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Modeling Objects by Polygonal 
Approximations

n Define volumetric objects in terms of surfaces 
patches that surround the volume

n Each surface patch is approximated set of polygons
n Each polygon is specified by a set of vertices
n To pass the object through the graphics pipeline, 

pass the vertices of all polygons through a number 
of transformations using homogeneous coordinates

n All transformation are linear in homogeneous 
coordinates, thus a implemented as matrix 
multiplications
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Linear and Affine Transformations (Maps)

n A map f () is linear if it preserves linear combinations, I.e. 
the image of a linear combination is a linear combination 
of the images with the same coefficients, that is , for any 
scalars α and β, and any vectors p and q,

f(αp+ βq) = αf(p)+ β f(p)

n Affine maps preserve affine combinations of points,  I.e. 
the image of an affine combination is an affine 
combination of the images with the same coefficients, that 
is, for any scalars α and β, where α+β =1, and any points P 
and Q,

f(αP+ βQ) = α f(P)+ β f(Q).
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Linear and Affine Maps

§ Recall that a line is an affine combination of two pints 
(thus an image of a line is a line under affine map).

§ A polygon is a convex combination of its vertices, thus 
under an affine map, the image of the polygon is a 
convex combination of the transformed vertices.

n The vertices (in homogeneous coordinates) go through 
the graphics pipeline

n At the rasterization stage, the interior points are 
generated when needed and their color is obtained by 
bilinear interpolation

n Affine transformations compositions of some rotations, 
translations & scalings in some order

n Graphics API provide functions for translation, rotation, 
scale, anything else you get from these by composition
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Bilinear Interpolation

n Given the color at polygon vertices, assign 
color to the polygon points via bilinear 
interpolation:
n An edge QR  is convex combination of the two 

vertices Q and R, 0 ≤ α ≤ 1,

n The color            at an edge point          is a linear 
interpolation of the color at the vertices 
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Bilinear Interpolation (cont)

n The color at an interior point is bilinear interpolation of 
the color at two edge points. 

The polygon color is filled only when    
the polygon is displayed, during the      
the rasterization stage. The projection
of the polygon is filled scan line by scan

line. Each scan line intersects exactly 2 edges,
thus color of an interior point is well-defined as bilinear 
interpolation of scan line intersections with the edges.        
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Modeling 
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Affine Transformations
n Every affine transformation can be represented as a 

composition of translations, rotation, and scalings (in 
some order)
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Translation

n Translation displaces points by a fixed distance 
in a given direction

n Only need to specify a displacement vector d
n Transformed points are given by

P′ = P + d
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2D Rotations

Every 2D rotation has a fixed point
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First: Matrix representation of 2D rotation 
around the origin

We want to find the representation of the transformation
that rotates at angle     about  the origin.

Since we talk about origin, we have fixed a frame.  

Given a point with coordinates (x,y), what are 
Coordinates (x’,y’) of the transformed point?     

θ
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2D Rotation  on angle      around the origin
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matrix representing the rotation

Rotations are represented by 
orthogonal matrices:

The rows (columns) are 
orthonormal.
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3D Rotation around the z axis

n The origin is unchanged, called the fixed point of the 
transformation

n 2D rotation in the plane is equivalent to 3D rotation 
about the z axis: each point rotates in a plane 
perpendicular to z axis (I.e. z stays the same)

n Extend 2D rotation around the origin to 3D rotation 
around the z axis. Use the right-handed system. 
Positive rotation is counter clockwise when looking 
down the axis of rotation toward the origin

n Every rotation in 3D fixes and axis (I.e. is a rotation 
around a line)
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3D rotation on angle      around the z axis
n The z axis is fixed by the rotation, the matrix

representing the rotation is
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OpenGL: glRotatef(theta, 0.0, 0.0, 1.0);
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Rotation in 3D around arbitrary axis

Must specify: 
- rotation angle θ
- rotation axis, specified by    
a point Pf,, and a vector v

Note: openGL rotation is 
always around an axis 
through the origin

OpenGL: rotation around an axis u through the origin 
glRotatef(theta, u_x, u_y, u_z);
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Rigid Body Transformation
•Rotation and translation are  rigid-body transformations
•No combination of these transformations can alter the 
shape of an object

Non-rigid-body transformations
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Scaling

non-uniform

uniform
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Scaling

n Must specify: 
- fixed point Pf

- direction to scale
- scale factor α

n α > 1 larger
0 ≤ α < 1  smaller
- α reflection

n Note: openGL scale more 
limited, allows simultaneous 
independent scale in each of the 
coordinate directions only.
The fixed point is the origin.
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Scaling with fixed point the origin

n Scaling has a  fixed point
n Let the fixed point be the origin
n Independent scaling along the coordinate axes

x′ = βx x
y′ = βy y
z′ = βz z

n OpenGL:
glScalef(beta_x, beta_y, beta_z);
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Reflections
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Transformations in Homogeneous 
Coordinates

n Graphics systems work with the homogeneous-
coordinate representation of points and vectors

n This is what OpenGL does too
n In homogeneous coordinates, an affine 

transformation becomes a linear transformations and 
as such is represented by 4x4 matrix, M .

n In homogeneous coordinates, the image of a point P, 
is the point MP,  the image of a vector u , is the 
vector Mu . 
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Transformations in Homogeneous 
Coordinates

n In homogeneous coordinates, each affine 
transformation is represented by a 4 x 4 matrix 
(of a special form)  and acts as matrix 
multiplication

n In affine coordinates, not every affine 
transformation can be represented by a matrix, 
but it could be expressed in the form
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Translation

n Translation is an operation that displaces 
points by a fixed distance and direction given 
by a vector d

n Transformed points are given by
P′ = P + d, 

n In homogeneous coordinates, this is
p′′ = p + d

which can be represented as…
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Translation by displacement d

,Tpp =′ where

Matrix form of the homogeneous coordinate equations:

T is called the translation matrix,  the transformation is 
usually written as  T(d) or
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OpenGL:   glTranslatef(alpha_x, alpha_y, alpha_z);
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Translation

We can return to the original position by a
displacement of –d, giving us the inverse:
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Translations commute, I.e. order does not matter

glTranslatef(dx,dy,dz);

If d1 and d2 are vectors, T(d1+d2)=T(d1)T(d2)
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Scaling with fixed point the origin

n Scaling has a  fixed point
n Let the fixed point be the origin
n Independent scaling along the coordinate axes

x′ = βx x
y′ = βy y
z′ = βz z
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Scaling with fixed point the origin

,Spp =′
where

The homogeneous-coordinate equations in matrix form
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Two scale transformations with the same fixed point 
commute.
OpenGL: glScalef(beta_x, beta_y, beta_z);
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Rotation About an Arbitrary Axis  f = (p_f,u)

Move the axis f so it goes 
through the origin, do this by 
moving the point, p_f, on the 
axis to the origin. Next apply a 
rotation around the new axis, 
u,  at the origin. Finally move 
back the axis from origin to 
the original position, p_f.

)()()( fuf pTRpT −θ
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Rotation About an Arbitrary Axis  f = (p_f,u)

)()()( fuf pTRpT −θ
OpenGL:

glTranslatef(pf_x, pf_y, pf_z);
glRotatef(theta, u_x, u_y, u_z);
glTranslatef(-pf_x, -pf_y, -pf_z);
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Example: Rotation around an axis f parallel to z axis

Move the axis f so it goes 
through the origin, achieve 
this by moving a point, p_f, on 
the axis to the origin. Next 
apply a rotation around the z 
axis. Finally move back the 
axis to the original position.

)()()( fzf pTRpT −θ
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Rotation around an axis parallel to z axis

)()()( fzf pTRpT −θ

OpenGL:
glTranslatef(p_x,p_y,p_x);
glRotatef(theta,0,0,1);
glTranslatef(-p_x,-p_y,-p_z);
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Scaling with an arbitrary fixed point
n We know how to scale with a fixed point origin. How do we scale 

fixing an arbitrary point P? 
beta = [beta_x beta_y beta_z]’  gives the scale factors in each 

of the coordiante directions.

n Translate so that P goes to the origin, T(-P)
n Scale now with respect the origin
n Translate back to P, T(P)
n The composition represented by the matrix product

T(P)S(beta)T(-P)

n OpenGL

glTranslatef(p_x, p_y, p_z);

glScalef(beta_x, beta_y, beta_z);

glTranslatef(-p_x, -p_y, -p_z);
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Composing Transformations
n Be careful when composing (concatenating) 

transformations: matrix multiplication is not 
commutative, and transformations composition is not 
commutative

First rotate, then 
translate

First translate, then rotate
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Concatenation of Transformations
n We can multiply together sequences of 

transformations – concatenating
n Works well with pipeline architecture
n e.g., three successive transformations on a 

point p creates a new point q
q = CBAp

n In code: 
C
B
A
Draw p
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Concatenation of Transformations.

n If we have a lot of points to transform, then 
we can calculate

M = CBA
and then we use this matrix on each point

q = Mp
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Instance Transformation

object
prototype

instance
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Instance Transformation

//generate new apple
glTranslatef(…);
glRotatef(…);
glScalef(…);
DrawSampleApple();

New apple

MODEL apple
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Instance Transformations

n Specify the affine transformation that will move the square so 
that its lower left corner will be at P,  the vertical side will be 
parallel to u, and the size will be half the original size

u

P
.
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Current Transformation Matrix

n Current Transformation Matrix (CTM) – defines the 
state of the graphics system. All drawings, 
(vertices) defined subsequently undergo that 
transformation.

n Changing the CTM, alters the state of the system.
n 4x4 matrix that can be altered by a set of functions 

provided by the graphics package
n Common to most systems. Part of the pipeline
n If p is a vertex, the pipeline produces Cp



20

Math 1 Hofstra University – CSC171A 39

Current Transformation Matrix
Let C denote the CTM. It is set to the 4x4 identity matrix, 
initialliy
CTM=I,                glLoadIdentity()
CTM=M (resets it), glLoadMatrixf(pM)
CTM=CTM*M (post multiplies CTM by M), glMultMatrixf(pM)

Application of the gl functions, post-multiplies CTM
glLoadIdentity();   //1. CTM=I
glMultMatrixf(pL);  //2. CTM=I*L
glMultMatrixf(pM);  //3. CTM=I*L*M
glBegin(GL_POINTS);

glVertex3fv(v);
glEnd(); 

The point will be transformed according to CTM  at 3.
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Current Transformation Matrix
In OpenGL the CTM is the product of model-view 
matrix (GL_MODELVIEW) and projection matrix
(GL_PROJECTION).
The model-view matrix is product of modeling 
transformations (affine transformations on the objects 
)  and viewing transformations (positioning and 
orienting camera).
The projection matrix is responsible for 3D to 2D. 

The CTM is the product of these matrices!
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Order of Transformations
n Transformation specified most recently is the one 

applied first to the primitive

// the transformed polygon
glMatrixModel(GL_MODELVIEW)
glLoadIdentity( );
glTranslatef(4.0, 5.0, 6.0);
glRotatef(45.0, 1.0, 2.0, 3.0);
glTranslatef(-4.0, -5.0, -6.0);

glBegin(GL_POLYGON);  // sample polygon

…

glEnd();
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World and Local Coordinate Systems

n An object moving relative to another moving 
object has a complicated motion:
n A waving hand on a moving arm on a moving body
n A rotating moon orbiting a planet orbiting a star

n Directly expressing such motions with 
transformations is difficult

n More indirect approach works better
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Example: planetary system
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Example: solar system
#define RADMOON 0.3#define RADMOON 0.3

#define RADSUN  1.0#define RADSUN  1.0

#define RADORBIT 3.0#define RADORBIT 3.0

static static intint day, year;day, year;

voidvoid myinitmyinit();();

void  display();void  display();

void  idle();void  idle();

void idle()void idle()

{{

day = (day+5)%360;day = (day+5)%360;

year=(year+1)%360;year=(year+1)%360;

glutPostRedisplayglutPostRedisplay();();

} } 

void init()void init()

{ { 

glClearColorglClearColor(0,0,0,0);(0,0,0,0);

glMatrixModeglMatrixMode(GL_PROJECTION);(GL_PROJECTION);

glLoadIdentityglLoadIdentity();();

glOrthoglOrtho((--2.25*RADORBIT,2.25*RADORBIT,

2.25*RADORBIT, …);2.25*RADORBIT, …);

glMatrixModeglMatrixMode(GL_MODELVIEW);(GL_MODELVIEW);

glEnableglEnable(GL_DEPTH_TEST); (GL_DEPTH_TEST); 

}}
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Example: solar system

intint main(main(int argcint argc, char **, char **argvargv))

{{

glutInitglutInit(&(&argcargc,,argvargv););

glutInitDisplayModeglutInitDisplayMode((GLUT_DOUBLEGLUT_DOUBLE|GLUT_RGB||GLUT_RGB|GLUT_DEPTHGLUT_DEPTH););

glutInitWindowSizeglutInitWindowSize(500,500);(500,500);

glutInitWindowPositionglutInitWindowPosition(0,0);(0,0);

glutCreateWindowglutCreateWindow("Solar System");("Solar System");

glutDisplayFuncglutDisplayFunc(display);(display);

glutIdleFuncglutIdleFunc(idle);(idle);

myinitmyinit();();

glutMainLoopglutMainLoop();();

return 0;return 0;

}}
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void display()
{

glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);
glPushMatrix();

glRotatef(75, 1, 0, 0);         // change view

glColor3f(1.0, 0.0, 0.0);        // red sun
glutWireSphere(RADSUN, 20, 16); // draw sun
glRotatef( year,  0, 0, 1);      // moon orbits
glTranslatef(RADORBIT, 0, 0);    // put moon in orbit
glRotatef(day, 0,0,1);           // spin moon
glColor3f(1.0, 1.0, 0.0);        // yellow moon
glutWireSphere(RADMOON, 10, 8); // draw moon

glPopMatrix();
glutSwapBuffers();

}


