Let-Polymorphism and Eager Type Schemes

Chuck Liang

University of Pennsylvania
200 S. 33rd Street
Philadelphia, PA 19104-6389

email: liang@saul.cis.upenn.edu

Abstract

This paper presents a new algorithm for polymorphic type inferencing involving the 1et contruct
of ML. It avoids the gen operation of the algorithm W of Damas and Milner. This new algorithm
is a closer counterpart to the proof-theoretic formulation of the ML typing discipline than other
approaches. Sketches of the proofs of correctness, including completeness for the let case, are
also given. The basic technique of the algorithm also facilitates the declarative formulation of

type inference as goal-directed proof-search.

Introduction

Various formulations and algorithms for the inference or assignment of principal types to untyped
A-terms have long existed. In [2] Damas and Milner extended type-inferencing to involve the poly-
morphic let construct of functional programming langugaes (ML). They formulated a declarative,
proof-theoretic calculus for the ML type system, given here in Figure 1. Unfortunately, this cal-
culus does not by itself lead directly to an inference algorithm that yields principal type schemes.
For this purpose the algorithm “W?” was given. Algorithm W involves an operation called gen
(or close) in typing let-expressions. Together with the unification algorithm that yields most-
general unifiers, this operation ensures maximal generality of the type scheme for the locally-bound
term in let expressions. With respect to the original Damas-Milner calculus, gen effectively rep-
resents a forward-chaining step. The consequence of using this operation is that a simple proof
of completeness of the algorithm with respect to the calculus can not be given. Furthermore, it
is also desirable to formulate principal type inference as deterministic, goal-directed proof search
(augmented with unification) in some proof system. The gen operation has proved to be a main

obstacle in formulating such a system satisfactorily.

Proj Hrx:T, z:T€eEH

Hz:sFM:t

abs HEFXe M :s—t
HFM:5—t HFN:s

app HE(M N):t
HFM:S Hx:SEFN:t
let HFletz=Min N : t
HFM:T anotfreein H

II-Intro HEFM:1la.T

HEM:1laT

II-Elim HEM:T[s/a

(s, t represent unquantified types; S, T represent arbitrary type schemes)

Figure 1: The Damas-Milner Calculus [2]

In this paper we present an alternative algorithm for type inference that avoids the use of gen'.
This algorithm also takes advantage of the fact that in practice, only closed type environments are
needed. With closed environments, all free type variables that are dynamically introduced during
the type inferencing process can be safely discharged (II-quantified) upon successful completion
of the process. Only in the inductive proofs of correctness need we be concerned with the more

general case of open environments.

This paper is organized as follows. In Section 1 we motivate and present our algorithm. In Section
2 we give some sample type inferences using the algorithm. Sketches of correctness proofs are
given in Section 3. In Section 4 we discuss applications of our technique with respect to separate
compilation and other issues, including the formulation of type inference as proof search. We will

also discuss related work, in particular those of Leivant [9], Appel and Shao [1], and Harper [5].

1 Of Variables, Free, Bound, and Fugitive

Strictly speaking, the algorithm W infers types, and not type schemes. Let T, denote vy,...,v,.
Whenever a typing assumption f : II7,,.t is used, a “copy” of the type t[T,,/7,,| is created using
a set of new free variables 7,,. This occurs uniformly except in the let case, when type scheme
inference takes place in the form of applying gen. The technique we use approaches type inference
from the opposite direction. Here type scheme inference is the default. In other words, we shall
always try to keep type variables II-quantified as much as possible. If the typing of a compound

expression e requires two instances of a type scheme 1I%.t, this is made possible by appending two

Yand which does not merely replace let z = M in N with N[M/z]; this replacement leads to redundant inferences.

copies of the quantifier prefix to yield 7, 1%/ .s, where s is the type of e. New free variables are
uniformly replaced by new Il-bound variables. Typing conflicts are resolved post-hoc to prevent

over-generalization.

Before further discussion, we first present the algorithm. Define an eztended type environment H,
to be a mapping from program (or term) variables z to a structure Av,,.(o,t), which we shall call
an eager type scheme. Here, o is a substitution on type variables and ¢ is a type such that o(¢) = t.
The binding construct A quantifies over the type variables 7,;, which may occur anywhere in the
substitution-type pair (o,?). The intuitive meaning of this mapping is that z maps to the potential
type scheme 1lo,,.t if the substitution o is applied to the current type environment. The algorithm,

which we shall call Wy, is given in Figure 2.

For an extended type environment H, and a program expression M, Wr(H.; M) returns a structure
AT, .(o,t). Let) represent the empty (or identity) substitution. Assume all substitutions are
idempotent (fof = 6). The operation join is basically the same as the join operation from Leivant
[9]? . Given substitutions Sy,...,S,, join(Si,...,5,) = R such that for each S; in S1,...,5, there
is a substitution P; such that P;05; = R. Furthermore, if R’ also satisfies this property then there
is a substitution P such that P o R = R’. That is, join(S1,...,5,) is the most general common
instance of S7,...,5, (if it exists). The join operation can be implemented using the standard

unification algorithm.

The use of a-equivalence (=,) in the definition of the algorithm is appropriate since the A binder
can be conveniently represented by A-abstraction in the A-calculus. This amounts to using higher-
order abstract syntax [12] to simplify our presentation. We use “A” to distinguish it from the
“A” used in program expressions. Higher-order notation is not an essential part of the algorithm

(though it was the original impetus for the basic technique involved).

To explain how this algorithm is used relative to a regular (non-extended) type environment, we

define the following:

Definition 1 (Base Extension)
Given a type environment H, let H| represent the extended type environment that includes
(z— A 7,.(0, t)) for each (z : Iv,,.t) in H.

For a closed type environment H, if Wi(H1; M) succeeds with A7,,.(0,1) then it will always be

the case that (o,t) contains no free variables. We can therefore conclude that # = M : 17, 1.

The crucial point in Wy where “free variables” are dynamically introduced into an environment

occurs in the typing of a A-expression Az.M. Here z is assumed to have type @, where a is a

2The only difference with Leivant’s join operation is that it also returns a sequence of substitutions Pi, ..., P, as
well as the final, resolved common substitution: join(Si,...,Sn) = (R, Pi,..., Py) such that P;o S; = R.

Wn(H.;) = H.(z), for program variable z.
Wi(H.; Ax.M) = let a be a new type variable, and let
Wn(He,z — (0,a); M) =, Av,.(0, 1).

Return

AaAT,.(0, o(a—1)).

Wn(H.; (M N)) = let
Wn(He; M) =, At,.(01, t1), and Wn(H. N) =, Aty (02, t2)

such that the bound variables @, are distinct from v,. For a new type variable t,,

let @ be the most general unifier of ¢; and t; —1¢,. Let 0 = join(#,04,071). Return

Aty AT, AT, (o, o(ty)).

Wn(H.; let x = M in N) = let
Wn(He; M) =4 AT,.(01, t1), and

Wn(H., (z — A5,.(01, 11)); N) =a AUp.(02, 1)

such that @, are distinct from 7,. Let 0 = join(og,01). Return

ANu AD, (0, o(t3)).

Figure 2: Algorithm Wp

new type variable. This variable is free only in the dynamic, temporary environment. It will be
captured by A-abstraction when the top-level type scheme of Az.M is constructed. We will call such
variables introduced for A-bindings fugitive variables. In the algorithm W of Damas-Milner, new
free variables are constantly being generated. We observe, however, that if the initial environment
is closed then all dynamically generated free variables that can not be immediately quantified are
those that result from unification with fugitive variables. But since the fugitives themselves will
also be quantifiable eventually, any new variable that occurs in a substitution for them will also
be quantifiable eventually. In algorithm Wy, instead of using new free variables, we immediately
quantify any new variable generated from discharging (an instance of) a typing assumption. As

” The join operation,

a consequence, some invalid expressions will “appear momentarily typable.
however, will catch any inconsistencies in the substitutions and reject untypable expressions. The
technique presented here can be summed up as “eager quantification, delayed resolution.” We will

illustrate this principle with three examples.

2 Sample Inferences

Assume the type environment H contains the assignment f : llv.v — ». Consider typing the
expression Az.(f z). First we augment the extended environment H| with z — (0,a) for a new
fugitive variable a. In typing (f z), we unify v — » with ¢ — ¢, for some new variable #,. Thus
Wn(H 1,2 — (0,a); (f z)) =a At,Av.([v/a,v/t,],v). The accompanying substitution is then
applied to a — v, and the fugitive @ is captured, yielding AaAt,Av.([v/a,v/t,], (v —v). We can
therefore conclude that H F Az.(f z) : lallt,1lv.o — .

Now consider let z = Ay.y in (2 z). First, Ay.y is inferred as having the eager type scheme
Av.(@, v—wv). Then z is assumed to map to this eager scheme. For (z z), the type of z is inferred
twice as Av.(0, v —v) and Aw.(0, w— w). With a new variable ¢,, (w — w)— 1, is unified with
v— v, yielding the substitution [w— w/t,, w— w/v]. This substitution can be trivially joined with

the two instances of the empty substitution. Thus calling Wy on (2 z) will return the structure
At,AwAv.([w—w/t,w—w/v], w—w),

and since the substitution returned joins immediately with the empty substitution, we can conclude
that let © = Ay.y in (z z) has type llw.w — w (eliminating the vacuous quantifiers this time for
convenience; we may also implement this elimination as an optimization). The key observation

here is that a type scheme is always inferred, thereby eliminating the need for the gen operation.

For the final example, assume the program variable p has type Ilv.v — v —v. Consider the untypable
expression Ay.(let z = (p y) in (2 z)). For the top level A-abstraction, a new fugitive variable a
is assumed as the type for y. In the let expression, (p y) can be inferred as having the structure

At,Av.([v/a,(v—wv)/t,], v—v). The program variable z is then assumed to map to this structure

in the updated extended environment. Typing (z z) will again produce two individual copies of

this structure:
Aty Av.([v/a,(v—v)/t,], v—v), and At,.Aw.([w/a,(w—w)/t,], w—w).

Another type variable ¢, is introduced, and (w — w) — ¢, is unified with v — v, resulting in
the substitution [(w — w)/v, (w — w)/t.]. But this substitution can not be joined with the two
substitutions from the individual recursive inferences for y: [v/a, (v —v)/t,], and [w/a, (w—w)/t,].

The variable a can not have both w— w and w (or both v — v and v) as instances.

Notice that although a fugitive a is a (dynamically) free variable, it can be substituted by a (A)
bound variable, as when a was substituted by the A-bound variable » in the third example. Once
a variable is bound, “copies can be made”, and thus two instances of », v and w, were created.
Type inference was allowed to continue where in algorithm W it would have failed: » was unified
with w— w. This “eager inference,” however, was invalidated when the substitutions were joined,
revealing that v/a and w/a are inconsistent if ¥ = w — w. In case these substitutions can be
successfully joined, then these variables (v and w) can remain rightfully quantified, since the final
type scheme returned will quantify over all fugitive variables. Because we need to keep track
of which bound variables are in fact “eagerly” quantified, the join operation must replace the
composition of substitutions as used in algorithm W. That is, we need to “memorize” the various

substitutions for the fugitive variables in the form of extended type environments.

3 Correctness Proofs

This section addresses the major components required to show soundness and in particular com-
pleteness of Wi with respect to principal type schemes for the Damas-Milner typing discipline. As
a consequence we also show how to extend the algorithm to accommodate open type environments

in general.

With respect to a structure A7,,.(o, t), we say that a bound variable v; is innocent if for some free
variable (or fugitive) a, o(a) = t such that »; occurs in £. That is, innocent variables are variables

that were A-bound prematurely, and should be freed if @ occurs in the environment.

Definition 2 (Base Compression)

Given an extended type environment H. of the form

{1 — AE(UM t)seo s Ty = (AU (O, tm)]

i
J

0 that are innocent. Let w; be all the variables E, ..

Assume that all variables v —are distinct. Let § = join(oq,...,0m). Let Ty be all the variables in

Lo minus uy. Define He | = (6, H) where

H is the type environment

{z1 : Mw1.6(t1), ..., 2m Hwr.0(t,)}

For a type environment H, clearly H1|= (0, H).

Theorem 1 Given an extended type environment H. and a program expression M, assume
Wn(He; M) = Av,.(0,t). If [Heyy — AT, .(0,t)] = (8, H) for some new “dummy” variable y, then
HEM:H(y).

Proof: By structural induction on M, appealing to properties of the join operation. O.

We forgo the details of the soundness proof in favor of completeness. The following corollary

establishes soundness for closed type environments.

Corollary 1.1 (Soundness of W)
Given a closed type environment H and a term M, Win(H 1; M) = Av,.(0,t) implies
HF M : v, 1.

The (syntactic) completeness proof uses the basic technique of Leivant [9] of restating the inference
rules in more desirable forms. The main contribution here is our let case. A generic application
of a substitution G' to a type scheme 117,,.t is defined as G[llv,,.t] = lI5,,.G(t). That is, generic
application can replace bound variables as well as free variables. For every “generic instance” (in
the sense of Damas-Milner [2]) ¢’ of o there is a substitution G such that G[¢] = ¢’ (modulo some
vacuous Il quantifiers). Because the | operation breaks quantifiers, the completeness theorem must
be stated using generic applications of substitutions. In the theorem below, we assume that all

variables (free and bound) in H. are distinct.

Theorem 2 Assume for the extended type environment H., H. | exists and is equal to (6, H).
Assume S[H| = M : T for substitution S, term M and type scheme T. Then Wn(H.; M) =
AD,,.(0,t). For a new term variable y, let [H.,y — A,,.(0,1)] |= (6',H'), let 0 0§ = §'> and let
H'(y) = w;.t'. It also holds that there exists a substitution p such that po@ = S and p[llw;.t'] = T.

Proof: By induction on the height of derivations. For the inductive basis if z : [lw;.tg € H then
z — AT,,.(0, t) € H, for some o and ¢, and Wr(H,;2) = AT,,.(0, t). Here, ¢’ = 6. Weset p= 5
in this case and the result follows. The II-Elim case is trivial. The II-Intro case also follows easily

since all variables not free in H,. are always A-bound. The abs and app cases can be shown by

*We know 6 exists since §' = join(§, o).

adapting the following technique found in Leivant [9]:* the inference rules can be rewritten in the

forms

S[H],z: Sla]- M : S[b] S[HIF M : S[r—t,] S[H]F N :S[r]

STHIF 2. M : Sla—p] “ S[H]F (M N): S[t,] v

where a, b, r and ¢, are distinct type variables not appearing elsewhere.

We concentrate on the let case. Let H. |= (8, H). A let rule-application can be written in the

form

SHIFM:¢ S[H],:U:fl—N:Tl
S[H]Fletz=Min N : T ',

where £ is some type scheme. By inductive hypothesis, Wi(H.; M) = Av,,.(01,%1) such that
[He,y — AT, .(01,t1)] = (61, H1). Let Hi(y) = llw.t and 06 = é;. There is also a substitution
p1 such that py o8 = S and py[llw.t] = £. But pi1(f) = p1(61(t1)) by definition of Hy, and
p1(61(t1)) = p1(0(8(6(t1)))) = S(61(t1)). Thus £ = S[1lw;.61(¢1)]. We can therefore rewrite the

above instance of the let rule as:

S[H]"ZMS[HW](Sl(tl)] S[H,$HW[61(1§1)]"IVT
S[HlFletz=Min N : T

let

The crucial observation is that [H.,z — AT,.(01,11)] |= (61, [0[H], 2z : Tw;.61(11)]). But S[H] =
pr1ofob[H] = S[A[H]]. We can therefore eliminate # by absorbing it into S: S[H,z : Iw;.61(11)] =

S[[H], z : Iw;.61(t1)]. Thus by inductive hypothesis on the second premise we have
WH(He,x — Am.(()’l,tl); JV) = Am.(()’%tg).

Let [He,ib — Am.(017t1)7y — Am.(a’g,tz)] lI (62,H2)7 G506, = (52, and Hg(y) = 1Iz;.t;. The
inductive hypothesis also gives a py such that py o8y = 5 and py[llzg.t5] = T.

Now, join(og,01) = 0 succeeds since d3 exists (03 is an instance of o3 and o7), and so
Wn(He; let 2 = M in N) = Au, AT, .(0,0(12))

succeeds. We also have [H.,y — Au,Av,.(0,0(t2))] |= (62, H3), and we know that Hs(y) =
11Z5.02(t2). Now #3060 06 = 63 and pyo(f06) = Sof = 5. Finally, 63(t2) = t3 by definition of
b9, and so

pg[Hﬁég(tg)] = pQ[HﬁtQ] =T.

O

*Leivant defined inference rules for a more general set of constructors than abs and app (but without let). He

also does not use generic applications.

Corollary 2.1 (Completeness of W)
If for a closed type environment H such that H = M : T, then Wn(H1; M) = Av,,.(0,t) such that

T is an instance of 1lv,,.t.

Proof: We may assume without loss of generality that 7, are distinct from all variables in H. Set
S = o. It follows easily from the definition of the algorithm that ¢ does not contain variables other
than 7, in its support. Thus S[H]|= H. Similarly from the definition of the algorithm, o(t) = ¢.

In terms of the above theorem, here § = () and §’ = o, so we set p = () and the corollary follows. O

The | operation is not needed in the algorithm for closed type environments since in the returned
substitution all fugitives are captured. If the environment can be initially open, then we must free
the innocent variables from bondage. The generalized W algorithm merely requires a simple extra
step: Let Wn(H1; M) = Av,.(0,t). Then [HT,y — AT,,.(0,1)] |= (0, H"). Return H'(y). It will
follow that H' = M : H'(y).

4 Related Work

The technique presented here is related to the work of Leivant [9] and of Appel and Shao [1] in
type inferencing with multi-environments (environments where variables map to sets of types).
Leivant’s algorithm “V” returns a multi-environment (or multi-base) and a type given a program
expression. Type inference in algorithm V does not take place under a given type environment.
As a consequence, there is nothing to constrain the generalization of free type variables. Variables
can be given multiple instantiations which are then resolved at the end. But algorithm V does
not include a case for let. Leivant chose to address let polymorphism in the context of a rank
2 conjunctive type discipline. Wand [13] gave a similar algorithm, which likewise bypassed let.
Appel and Shao’s algorithm W* [1] can be seen as essentially an extension of algorithm V to
include let. They use a procedure called Monounify which serves basically the same purpose
as join. W™ is similar to the approach here in that it too does not use gen (gen would be
meaningless since there is no environment in the input to W*). Instead, for the let case W* uses a
complicated operation called Polyunify, which generates a new set of copies of multi-environments
(or “assumption environments”) for every occurrence of the let-bound variable. The Polyunify
technique is a “brute force” method akin to replacing let + = M in N with N[M/z]. The multi-
environment returned by W* can be enormous, and will have to be further resolved with a given
type environment (using their Match procedure) to derive the final type. Because of this complexity,
Appel and Shao themselves favored a customization of Kaes’ algorithm “D” [8] for their purpose of
smartest recompilation. Furthermore, the correctness of W* was proved by a complicated reduction
to the correctness of algorithm W, and not to the Damas-Milner typing discipline itself. In fairness,
the algorithm W* allows concurrent type inference in the let case, while in algorithm Wi only the

case for (M N) allows for parallel computation.

The motivation for W* was to support separate compilation, where the types of program variables
are not always available. Each program variable is always eagerly given the most general type (a free
type variable), and the various possible instantiations are resolved when the type is finally known.
The algorithm Wi as given already contains the essential components necessary for this purpose.
We can assign to each program variable that is not contained in the known type environment
the most general type scheme Ilv.v. Then Wy will return a substitution containing the different
possible instantiations of ». For example, assume that the type of f is unknown. Consider the

expression let x = (f 2) in (f 2.5). If f is mapped to Av.(0,v), then Wy will return the structure
AbAcAviAvy.([real — /vy, int —b/vq], ¢).

If we knew that the variables vy and vy are in fact copies of the type scheme Ilv.v, then we can
infer the correct type for the expression once the type of f is available. Assume we now know
that the type of f is actually Ilv.v — v. We can apply Appel and Shao’s Match technique to the
two instantiations real — ¢ and int — b with two separate instances of llv.v — v: Iu.u — u and
ITw.w — w. This will reveal that ¢ = real and b = int, and therefore real should be the type for
let x = (f 2) in (f 2.5). To implement this technique correctly, we must modify W so that we
can identify which variables are in fact copied from type schemes Ilv.v associated with undeclared
program variables. One approach may be to label these special type variables with the program
variable they are associated with. This approach would be similar to Appel and Shao’s adaptation
of Kaes’ algorithm D for constrained types [8]. However, algorithm D again uses the gen operation
in the let case. Appel and Shao’s proof of the correctness of their version of D is again by reduction

to algorithm W, and not to the proof-theoretic typing discipline.

The origin of the eager quantification technique came from trying to implement type inference in
a higher-order logic programming language. Such a declarative treatment will aid the analysis of
functional languages in the context of logical frameworks, such as the dependent-type calculus LI
[6]. The desire here is for an executable proof-theoretic formulation of type inference. That is,
type inference should be presentable as proof search. The original Damas-Milner calculus is too
nondeterministic for this purpose. Previous attempts at its alteration either took short-cuts with
the let case or were stopped by gen. In [4], Hannan gave proof-theoretic formulations of the natural
semantics of ML. But his technique for let was basically to replace let x = M in N with N[M/z].
To allow let-expressions to be typed naturally, Harper defined in [5] an “algorithmic” version of
the Damas-Milner calculus for the express purpose of allowing the modified typing rules of the
new calculus to become logic programs that yield principal type schemes. He defined a predicate
called witnessed that captures the maximality condition implemented by gen. Application of the
gen operation is replaced by proving that a type scheme is witnessed. Specifying the witnessed
predicate directly as logic programming, however, requires a forward-chaining operation which is
inconsistent with the goal-directed nature of logic-programming interpreters. Another problem
with type inference was the need for an inexhaustible supply of new variables. In the context

9

of “meta-programming in logic,” one can either use the meta-logic’s inherent “logic variables” or

10

define data structures such as strings to represent object-level variables. Using the meta-logic’s
own variables (called the “non-ground representation”) is only adequate for a very small range
of problems®. Strings and similar structures are too algorithmic and “low level.” The author
wished to use A-bound variables in the simply typed A-calculus (i.e, higher-order abstract syntax)
to represent the new type variables that are unavoidable for type inference. But A-abstraction
is also the most natural representation for type quantification. Thus both free and bound type
variables are represented in the meta-logic as A-bound variables. This uniform treatment of type
variables led to the eager type scheme method: even variables that are “supposed to be free” are
bound. An implementation of a slight variation of the Wp algorithm has been given in the logic
programming language L) [11] without using any extra-logical extensions. This implementation is

described in the author’s Ph.D. thesis [10].

Conclusion

A common problem of all the related work we’ve examined is their difficulty with the let case.
The traditional gen operation created an undesirable gulf between the declarative typing discipline
on the one side and the algorithmic type inferencing process on the other. With algorithm Wy we
have significantly narrowed this gulf. With the basic technique of eager polymorphism we also hope
to provide a new, computationally sound starting point from which various issues of type inference
can be studied. It of course remains to extend Wp to the full ML language. Another area we are
investigating concerns the use of eager polymorphism with respect to polymorphic references. It
is hoped that we will be able to accept more type-safe programs than current methods. The Wiy
algorithm can also lead to the early reportage of typing errors. Because substitutions are composed
instead of joined in algorithm W, by the time we discover a type error the substitutions may have
obscured its origin. We would like to be able to inform the programmer which section of the code
originated the type error. Combined with a constrained typing discipline, the Wy technique can
potentially offer a new solution to this problem. We also hope to study the eager type scheme

technique in the context of typing disciplines other than ML polymorphism.

Acknowledgments

This research is supported in part by the following grants: ONR N00014-93-1-1324, NSF CCR-
91-02753, NSF CCR-92-09224, and DARPA N00014-85-K-0018. The author wishes to thank Dale

Miller, Philip Wickline, and especially Sandip Biswas for support and invaluable discussions.

®See [7, 10] for further discussion of issues in meta-programming in logic.

11

References

[1] Andrew Appel and Zhong Shao. Smartest Recompilation. In Tenth Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, January 1993. Longer version
as Princeton University Technical Report CS-TR-395-92.

[2] Luis Damas and Robin Milner. Principal type-schemes for functional programs. In Ninth
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
207-212, January 1982.

[3] C. A. Gunter. Semantics of Programming Languages: Structures and Techniques. Foundations
of Computing. MIT Press, 1992.

[4] John Hannan. Extended natural semantics. Journal of Functional Programming, 3(2):123-152,
April 1993.

[5] Robert Harper. Systems of polymorphic type assignment in LF. Technical Report CMU-CS-
90-144, Carnegie Mellon University, Pittsburgh, Pennsylvania, June 1990.

[6] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. Journal
of the ACM, 40(1):143-184, 1993.

[7] P. M. Hill and J. G. Gallagher. Meta-programming in logic programming. Technical Report
Report 94.22, University of Leeds, hill@scs.leeds.ac.uk, August 1994. To appear in Vol. 5 of the
Handbook of Logic in Artificial Intelligence and Logic Programming, Oxford University Press.

[8] Stefan Kaes. Type Inference in the presence of Overloading, Subtyping, and Recursive types.
In 1992 ACM conference on LISP and Functional Programming, San Francisco, CA, pages
193-204. ACM Press, 1992.

[9] Daniel Leivant. Polymorphic type inference. In Conference Record of the Tenth Annual ACM
Symposium on Principles of Programming Languages, pages 88-98, 1983.

[10] Chuck Liang. Substitution, Unification and Generalization in Meta-Logic. PhD thesis, Uni-
versity of Pennsylvania, September 1995.

[11] Dale Miller. A logic programming language with lambda-abstraction, function variables, and
simple unification. Journal of Logic and Computation, 1(4):497-536, 1991.

[12] Frank Pfenning and Conal Elliot. Higher-order abstract syntax. In Proceedings of the ACM-
SIGPLAN Conference on Programming Language Design and Implementation, pages 199-208.
ACM Press, June 1988.

[13] Mitchell Wand. A simple algorithm and proof for type inference. Fundamenta Infomaticae,
10:115-122, 1987.

12

