,,argvargv););

glutInitDisplayModeglutInitDisplayMode((GLUT_DOUBLEGLUT_DOUBLE|GLUT_RGB||GLUT_RGB|GLUT_DEPTHGLUT_DEPTH););

glutInitWindowSizeglutInitWindowSize(500,500);(500,500);

glutInitWindowPositionglutInitWindowPosition(0,0);(0,0);

glutCreateWindowglutCreateWindow("Solar System");("Solar System");

glutDisplayFuncglutDisplayFunc(display);(display);

glutIdleFuncglutIdleFunc(idle);(idle);

myinitmyinit();();

glutMainLoopglutMainLoop();();

return 0;return 0;

}}

Math 1 Hofstra University – CSC171A 46

void display()
{

glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);
glPushMatrix();

glRotatef(75, 1, 0, 0); // change view

glColor3f(1.0, 0.0, 0.0); // red sun
glutWireSphere(RADSUN, 20, 16); // draw sun
glRotatef(year, 0, 0, 1); // moon orbits
glTranslatef(RADORBIT, 0, 0); // put moon in orbit
glRotatef(day, 0,0,1); // spin moon
glColor3f(1.0, 1.0, 0.0); // yellow moon
glutWireSphere(RADMOON, 10, 8); // draw moon

glPopMatrix();
glutSwapBuffers();

}

