Chapter 13

Artificial Intelligence

Chapter Goals

- Distinguish between the types of problems that humans do best and those that computers do best
- Explain the Turing test
- Define what is meant by knowledge representation and demonstrate how knowledge is represented in a semantic network

Chapter Goals

- Develop a search tree for simple scenarios
- Explain the processing of an expert system
- Explain the processing of biological and artificial neural networks
- List the various aspects of natural language processing
- Explain the types of ambiguities in natural language comprehension

Thinking Machines

- A computer can do some things better -and certainly faster--than a human can
 - Adding a thousand four-digit numbers
 - Counting the distribution of letters in a book
 - Searching a list of 1,000,000 numbers for duplicates
 - Matching finger prints

Thinking Machines

Figure 13.1 A computer might have trouble identifying the cat in this picture.

- BUT a computer would have difficulty pointing out the cat in this picture, which is easy for a human
- Artificial intelligence

 (AI) The study of
 computer systems that
 attempt to model and
 apply the intelligence of
 the human mind

Thinking Machines

Edward Hardebeck helps to assemble the Tinkertoy computer

Danny Hillis

The Tinkertoy computer: ready for a game of tic-tac-toe

Hofstra University - CSC005

The Turing Test

- In 1950 English mathematician Alan Turing wrote a landmark paper that asked the question: Can machines think?
- How will we know when we've succeeded?
- The Turing test is used to empirically determine whether a computer has achieved intelligence

The Turing Test

Interrogator Respondent A Respondent B

Figure 13.2

In a Turing test, the interrogator must determine which respondent is the computer and which is the human

The Turing Test

- Weak equivalence Two systems (human and computer) are equivalent in results (output), but they do not arrive at those results in the same way
- Strong equivalence Two systems (human and computer) use the same internal processes to produce results

HAL 9000

Knowledge

"To realize that our knowledge is ignorance, This is a noble insight. To regard our ignorance as knowledge, This is mental sickness."

- Lao Tzu, 4th Century BC

Knowledge Representation

- The knowledge needed to represent an object or event depends on the situation
- There are many ways to represent knowledge
 - Natural language
 - Though natural language is very descriptive, it doesn't lend itself to efficient processing

Semantic Networks

- Semantic network A knowledge representation technique that focuses on the relationships between objects
- A directed graph is used to represent a semantic network or net
- Vertices represent concepts; edges represent relations between concepts

Semantic Networks

Semantic Networks

- The relationships that we represent are completely our choice, based on the information we need to answer the kinds of questions that we will face
- The types of relationships represented determine which questions are easily answered, which are more difficult to answer, and which cannot be answered

Semantic Web

 A project to create a universal medium for information exchange by putting documents with computer-processable meaning (semantics) on the World Wide Web.

"I have a dream for the Web [in which computers] become capable of analyzing all the data on the Web – the content, links, and transactions between people and computers. A 'Semantic Web', which should make this possible, has yet to emerge, but when it does, the day-to-day mechanisms of trade, bureaucracy and our daily lives will be handled by machines talking to machines. The 'intelligent agents' people have touted for ages will finally materialize."

-Tim Berners-Lee, 1999

- Search tree A structure that represents all possible moves in a game, for both you and your opponent
- The paths down a search tree represent a series of decisions made by the players

Figure 13.4 A search tree for a simplified version of Nim

- Search tree analysis can be applied nicely to other, more complicated games such as chess
- Because these trees are so large, only a fraction of the tree can be analyzed in a reasonable time limit, even with modern computing power

Techniques for searching trees

- Depth-first A technique that involves the analysis of selected paths all the way down the tree
- Breadth-first A technique that involves the analysis of all possible paths but only for a short distance down the tree

Breadth-first tends to yield the best results

(navel-gazing kills!)

- Knowledge-based system A software system that embodies and uses a specific set of information from which it extracts and processes particular pieces
- Expert system A software system based on the knowledge of human experts in a specialized field
 - An expert system uses a set of rules to guide its processing
 - The inference engine is the part of the software that determines how the rules are followed

- Example: What type of treatment should I put on my lawn?
 - NONE—apply no treatment at this time
 - TURF—apply a turf-building treatment
 - WEED—apply a weed-killing treatment
 - BUG—apply a bug-killing treatment
 - FEED—apply a basic fertilizer treatment
 - WEEDFEED—apply a weed-killing and fertilizer combination treatment

- Boolean variables
 - BARE—the lawn has large, bare areas
 - SPARSE—the lawn is generally thin
 - WEEDS—the lawn contains many weeds
 - BUGS—the lawn shows evidence of bugs

- Some rules
 - if (CURRENT LAST < 30) then NONE
 - if (SEASON = winter) then not BUGS
 - if (BARE) then TURF
 - if (SPARSE and not WEEDS) then FEED
 - if (BUGS and not SPARSE) then BUG
 - if (WEEDS and not SPARSE) then WEED
 - if (WEEDS and SPARSE) then WEEDFEED

- An execution of our inference engine
 - System: Does the lawn have large, bare areas?
 - User: No
 - System: Does the lawn show evidence of bugs?
 - User: No
 - System: Is the lawn generally thin?
 - User: Yes
 - System: Does the lawn contain significant weeds?
 - User: Yes
 - System: You should apply a weed-killing and fertilizer combination treatment.

- Attempts to mimic the actions of the neural networks of the human body
- Let's first look at how a biological neural network works
 - A neuron is a single cell that conducts a chemically-based electronic signal
 - At any point in time a neuron is in either an excited or inhibited state

- A series of connected neurons forms a pathway
- A series of excited neurons creates a strong pathway
- A biological neuron has multiple input tentacles called dendrites and one primary output tentacle called an axon
- The gap between an axon and a dendrite is called a synapse

Figure 13.6 A biological neuron

- A neuron accepts multiple input signals and then controls the contribution of each signal based on the "importance" the corresponding synapse gives to it
- The pathways along the neural nets are in a constant state of flux
- As we learn new things, new strong neural pathways in our brain are formed

- Each processing element in an artificial neural net is analogous to a biological neuron
 - An element accepts a certain number of input values and produces a single output value of either 0 or 1
 - Associated with each input value is a numeric weight

 The effective weight of the element is defined to be the sum of the weights multiplied by their respective input values

v1*w1 + v2*w2 + v3*w3

- Each element has a numeric threshold value
- If the effective weight exceeds the threshold, the unit produces an output value of 1
- If it does not exceed the threshold, it produces an output value of 0

- The process of adjusting the weights and threshold values in a neural net is called training
- A neural net can be trained to produce whatever results are required

Natural Language Processing

- There are three basic types of processing going on during human/computer voice interaction
 - Voice recognition—recognizing human words
 - Natural language comprehension—interpreting human communication
 - Voice synthesis—recreating human speech
- Common to all of these problems is the fact that we are using a natural language, which can be any language that humans use to communicate

- There are two basic approaches to the solution
 - Dynamic voice generation
 - Recorded speech
- Dynamic voice generation A computer examines the letters that make up a word and produces the sequence of sounds that correspond to those letters in an attempt to vocalize the word
- Phonemes The sound units into which human speech has been categorized

Consonants				Vowels	
Symbols	Examples	Symbols	Examples	Symbols	Examples
р	pipe	k	kick, cat	i	eel, sea, see
b	babe	g	get	Ι	ill, bill
m	maim	ŋ	sing	e	ale, aim, day
f	fee, phone, rough	š	shoe, ash, sugar	3	elk, bet, bear
v	vie, love	ž	measure	æ	at, mat
θ	thin, bath	č	chat, batch	u	due, new, zoo
ð	the, bathe	j	jaw, judge, gin	υ	book, sugar
t	tea, beat	d	day, bad	0	own, no, know
n	nine	?	uh uh	э	aw, crawl, law, dog
1	law, ball	S	see, less, city	а	hot, bar, dart
r	run, bar	Z	zoo, booze	ə	sir, nerd, bird
				Λ	cut, bun
	A 117 1	1			B ¹ II
Semi Vowels				Dipthongs	
W	we			aj	bite, fight
h	he			aw	out, cow
j	you, beyond			οj	boy, boil

Figure 13.7 Phonemes for American English

Hofstra University - CSC005

 Recorded speech A large collection of words is recorded digitally and individual words are selected to make up a message

Telephone voice mail systems often use this approach: "Press 1 to leave a message for Nell Dale; press 2 to leave a message for John Lewis."

- Each word or phrase needed must be recorded separately
- Furthermore, since words are pronounced differently in different contexts, some words may have to be recorded multiple times
 - For example, a word at the end of a question rises in pitch compared to its use in the middle of a sentence

Voice Recognition

- The sounds that each person makes when speaking are unique
- We each have a unique shape to our mouth, tongue, throat, and nasal cavities that affect the pitch and resonance of our spoken voice
- Speech impediments, mumbling, volume, regional accents, and the health of the speaker further complicate this problem

Voice Recognition

- Furthermore, humans speak in a continuous, flowing manner
 - Words are strung together into sentences
 - Sometimes it's difficult to distinguish between phrases like "ice cream" and "I scream"
 - Also, homonyms such as "I" and "eye" or "see" and "sea"
- Humans can often clarify these situations by the context of the sentence, but that processing requires another level of comprehension
- Modern voice-recognition systems still do not do well with continuous, conversational speech

Natural Language Comprehension

- Even if a computer recognizes the words that are spoken, it is another task entirely to understand the *meaning* of those words
 - Natural language is inherently ambiguous, meaning that the same syntactic structure could have multiple valid interpretations
 - A single word can have multiple definitions and can even represent multiple parts of speech
 - This is referred to as a lexical ambiguity

Time flies like an arrow.

Natural Language Comprehension

 A natural language sentence can also have a syntactic ambiguity because phrases can be put together in various ways

I saw the Grand Canyon flying to New York.

 Referential ambiguity can occur with the use of pronouns

The brick fell on the computer but it is not broken.

Assignment #3

- Research these two RFCs: RFC1129 and RFC968. Given a brief - paragraph, not a single sentence – description based on the abstract, introduction, or basic content
- Pick google.com and one other site. Using whois and ARIN, get as much information as possible about the IP addressing, the DNS and the site (location, owner, etc.)
- Due next Wednesday, December 6 or you can email it earlier

Useful Websites

- http://www.rfc-editor.org/rfcsearch.html
 Search RFCs
- http://www.cert.org
 Center for Internet security
- http://www.counterpane.com/alerts.html
 Some recent alerts

Homework

- Read Chapter Thirteen and review slides
- ...Next Class We'll Hand Out the Final Exam...
- ...and cover LAMP and WAMP Technology

...Have A Nice Night

"Klaatu barad nikto"

Hofstra University - CSC005