
ICL: Intuitionistic Control Logic

>

⊥

• •

• •

0

Chuck Liang and Dale Miller

Outline

I Overview of Goals of ICL and its Basic Characteristics

I The Semantics of ICL: from Kripke Models to Categories

I The Interpretation of Proofs

I Sequent Calculus/Tableaux and Cut Elimination

I Natural Deduction and λγ-calculus

I The Representations of call/cc and C
I The Computational Content of Contraction and Disjunction

I Discussion of Related Systems.

Quick Summary of ICL:

I Propositional Logic with ∧, ∨, ⊃, >, 0, and ⊥.

I Identical to Intuitionistic Logic if ⊥ removed

I Two forms of negation: ∼A = A ⊃ 0; ¬A = A ⊃ ⊥
I Law of excluded middle: A ∨ ¬A (but not A∨ ∼A)

I But no involutive negation: both ¬¬A ⊃ A and ∼∼A ⊃ A are
unprovable. (but ∼¬A ⊃ A is provable).

I No simple translation to linear logic: not just !A−◦ B plus ⊥.

I Can also be described as intuitionistic logic plus a version of
Peirce’s law.

I Goals: good semantics and proof systems with cut-reduction
procedures.

Kripke Semantics

All Models has a Root r: 〈W, r,�, |=〉

I u |= >; u 6|= 0

I r 6|= ⊥
I q |= ⊥ for all q � r

I u |= A ∧ B iff u |= A and u |= B

I u |= A ∨ B iff u |= A or u |= B

I u |= A ⊃ B iff for all v � u, v 6|= A or v |= B.

I A model M |= A if and only if r |= A by monotonicity of |=.

I r |= A if and only if r 6|= ¬A. Thus r |= A ∨ ¬A

I Neither 0 nor ⊥ has a model (both inconsistent)

Other Important Properties of ⊥

I A formula that does not contain ⊥ as a subformula is valid
in ICL if and only if it is valid in intuitionistic logic.

I Because A ∨ ¬A is valid, the disjunction property is guaranteed
only for formulas that does not contain ⊥.

I Formulas that contain ⊥ can still have intuitionistic proofs
(¬A ⊃ ¬A).

I No more need for polarization

The semantics of disproofs

What can this little model show?

q : {B}

r : { }

r 6|= A; r 6|= B; q 6|= A, q |= B

r 6|=∼B ∨ B; r 6|=∼∼B ⊃ B

r 6|= ¬¬A ⊃ A

(But note: r |= B ∨ ¬B since r,q |= ¬B)

Sample Truths and Falsehoods

Valid Invalid
¬A ∨ A ∼A ∨ A
(¬P ⊃ P) ⊃ P ((P ⊃ Q) ⊃ P) ⊃ P
0 ⊃ A ⊥ ⊃ A
¬A ∨ B ≡ ¬(A ∧ ¬B) ∼A ∨ B ≡ ∼(A∧ ∼B)
¬(A ∧ B) ≡ (¬A ∨ ¬B) ¬(A ∧ ¬B) ≡ ¬¬(A ⊃ B)
¬¬A ≡ A ∨ ⊥ ∼∼A ⊃ A
∼¬A ⊃ A ¬¬A ⊃ A
A ⊃ ¬∼A ¬ ∼A ⊃ A
A ⊃ ¬¬A A ⊃ ∼¬A
A ⊃∼∼A (¬B ⊃ ¬A) ⊃ (A ⊃ B)

Classical Logic inside ICL

I Define Classical Implication A⇒ B as ¬A ∨ B

I ¬A ∨ B ≡ ¬(A ∧ ¬B), so no “negative” translation needed.
(∼A ∨ B does not represent classical implication.)

I Hilbert’s axiom (¬B ⇒ ¬A)⇒ (A⇒ B) holds.

I A General Law of Admissible Rules:
if A⇒ B is valid, then A is valid implies B is also valid

I E.g., ¬¬A ⊃ A is invalid, but ¬¬A⇒ A is valid, so
¬¬A

A is
admissible

I Every classical implication corresponds to at least an
admissible rule in ICL

⊥ in Cartesian Closed Categories

I Let D be any cartesian closed category with products,
coproducts, terminal object T and initial object 0.

I Let 2 be the two-element boolean algebra represented as a
category with two objects and three arrows: 2 : false −→ true.

I Let D2 be a functor from D to 2:

I D2(X) = false if X is uninhabited;
D2(X) = true if T→ X exists.

I D2(X → Y) = D2(X)→ D2(y).

I Assume that D has a right-adjoint R2 of D2:

I Then R2(true) ∼= T (terminal), as expected

I but R2(false) is not isomorphic to 0 (initial).

Let ⊥⊥ = R2(false)

I ⊥⊥ is a terminal object in the full subcategory of uninhabited
objects of D.

I Essential Property of ⊥⊥:

For each object X in a category D with ⊥⊥, X is
uninhabited if and only if there is a unique arrow
ηX : X → ⊥⊥.

I Consequence: T→ A +⊥⊥A “does not not exist”.
(A ∨ ¬A is OK).

I “Constructive” semantics stops short here: more specific models
required (in terms of Freyd covers). But this semantics can still
be useful...

I There is no arrow from ⊥⊥(⊥⊥A
) to A. No involutive negation.

From Categories to Kripke Models

r

• •

•

T

⊥⊥

• •

• •

0

true

false
R2

D2

Kripke Frame with Root, Heyting Algebra with Second-Largest
Point, and Boolean Algebra 2

How to Represent Proofs

λ terms Intuitionistic Logic Classical Logic
x ¬(A ∨ ¬A)d ,Ax ` A A ` ⊥,A

ωl (x) ¬(A ∨ ¬A)d ,Ax ` A ∨ ¬A −MAGIC!−
[d]ωl (x) ¬(A ∨ ¬A)d ,Ax ` ⊥ A ` ⊥, A ∨ ¬A

λx .[d]ωl (x) ¬(A ∨ ¬A)d ` ¬A ` ¬A, A ∨ ¬A
ωr (λx .[d]ωl (x)) ¬(A ∨ ¬A)d ` A ∨ ¬A ` A ∨ ¬A, A ∨ ¬A

λd .ωr (λx .[d]ωl (x)) ` ¬(A ∨ ¬A) ⊃ (A ∨ ¬A) ` A ∨ ¬A
λγ term Intuitionistic Control Logic:

γ(λd .ωr (λx .[d]ωl (x))) ` A ∨ ¬A

where γ : (¬P ⊃ P) ⊃ P (our version of Peirce’s Law)

Categorically: γ : P(⊥⊥P
) → P “exists” by the special property of ⊥⊥.

Semantics of Proofs modulo γ

γ as a Natural Transformation (from François Lamarche)

I Define functor F(X) = X (⊥⊥X
).

F(h : X → Y) = λKλu.h(K (λx .u(h(x)))) : X (⊥⊥X
) → Y (⊥⊥Y

)

I Then the collection of arrows γ is characterizable as a natural
transformation from F to identity.

F(A) ID(A)

F(B) ID(B)

γA

F(h)

γB

h

h(γA) = γB(F(h)) : A→ B.

How to represent γ as inference rule(s)

¬B, Γ ` B
Γ ` B

or

Γ ` B; [B,∆]

Γ ` B; [∆]
Con

Γ ` B; [∆]

Γ ` ⊥; [B,∆]
Esc

I First version more accurate conceptually.

I Second set of rules enjoy better proof theoretic properties:

1. preserves subformula property,
2. clearly identifies intuitionistic/non-intuitionistic parts of

proofs.
3. clarifies cut reduction/normalization procedure.

γ in Proof Theory

¬B, Γ ` B
Γ ` B

or as
Γ ` B; [B,∆]

Γ ` B; [∆]
Con and

Γ ` B; [∆]

Γ ` ⊥; [B,∆]
Esc

s : ¬B, Γ ` B
λd .s : Γ ` ¬B ⊃ B ⊃ I

γ : ` (¬B ⊃ B) ⊃ B
γ(λd .s) : Γ ` B

⊃E (cut)

I Write γ(λd .s) as just γd .s

I (λx .s) t −→β s[t/x], but (γd .s) t −→ γd .(s{[d](w t)/[d]w} t)

I Why is γ – or µ – still in the reduced term?

I Because, in a sense, it represents a cut that cannot be
eliminated, only permuted.

Sequent Calculus LJC

A,B, Γ ` C; [∆]

A ∧ B, Γ ` C; [∆]
∧L

A, Γ ` C; [∆] B, Γ ` C; [∆]

A ∨ B, Γ ` C; [∆]
∨L

Γ ` A; [∆] B, Γ ` C; [∆]

A ⊃ B, Γ ` C; [∆]
⊃L 0, Γ ` A; [∆]

0L ⊥, Γ ` ⊥; [∆]
⊥L

Γ ` A; [∆] Γ ` B; [∆]

Γ ` A ∧ B; [∆]
∧R

Γ ` A; [∆]

Γ ` A ∨ B; [∆]
∨R1

Γ ` B; [∆]

Γ ` A ∨ B; [∆]
∨R2

A, Γ ` B; [∆]

Γ ` A ⊃ B; [∆]
⊃R

Γ ` >; [∆]
>R A, Γ ` A; [∆]

Id

Γ ` A; [A,∆]

Γ ` A; [∆]
Con

Γ ` A; [∆]

Γ ` ⊥; [A,∆]
Esc

Natural Deduction System NJC with terms:
The ⊃ Fragment

t : Ax , Γ ` B; [∆]

(λx .t) : Γ ` A ⊃ B; [∆]
⊃ I

t : Γ ` A ⊃ B; [∆] s : Γ′ ` A; [∆′]

(t s) : ΓΓ′ ` B; [∆∆′]
⊃E

s : Γ ` 0; [∆]

abort s : Γ ` A; [∆]
0E exit : Γ ` >; [∆]

>I x : Ax , Γ ` A; [∆]
Id

t : Γ ` A; [∆]

[d]t : Γ ` ⊥; [Ad ,∆]
Esc

u : Γ ` A; [Ad ,∆]

γd .u : Γ ` A; [∆]
Con

The Con Escapes! (and ⊥ is the key)

s : Γ ` B; [Bd ,∆]

γd .s : Γ ` B; [∆]
Con

r : Γ ` B; [∆]

[d]r : Γ ` ⊥; [Bd ,∆]
Esc

I Bd ∈ ∆ is possible in Esc. (Contraction inside Γ,∆ is free)

I The rest of the rules are entirely intuitionistic (LJ or NJ)

I If Esc not used, then proof is still intuitionistic (Con will be
vacuous).

I Contrast Con with Decide/Dereliction/Passivate in classical proof
systems:

` Γ,P; P
` Γ,P; D rule in LC

Here the P leaves the stoup.

How to permute cut above Con?

Γ ` A; [∆] A, Γ′ ` B; [∆′]

ΓΓ′ ` B; [∆∆′]
cut

Γ1 ` A; [A,∆1]

Γ1 ` ⊥; [A,∆1]
Esc

...
Γ2 ` A; [A,∆2]

Γ2 ` ⊥; [A,∆2]
Esc

...
Γ ` A; [A,∆]

Γ ` A; [∆]
Con A, Γ′ ` B; [∆′]

ΓΓ′ ` B; [∆∆′]
cut

Problem: clashes with β-reduction (looses confluence)

To preserve confluence we can:

1. Adopt call-by-value reduction strategy.

2. Require the contracted formula to be of the form A ⊃ B:

s : Γ ` A ⊃ B; [(A ⊃ B)d ,∆]

γd .s : Γ ` A ⊃ B; [∆]
Con t : Γ′ ` A; [∆′]

(γd .s) t : ΓΓ′ ` B; [∆∆′]
cut

(Similar choice made in original λµ calculus)

q : Γ1 ` A ⊃ B; [∆1] t :Γ′ ` A; [∆′]

qt : Γ1Γ′ ` B; [∆1∆′]
cut

[d](qt) : Γ1Γ′ ` ⊥; [Bd ,∆1∆′]
Esc

...
r : Γ2Γ′ ` A ⊃ B; [Bd ,∆2∆′] t :Γ′ ` A; [∆′]

rt : Γ2Γ′ ` B; [Bd ,∆2∆′]
cut

[d](rt) : Γ2Γ′ ` ⊥; [Bd ,∆2∆′]
Esc

...
s{[d](wt)/[d]w} : ΓΓ′ ` A ⊃ B; [Bd ,∆∆′] t :Γ′ ` A; [∆′]

(s{[d](wt)/[d]w} t) : ΓΓ′ ` B; [Bd ,∆∆′]
cut

γd .(s{[d](wt)/[d]w} t) : ΓΓ′ ` B; [∆∆′]
Con

(γd .s) t −→ γd .(s{[d](wt)/[d]w} t)

λγ calculus

1. (λx .s) t −→ s[t/x]. (β-reduction)

2. (γd .s) t −→ γd .(s{[d](w t)/[d]w} t). (µγ-reduction)

3. abort(s) t −→ abort(s). (aborted reduction)

4. γa.s −→ s when a does not appear free in s. (vacuous γ)

5. γa.γb.s −→ γa.s[a/b]. (γ-renaming)

6. [d]γa.s −→ [d]s[d/a]. (µ-renaming)

Confluent and Strongly Normalizing

Renaming rules eliminate redundant contractions
(Cons)

[d]γa.s −→ [d]s[d/a] (also found in λµ):

s : Γ ` A; [Ab,∆]

γb.s : Γ ` A; [∆]
Con

[d]γb.s : Γ ` ⊥; [Ad ,∆]
Esc

−→
s[d/b] : Γ ` A; [Ad ,∆]

[d]s[d/b] : Γ ` ⊥; [Ad ,∆]
Esc

Because Ad ∈ ∆ is possible (contraction inside [∆] is always
available).

γa.γb.s −→ γa.s[a/b]: eliminates consecutive contractions.
γa.s −→ s when a is not free in s: all intuitionistic proof terms
reduce to λ-terms

The Computational Content of Contraction: call/cc and
C operators

Our version of Peirce’s Law: (¬P ⊃ P) ⊃ P = ((P ⊃ ⊥) ⊃ P) ⊃ P:

x : (¬P ⊃ P)x ` ¬P ⊃ P; []

y : (¬P ⊃ P)x ,Py ` P; []
Id

[d]y : (¬P ⊃ P)x ,Py ` ⊥; [Pd]
Esc

λy .[d]y : (¬P ⊃ P)x ` ¬P; [Pd]
⊃ I

(x λy .[d]y) : (¬P ⊃ P)x ` P; [Pd]
⊃E

γd .(x λy .[d]y) : (¬P ⊃ P)x ` P; []
Con

K = λx .γd .(x λy .[d]y) : ` (¬P ⊃ P) ⊃ P; []
⊃ I

I K = λx .γ(λd .(x λy .dy)) =η γ

I (K M k1 k2) −→ γd .(M λy .[d](y k1 k2)) k1 k2

I Given E [z] = (z k1 k2), E [KM] −→ γd .E [M(λy .[d]E [y])]

For the C operator, ¬¬A ⊃ A and ∼∼A ⊃ A are both unprovable.
But we have ∼¬A ⊃ A = ((A ⊃ ⊥) ⊃ 0) ⊃ A:

x :∼¬Ax `∼¬A; []

y :∼¬Ax ,Ay ` A; []
Id

[d]y :∼¬Ax ,Ay ` ⊥; [Ad]
Esc

λy .[d]y :∼¬Ax ` ¬A; [Ad]
⊃ I

x λy .[d]y :∼¬Ax ` 0; [Ad]
⊃E

abort (x λy .[d]y) :∼¬Ax ` A; [Ad]
0E

γd .abort (x λy .[d]y) :∼¬Ax ` A; []
Con

C = λx .γd .abort (x λy .[d]y) : ` ∼¬A ⊃ A; []
⊃ I

I (CM k1 k2) = γd .abort(M λy .[d](y k1 k2))

I CM = K(λk .abort(Mk))

I C(λz.M) = abort(M) for z not free in M

I abort replaces free variable ϕ in λx .µα.[ϕ](x λy .µδ.[α]y)
(original λµ term).

NJC with Non-Additive Disjunction (partial future work)

s : Γ ` A; [∆] t : Γ′ ` B; [∆′]

(s, t) : ΓΓ′ ` A ∧ B; [∆∆′]
∧I

s : Γ ` A ∧ B; [∆]

(s)` : Γ ` A; [∆]
∧E1

s : Γ ` A ∧ B; [∆]

(s)r : Γ ` B; [∆]
∧E2

s : Γ ` A; [Bd ,∆]

ω`d .s : Γ ` A ∨ B; [∆]
∨I1

s : Γ ` B; [Ad ,∆]

ωr d .s : Γ ` A ∨ B; [∆]
∨I2

v : Γ1 ` A ∨ B; [∆1] s : Ax , Γ2 ` C; [∆2] t : By , Γ3 ` C; [∆3]

(λx .s, λy .t) v : Γ1Γ2Γ3 ` C; [∆1∆2∆3]
∨E

I (u, v) (ω`d .t) −→ γd .(u t{[d](v w)/[d]w});
(u, v) (ωr d .t) −→ γd .(v t{[d](u w)/[d]w}) (ω-reduction)

I (u, v) γd .t −→ γd .(u, v) t{[d](u, v)w/[d]w} (ωγ-reduction)

I (u, v)` −→ u; (u, v)r −→ v . (projections)

I (γd .s)` −→ γd .s`{[d]w`/[d]w};
(γd .s)r −→ γd .sr{[d]wr/[d]w}. (γ-projections)

u : Γ ` A; [Bd ,∆]

ω`d .u : Γ ` A ∨ B; [∆]
∨I1 s : Ax , Γ ` C; [∆] t : By , Γ ` C; [∆]

(λx .s, λy .t) ω`d .u : Γ ` C; [∆]
∨E (cut)

Reduces to:

u : Γ ` A; [Bd ,∆] t : By , Γ ` C; [∆]

u{[d](λy .t)w/[d]w} : Γ ` A; [Cd ,∆]
cut2

s : Ax , Γ ` C; [∆]

(λx .s) u{[d](λy .t)w/[d]w} : Γ ` C; [Cd ,∆]
cut

γd .(λx .s) u{[d](λy .t)w/[d]w} : Γ ` C; [∆]
Con

(u, v) (ω`d .t) −→ γd .(u t{[d](v w)/[d]w})

The Computational Content of Disjunction

public int f(String s) throws IOEXCEPTION

try (λz.t)s catch exception e with λy .u.

(λx .(x s), λy .u) (ω`d .λz.t).

I x is not free in s: reverses application: (λx .x s)t = (t s)

I ω`d .λz.t : (A ⊃ C) ∨ B

I Exception handler λy .u : B ⊃ C

I Term reduces to γd .t{[d]λ(y .u)e/[d]e}[s/z] : C

I [d]e throws exception

I Reduces to t [s/z] if no exceptions thrown (vacuous γ).

I ∨-elimination replaces ⊃-elimination for such procedures.

Comparisons: Ong and Stewart’s λµ

Γ; ∆ ` s : A
Γ; ∆,Aα ` [αA]s : ⊥

⊥−intro
Γ; ∆,Bβ ` s : ⊥
Γ; ∆ ` µβB.s : B

⊥−elim

I ⊥-intro is very similar to Esc, but what is ⊥-elim?

I “⊥” appears to be playing two different roles: enables
contraction and 0-elimination (0 ⊃ A).

I The ¬¬A⇒ A has fine proof (no free variables)

I But why should Peirce’s law require ⊥-elim?

I The computational content of Peirce’s law is not attributed to
contraction. (¬P ⊃ P) ⊃ P is contraction.

Comparisons: Girard’s LC

Similarities:

I Formula must stay in the stoup until something significant
happens.

I ⊥ is “negative”; the other constants and atoms are “positive”
A ∧ B is negative if both A and B are negative, else positive.
A ∨ B is negative if either A or B is negative, else positive.

I negative means Esc rule is possible; positive means purely
intuitionistic.

Differences:

I LC does not contain intuitionistic implication:
In ICL, A ⊃ B is negative if B is negative, else positive.

I Polarization not needed in ICL. No built-in “dual” atoms A⊥.

I Relationship to focusing (focalisation) also lost with ⊃.

Can ICL be translated into linear logic?

I Just translate IL into LL around the formula !A−◦ B,
then “throw in” ⊥. Not even close!

I A ∨ ¬A ?
= A⊕ (!A−◦ ⊥): linear formula not provable.

I Better attempt: use a polarized translation (like LC’s):
Recognize A ∨ ¬A as negative, then use A O (!A−◦ ⊥).

I Still doesn’t work for Peirce’s formula: (¬P ⊃ P) ⊃ P:
need contraction on P
Not as long as ⊃ is translated using !A−◦ B.

I Only apparent solution: use classical implication:
(¬P ⇒ P)⇒ P where A⇒ B = !A−◦?B.
But when to use⇒ instead of ⊃?

I What can we conclude, if no reasonable translation exists?
Linear logic is not subtle enough to go in between intuitionistic
and classical logic.

Soundness and Completeness

Sequent Calculus LJC

Kripke r-Models

Heyting Algebras w/⊥⊥

CCC’s w/⊥⊥

Natural Deduction NJC

simple induction

upwardly closed sets

simple instances of

Curry-Howard plus γ

same as NJ to LJ

Where did ICL came from:
Attempt to find a unified logic

I Starting point: Girard’s system LU.

I Our early attempt at an unified logic, LUF:

+1

?

6

−1

H
HHH

HHH
HHH

HHHjH
H
HH

H
HH

H
HH

H
HHY+L

−R��
��

�
��

�
��

�
��*�

���
���

���
����−L

+R

⊗,⊕,Σ,1,0

O,&,Π,⊥,>

�,�,Σ,0l

∨−,∧−,∀,⊥l ,>l

∧+,∨+,∃,1r ,0r

t,u,Π,>r

I Second attempt at a unified logic: PIL:

HHH
HHH

HHHH
HHHjH
H

HH
HH

HH
H
HH

HHY
+L

−R��
��

�
��

�
��

�
��*�
���

���
���

����−L

+R
∝,Σ

∨−,∧−,∀

∧+,∨+,∃

⊃,Π

I The proof theory of PIL contained both LJ and LC.

I Breakthrough: found Kripke Semantics for PIL

I Possible to unify classical and intuitionistic logics inside an
intuitionistic semantics.

I The identification of ⊥ as a constant, which makes A ∨ ¬A
possible, replaced the need for polarized connectives.

