ICL: Intuitionistic Control Logic

/
\ N

/

0

/\/

Chuck Liang and Dale Miller

Outline

» Overview of Goals of ICL and its Basic Characteristics

» The Semantics of ICL: from Kripke Models to Categories
» The Interpretation of Proofs

» Sequent Calculus/Tableaux and Cut Elimination

» Natural Deduction and \vy-calculus

» The Representations of call/cc and C

» The Computational Content of Contraction and Disjunction

» Discussion of Related Systems.

Quick Summary of ICL:

vV vV v v v

v

Propositional Logic with A, v, D, T,0,and L.
Identical to Intuitionistic Logic if | removed

Two forms of negation: ~A=AD>0; -A=AD L
Law of excluded middle: Av —-A (but not Av ~A)

But no involutive negation: both -——A > Aand ~~A D A are
unprovable. (but ~—A D A s provable).

No simple translation to linear logic: not just !A — B plus L.

» Can also be described as intuitionistic logic plus a version of

Peirce’s law.

Goals: good semantics and proof systems with cut-reduction
procedures.

Kripke Semantics

All Models has a Rootr: (W,r, <, =)

v

UET; ulo

rE L

gE= Lforallg:-r

uEAAB iff uEAandu =B

uEAvVB Iiff uEAoruE=B

uEADB ff forallv>u, v Aorv = B.

v

v

v

v

v

v

A model M |= Aiif and only if r = A by monotonicity of .
r=Aifandonlyifr = -A. Thusri=AvV-A

Neither 0 nor | has a model (both inconsistent)

v

v

Other Important Properties of |

» A formula that does not contain L as a subformula is valid
in ICL if and only if it is valid in intuitionistic logic.

» Because AV —Ais valid, the disjunction property is guaranteed
only for formulas that does not contain L.

» Formulas that contain L can still have intuitionistic proofs
(A D —A).

» No more need for polarization

The semantics of disproofs

What can this little model show?
q:{B}

I
r:{}

rEA rEB aFA qE=B

r%A~BVB; rE~~BDB
I’%ﬁﬁADA

(But note: r = BV —Bsincer,q = —B)

Sample Truths and Falsehoods

Valid Invalid
-AV A ~AV A
(-P>P)DP (P>@Q>P)DP
0DA 1DA

-AVB = —-(AA-B)
-(AAB)=(-AvV -B)
—|ﬂA = A\/L
~-ADA

AD-~A

AD—-A

AD~~A

~AV B = ~(AA ~B)
ﬁ(A/\ﬁB) = ﬁﬁ(A D B)
~~ADA

-—ADA

-~ADA

AD~A
(-B>-A)>(AD>B)

Classical Logic inside ICL

» Define Classical Implication A=- Bas -Av B
» AV B =—-(AA-B), so no “negative” translation needed.
(~AV B does not represent classical implication.)

» Hilbert’s axiom (-8B =--A) = (A= B) holds.

» A General Law of Admissible Rules:
if A= B is valid, then A is valid implies B is also valid

—|—|A

» E.g.,, ——A D Aisinvalid, but -——A = Aisvalid,so A is
admissible

» Every classical implication corresponds to at least an
admissible rule in ICL

L in Cartesian Closed Categories

» Let D be any cartesian closed category with products,
coproducts, terminal object T and initial object 0.

> Let 2 be the two-element boolean algebra represented as a
category with two objects and three arrows: 2 : false — true.

» Let D, be a functor from D to 2:

» Do(X) = false if X is uninhabited;
Do (X) = tfrue if T — X exists.
> Dz(X — Y) = Dz(X) — Dz(y).

» Assume that D has a right-adjoint Ry of D:
» Then Ry(frue) = T (terminal), as expected
» but Ry(false) is not isomorphic to 0 (initial).

Let L = Ry(false)

» | is a terminal object in the full subcategory of uninhabited
objects of D.

» Essential Property of LL:

For each object X in a category D with 1, X is
uninhabited if and only if there is a unique arrow
nx: X — 1.

» Consequence: T — A+ 1# “does not not exist”.
(AV —Ais OK).

» “Constructive” semantics stops short here: more specific models
required (in terms of Freyd covers). But this semantics can still
be useful...

A
» There is no arrow from L") to A. No involutive negation.

From Categories to Kripke Models

D
true
| R, |
A false
VRN
’ NN
N N S
r 0

Kripke Frame with Root, Heyting Algebra with Second-Largest
Point, and Boolean Algebra 2

How to Represent Proofs

A terms Intuitionistic Logic Classical Logic
X -(AV-A)9 A - A AF 1L A
w!(x) —(AV-A)9 A AV -A —MAGIC!—
[d]w!(X) -(AV-A)9 A L A1, AVv-A
Ax.[d]w!(x) -(AV-A) - -A F-A, AV -A
W (Ax.[d]w!(x)) -(AV-A)PFAV-A FAV-A AV-A
Ad.w"(Ax.[d]w!(x)) F-(Av-A) D (AV-A) FAV-A
Ay term Intuitionistic Control Logic:
y(Ad.w (Ax.[d]w!(X))) FAV-A

where v : (=P D> P)D> P (our version of Peirce’s Law)

Categorically: v : P, p “exists” by the special property of L.

Semantics of Proofs modulo ~

~ as a Natural Transformation (from Francois Lamarche)

> Define functor F(X) = X1,
F(h: X — Y) = AKAuh(K(Ox.u(h(x)))) : XA — vy

» Then the collection of arrows ~ is characterizable as a natural
transformation from F to identity.

FA) — A 15(4)

F(h) h

F(B) ————— Io(B)

h(va) = v8(F(h)) : A— B.

How to represent ~ as inference rule(s)

-B,T+B
r-B

or

e B; [B,A] e B; [A]

-8 [a - re L [B,a] £5°

» First version more accurate conceptually.
» Second set of rules enjoy better proof theoretic properties:

1. preserves subformula property,

2. clearly identifies intuitionistic/non-intuitionistic parts of
proofs.

3. clarifies cut reduction/normalization procedure.

~ in Proof Theory

-B,T'+B e B; [B,A] e B; [A]
bl . rue—r—1a d . rv—a
B oras g qa; " @Yt (Ba] B¢
s: -B,T+B /
Xds:TF-B>B "~ ﬂ,’:l—(ﬂBDB)DBDE(cut)
~(Md.s): T+-B

» Write v(\d.s) as just yd.s
> (Ax.s)t —p s[t/x], but (vd.s) t — ~d.(s{[d](w)/[d]w} 1)
» Why is v — or i — still in the reduced term?

» Because, in a sense, it represents a cut that cannot be
eliminated, only permuted.

Sequent Calculus LJC

A B,T+ C; [4] ATFC; [A] B,TFC [A]
ANBTFC; [a] " AVB,TF C, [A]

= A [A] B, TEC; [A] !
A>Brrc o] °F orrap % Trroptt

[HA [A] THB; [A] Al -8 [a] o
rEAnB [a] M TravB Al ' TRAVB [a] P
AT B; [A] a .
r-AsB a -7 Trh@ ¢ ArFA @l

M= A [AA] e A [A]

rrA Al " TR AL Bf

Natural Deduction System NJC with terms:
The D Fragment

t: AT HB; [A] | t:TEFADB; [A] s:T'EA [A]
Ox.f): TFASB; [A] ~ (ts): [T F B; [AA]
s:THO; [A] 0F i id
abort s: T HA; [A] exit : T+ T; [A] T x: AT EA [4]
t:THA [A] u:TEA; [A% A]

E
[dt:T+ L [ASA] ° Sdu-rkA [a] O

The Con Escapes! (and L is the key)

s: T+ B; [B A r:TFB;[A]

E
vds TEB 8] O [drirr L (BYa] C°

» B9 c Ais possible in Esc. (Contraction inside I', A is free)
» The rest of the rules are entirely intuitionistic (LJ or NJ)

» If Esc not used, then proof is still intuitionistic (Con will be

vacuous).
» Contrast Con with Decide/Dereliction/ Passivate in classical proof
systems:
FIL,P;, P
FT,P; Drulein LC

Here the P leaves the stoup.

How to permute cut above Con?

MEA [A] AT FB; [A]

- B; [AA] cut
F1 }—A; [A,A1] E
M F L [AA] °%°
F2 }— A; [A, Az]
— A ~ 3 ESC
rg = J_; [A, Ag]
M- A [A A
A Al O ATEB A
M+ B; [AA] cu

Problem: clashes with g-reduction (looses confluence)

To preserve confluence we can:

1. Adopt call-by-value reduction strategy.

2. Require the contracted formula to be of the form A O B:
s:THFADB; [(ADB)4,A]
vd.s:THADB; [A] t: "= A; [A]
(vd.s) t:TT"F B; [AA]

Con

cut

(Similar choice made in original Au calculus)

qg: T1FADB; [Aq] t:T"FA; [A]

cut

qt: T1I"E B; [A1A]
Esc

(dl(gt) - AP F L [B% A4

r: Tol"=AD B; [BY, ApA] ti - A (4]

rte Tl E B (BT AN] out
[d](rt): Tol' F L; [BY, 8pn] o
s{[d](wt)/[d|w} : TT'F A> B; [B% AA] tTE A [A]

(s{ld)(wt)/[dlw} ©) : TT' - B; [BY, AA] cut

~d.(s{[d](wt)/[d]w}) : TT' + B; [AA]

Con

(vd.s) t — ~d.(s{[d](wt)/[d]w} t)

A~ calculus

—_

. (Ax.s) t — s[t/x]. (B-reduction)

(vd.s) t — ~d.(s{[d](w t)/[d]w} t). (uy-reduction)
abort(s) t — abort(s). (aborted reduction)

~va.s — s when a does not appear free in s. (vacuous ~)

~va~yb.s — ~a.s[a/b]. (v-renaming)

o oA N

[d]ya.s — [d]s[d/a]. (u-renaming)

Confluent and Strongly Normalizing

Renaming rules eliminate redundant contractions
(Cons)

[dlya.s — [d]s[d/a] (also found in Au):

THA: b
s:TEA A4 Con s[d/b] : T+ A; [A%, A]

vb.s:THA [A] £ N e
[dbs: T+ L; [A%.A] —°° [d]s[d/b] : T+ L; [A%, A

Esc

Because A? ¢ A is possible (contraction inside [A] is always
available).

~va~yb.s — ~a.s[a/b]: eliminates consecutive contractions.

~va.s — s when ais not free in s: all intuitionistic proof terms
reduce to \-terms

The Computational Content of Contraction: call/cc and
C operators

Our version of Peirce’s Law: (-PD>P)DP = (P> L)D>DP)DP:

y (P> PR P ER]
[dly : (P > P)*, P F L; [P7]
X: (=P > Py +=P> P[] Ayldly:(—P > Py F =P, [P7] ~
(x Ay.[d]y) : (<P > P)* F P; [P9] -k
~d.(x Ay.[dly) : (=P > P F P; []
K= xd (x \y.[dly): F(=P>P)>P; []

Esc

Con

Y

> £ = MXxAy(Ad.(x Ay.dy)) =, v
> (/C M kK kz) — ’yd.(M)\y[d](y kq kg)) ki ko
» Given E(z] = (z ky k2), E[CM] — ~d.E[M(\y.[d]E[y])]

For the C operator, -——A > Aand ~~A D A are both unprovable.
But we have ~~AD>A =((ADL1)D>0)DA:

y i ~ACAE A ld
[d]y :~=AX A F L; [AY]
X i~ A~ SA] Ay dly i~ =AY SA; [AY)]

Esc

E
XOyldy AT O A &
abort (x \y.[d]y) :~—AX F A; [A9] c
~d.abort (x \y.[dly) :~—A* - A; [] O /
D

C = Mx.yd.abort (x Ay.[dly) :F~—=ADA; []

> (CM ki ko) = ~d.abort(M \y.[d]|(y ki kz2))
» CM = K(\k.abort(Mk))
» C(A\z.M) = abort(M) for z not free in M

» abort replaces free variable ¢ in Ax.ua.[p](x Ay.ud.[aly)
(original Ay term).

NJC with Non-Additive Disjunction (partial future work)

s:THA[A] t:T'+B; [A] s:THAAB [4] s:THAAB; [A]

7 / NE; NEp
(s,8): IT" = AN B; [AAT] (8)e : T+ A [4] (s)r: T+ B; [A]

s:THA [BA] Y s:TFB; [A%,4]
wld.s: THAVB; [A] ! w'ds:THAVB,; [A]\/

b

v:F1 |—A\/B; [A1] S:AX,FQ'_ C; [Az] tIBy,r3|— C; [Ag]
()\X.S7)\y.t) v:[lals b+ C; [A1A2A3]

VE

> (u, v; (wtd.t) — ~d.(u t{[d](v w)/[d]w});

u,v) (wdt) — ~d.(v {[d](uw)/[d]w}) (w-reduction)
u,v) yd.t — ~vd.(u,v) t{[d](u, v)w/[d]w} (w~y-reduction)
u,v)e — u; (u,v), — v. (projections)

0
)e — vd.s{[d]w,/[d]w};
)r — vd.s{[d]w,/[d]w}. (y-projections)

>
>
>

.S
.S

(
(
(
(
(
(

~d
~d

u:THA; [Bd,A] vl
Widu:THFAVB; [A] ' s:ATHC;[A] t:B.TFC; [A] VE
(A\x.s,\y.t) w'd.u:TF C; [A]

(cut)

Reduces to:
u:THA [BYA] t:B,TFC; [A] cut
u{[dlOy.w/[dw) T F A [C%A] — ° s:ATHC [A]

Ox.s) t{[d](\y-yw/[dw} T F C; [CY, A] out

~d.(Ow.8) u{[d] Oy Ow/[dw} T F C; [a] ~°

n

(u,v) (1) — ~d.(u t{[dl(v w)/[d]w})

The Computational Content of Disjunction

public int f(String s) throws IOEXCEPTION
try (\z.t)s catch exception e with \y.u.
(Ax.(x 8), \y.u) (w'd.\z.t).

x is not free in s: reverses application: (Ax.x s)t = (t s)
wtdazt : (ADC)VB

Exception handler \y.u : B> C

Term reduces to vd.t{[d]\(y.u)e/[d]e}[s/z] : C

[d]e throws exception

Reduces to t[s/z] if no exceptions thrown (vacuous 7).

vV V. vV VvV VvV VY

v-elimination replaces D-elimination for such procedures.

Comparisons: Ong and Stewart’s A

MMAFs:A | _intro A B s L | —elim
—i Y | —eli
F;A,Aal—[aA]S:J_ rAFu3Bs:B

» | -intro is very similar to Esc, but what is 1 -elim?

» “1” appears to be playing two different roles: enables
contraction and 0-elimination (0 D A).

» The -—A = A has fine proof (no free variables)
» But why should Peirce’s law require L -elim?

» The computational content of Peirce’s law is not attributed to
contraction. (-P > P) D P is contraction.

Comparisons: Girard’s LC

Similarities:

» Formula must stay in the stoup until something significant
happens.

» | is “negative”; the other constants and atoms are “positive”
A A B is negative if both A and B are negative, else positive.
AV B is negative if either A or B is negative, else positive.
» negative means Esc rule is possible; positive means purely
intuitionistic.
Differences:

» LC does not contain intuitionistic implication:
In ICL, A D B is negative if B is negative, else positive.

» Polarization not needed in ICL. No built-in “dual” atoms A-+.

» Relationship to focusing (focalisation) also lost with >.

Can ICL be translated into linear logic?

» Just translate IL into LL around the formula A — B,
then “throw in” L. Not even close!

> AV-A L AS (!A—o L): linear formula not provable.

» Better attempt: use a polarized translation (like LC'’s):
Recognize AV —A as negative, then use A (1A —o 1).
» Still doesn’t work for Peirce’s formula: (=P > P) D P:
need contraction on P
Not as long as D is translated using !A — B.
» Only apparent solution: use classical implication:
(-P = P)= Pwhere A= B = 1A—-7B.
But when to use = instead of >?
» What can we conclude, if no reasonable translation exists?

Linear logic is not subtle enough to go in between intuitionistic
and classical logic.

Soundness and Completeness

Sequent Calculus LJC

simple induction
Kripke ;:Models

upwardly closed sets
same as NJ to LJ| Heyting Aléebras w/ L

simple instances of
CCC’; w/ L

Curry-Howard plus ~

Natural Deduction NJC

Where did ICL came from:
Attempt to find a unified logic
» Starting point: Girard’s system LU.

» Our early attempt at an unified logic, LUF:

®7®727170
+1
&,E,Z,O/ /\+7\/+a5|71l’70f
+L +R
\Fa/\77V7J—/aT/ uaﬂana—rr
1

>?78L7[—|7J"T

» Second attempt at a unified logic: PIL:

o, X AT VT3
+L +R

_L _R

VT,ATY o, N

» The proof theory of PIL contained both LJ and LC.
» Breakthrough: found Kripke Semantics for PIL

» Possible to unify classical and intuitionistic logics inside an
intuitionistic semantics.

» The identification of | as a constant, which makes AV —-A
possible, replaced the need for polarized connectives.

