
CSC 120 Algorithms and Data Structures Spring Semester, 2002

Review Solutions Final

1. True or False

20n3 + 10n log n + 5 is O(n log n) FALSE
2100 is Θ(1) TRUE
log (nx) is O(log n) where x > 0 is const TRUE
500 log5 n + n + 10 is O(n) TRUE
0.5 log n is Θ(n) FALSE

2. The functions are in increasing complexity order (i.e., lowest to highest):

log log n, 6 log n, n
√

n, n2, 2log n.

3. Express as a function of the input size n the worst-case running time T (n) of the
following algorithm

int Me(int n, int A[], int k)
{

int tot = 0; // 1
for (int i=n; i>=0; i--) { //3*(n+1)

if (i==k) { // 3 , counting the test condition
cout << i << endl; // 1
tot++; // 1

}
}
return tot; // 1

}

The worst case run time and complexity are:

T (n) = 3 ∗ (n + 1) + 2 = Θ(n)

4. Give the worst-case and the best-case recurrences expressing the running time of the
following algorithm manipulating a BST rooted at p.

int You(int *p, int a, int b)
{

int tot = 0; // 1
if (p==0) return 0; // base case T(0)=2

1

if (*p > a && *p < b) { // 3 , counting the test condition
cout << *p << endl; // 1
tot++; // 1

}
tot += You(Left(p), a, b); // T(left subtree)
tot += You(Right(p), a, b); // T(right subtree)
return tot; // 1

}

What are the best- and the worst-case time complexities of this algorithm?

The running time of the recursive procedure on a tree with n nodes can be expressed
as:

T (0) = 3
T (n) = T (left subtree) + T (right subtree) + 5

The analysis is similar to that for the tree traversal algorithms.

The number of statements executed at each call (excluding the recursive calls them-
selves) is constant (5 to be precise). The procedure will be called for each node (for a
subtree rooted in each node) exactly once. Since there are n nodes, and for each one
the work done is constant, the total runt time is 5n. Independent of the exact tree
structure, all nodes are visited, i.e. the best-and worst- case complexities are the same
Θ(n).

5. Using the master method estimate the complexity of the recursive algorithms which
run times are expressed by the recurrences below.

We use the notation introduced in class.

(a) T (n) = 21T (2n
3) + Θ(n2 log3 n)

a = 21, b = 3/2, k = 2, p = 3

21 = a > bk = (3/2)2, thus Case 1, Θ(nlog3/2 21)

(b) T (n) = 9T (n
3) + Θ(n2)

a = 9, b = 3, k = 2, p = 0

9a = bk = 32, thus Case 2, Θ(n2 log n)

(c) T (n) = 10T (n
2) + Θ(n4 log n)

a = 10, b = 2, k = 4, p = 1

10 = a < bk = 24, thus Case 3, Θ(n4 log n)

2

6. Fill in the following table with the asymptotic time complexities (use expected time
complexities when appropriate). Be sure to indicate which time complexities are worst-
case and which are expected-case. Let n be the number of elements in the ADT. Let
m be the number of slots in the hash table.

BST heap hashing doubly linked
with chaining sorted list

search Θ(h) Θ(n) Θ(1 + n/m) Θ(n)
(for key k) worst case, h = n worst average worst

delete(k) Θ(h) Θ(log n) Θ(1) Θ(1)
(when given the
location of k) worst, h = n worst, del root worst worst

maximum Θ(h) Θ(n) Θ(n) Θ(n)
worst, h = n worst, in min heap worst worst

7. In a directed graph, the in-degree of a vertex is the number of edges entering it. Let n
be the number of vertices, and m the number of edges in the graph, and let dI(v) be
the in-degree of vertex v.

Given an adjacency matrix representation of a directed graph, and a specified vertex
v, how would you best compute the in-degree of v? Write your algorithm in pseudo
code, analyze the time complexity of your algorithm.

Here you need just to count the number of 1’s in the column of the adjacency matrix
corresponding to v. Since there are n entries in the column, clearly the time complexity
is Θ(n).

// M is the adjacency matrix, of size nxn, M[u][v]=1 if (u,v) is an edge
InDegree(M, v)

int deg=0; // 1
for (int u=0; u<n; u++) // n

deg += M[u][v]; // 1
return deg; // 1

Let G = (V,E) be graph with n vertices and m edges.

T (n,m) = n + 3 = Θ(n)

8. An undirected graph is bipartite if its vertex set V can be partitioned into two sunsets
S and T (i.e. V = S ∪ T, S ∩ T = ∅) so that every edge in E connects a vertex in S to
a vertex in T .

Describe a brute force algorithm for checking if an undirected graph is bipartite. What’s
the time complexity of your algorithm.

3

ANSWER:

The brute force algorithm is an exhaustive search of all two-set partitions of V , i.e.,
for each partition of V into two subsets S and T , check if the partition satusfies the
“bipartite coindition”. If you find that a partition satisfies the condidtion, return
TRUE, otherwise return FALSE.

Given a set on n vertices, there are n ways we can partition V into two sets one of which
has exactly one element, there are Cn

2 = n(n−1)
2! ways to partition V into 2 subsets one

of which has exactly 2 elements, . . ., there are Ck
n = n(n−1)...(n−k+1)

k! ways of partitioning
V into two subsets such that one has exactly k elements. Here Cn

k is the binomial
coefficient “choose k of n”. Thus, the total number of ways we can partition V
into two subsets is the sum of all binomial coefficients for k = 1, . . . , n/2. Since the
sum of the binomial coefficients, for k = 0, . . . , n is 2n, and since they are symmetric,
i.e. Cn

k = Cn
n−k, the sum of the first half of the coefficients (minus 1), will be on the

order of Θ(2n−1), and that will be the number of the partitions that have to be checked
in worst case. For each partition, in worst case we have to check all edges to see if
they connect vertices in the same subset of the partition or not. Thus the worst case
complexity for the whole algorithms will be Θ(2n−1m) – exponential!!!

9. Show the hash table obtained when inserting the keys 26, 18, 19, 32, 4, and 65 into
a hash table (in the given order) with collisions resolved by chaining. Let the table
have 7 slots and let the hash function h be such that h(26) = 3, h(18) = 6, h(19) = 0,
h(32) = 0, h(4) = 3, h(65) = 3.)

You need just show the final result. Be careful to correctly show the order that would
result within the chains/lists.

ANSWER: X marks the null pointer

table
slots

0: --> 32 --> 19
2:X
3: --> 65 ---> 4 --> 3
4:X
5:X
6: --> 18

10. Give pseudo-code for a procedure Decrease-Key(i, k) that modifies the given binary
heap A by decreasing the value of A[i] to k. (If A[i] ≤ k then no change should be
made.) You can use (without describing) any of the standard binary heap procedures
that we’ve studied. You should give the most efficient implementation you can.

Now analyze the asymptotic time complexity of your algorithm. Be sure to explain!

ANSWER:

4

Note that if A[i] > k, we set A[i] = k, and there is a chance that k is smaller than the
key values of the ancestors of i, and the heap PORD property might be violated. As
far as descendents of i are concerned, things can’t go wrong. Thus we have to restore
the heap order by proragating the key k up the path to the root till it falls in place
(similar to insert procedure).

Decrease-Key(i,k) {
if (i >= 1 && A[i] > k) {

while (i > 1 && k < Key(Parent(i)))
A[i] = Key(Parent(i)) // shift key of parent down, to child
i = Parent(i)

A[i] = k
}

}

The complexity in worst case is the distance from i to the root, same as in insert, i.e.,
O(log n) in worst-case.

11. You are to implement a caller-id system which supports the operations given in b)-d)
below. Pick a data structure that is best suited for the problem (i.e. the required
operation will run as efficiently as possible). You should very clearly describe how the
data structure is to be applied (e.g. what is used as the key, what the associated data
is,...). Also be sure to give the complexity for each of the operations.

(a) Describe your data structure choice first.
Answer:
Operations needed are the one supported by ADT dictionary, and search in par-
ticular is of interest. We will use a hash table with collision resolution by chaining,
which will guarantee efficient searches.
Each individual record will have the following fields: the key will be a phone
number, the data are name and address.

(b) Give the time complexity analysis for inserting into the system of new item that
consists of a phone number, address, and name.
Answer:
Insertion is insertion into a hash table, we insert in the front of the corresponding
list to which the value hashes. Complexity is Θ(1).

(c) Give the time complexity analysis for searching: given a phone number, return
the address and name.
Answer:
In worst-worst case, with a bad hash function, when all keys are hashed to the
same slot, is Θ(n), but we are not going to use such a hash function. A good
hash function distributes the keys uniformly, and a the list have close to average
length (n/m), where m is the number of slots, so in worst and average case the
search takes Θ(1 + n/m) time.

5

(d) Give the time complexity analysis for deletion: given a phone number, remove
the corresponding item from the system.
Answer:
Given a phone number first we have to search for it, and then remove it. Searching
is Θ(1+n/m) on average, and for good hash function in worst-case too. The actual
removing, since we keep the linked lists unsorted takes a constant time, thus the
time for delete given the phone number is Θ(1 + n/m) on average, and in worst
case with a good has function.

12. Write an algorithm to print all keys in BST between two given keys, k1 and k2.

//Print keys between k1 and k2 (included) for a BST rooted in p
PrintKeys(int *p, int k1, int k2) {

if (p==0) return // base case

if (Key(p) > k2) // search only left subtree
PrintKeys(Left(p), k1, k2)
return

if (Key(p) < k1) // search only right subtree
PrintKeys(Right(p), k1, k2)
return

// otherwise, print key and continue search
print Key(p)
PrintKeys(Left(p),k1,k2)
PrintKeys(Right(p),k1,k2)
return

}

6

