Free Variables and Subexpressions in
Higher-Order Meta Logic*

Chuck Liang

Department of Computer Science
Trinity College
300 Summit Street
Hartford, CT 06106-3100, USA
chuck.liang@mail.trincoll.edu

Abstract. This paper addresses the problem of how to represent free
variables and subexpressions involving A-bindings. The aim is to ap-
ply what is known as higher-order abstract syntax to higher-order term
rewriting systems. Directly applying S-reduction for the purpose of subterm-
replacement is incompatible with the requirements of term-rewriting. A
new meta-level representation of subterms is developed that will allow
term-rewriting systems to be formulated in a higher-order meta logic.

Introduction

Higher-order logic, and specifically the technique of higher-order abstract syn-
tax has been shown to be a useful paradigm in the formulation of object-level
systems?. These range from automated theorem proving to polymorphic type
inferencing and to program transformation. Compared to first-order systems,
higher-order logic based on the A-Calculus can represent variables and abstrac-
tions in the object theory in a more natural manner. Issues such as the renam-
ing of bound variables are eliminated by a-equivalence classes of the meta logic.
Many techniques have been developed on this basis.

The existing techniques, however, are still insufficient for using higher-order
logic as a generic framework (and meta-programming language) for dealing with
the wide range of problems encountered in representing object-level systems.
Many operations required by these systems are seemingly inconsistent with char-
acteristics of the meta logic. In many object-level systems, extracting a subex-
pression or subterm from an expression is a common procedure. In term-rewriting
systems in particular, we need to be able to substitute some occurrence of a
subterm in an expression with another term. In the A-calculus, substitution is
synonymous with g-reduction. -reduction alone, however, does not suffice to
formulate all aspects of term replacement required in implementing and reason-
ing about term-rewriting systems. This is especially true when the object-level

* This paper appears in “ Theorem Proving in Higher Order Logics, 11th International
Conference” Springer-Verlag LNCS Vol. 1479. September 1998.
% See [17, 4, 10, 5] for background and sample work on higher-order abstract syntax.

rewriting system is itself higher-order. Higher-order rewriting requires substi-
tution to be regarded in the broadest sense, one in which the scopes of bound
variables are not necessarily respected. We are required to consider z as, in some
sense, a subterm of Az.z. This is the central problem we shall address here.
This paper also complements the work of Felty [3], which showed how higher-
order term rewriting can be implemented in a logic programming language sup-
porting higher-order abstract syntax. The techniques presented in this previous
work does not address the problem of subterms with free variables directly, and
are therefore limited in their capacity as a meta-theory for reasoning about vari-
ous aspects of higher-order writing systems (Nipkow’s higher-order critical pairs
[15] in particular). We shall develop a technique that is compatible with those of
[3], but which allows for full flexibility in reasoning about individual subterms.

1 Substitutions and Contexts in Higher-Order Rewriting

In the A-calculus, f-reduction alone is incompatible with substitution required
in term-rewriting. First of all, 8-reduction will universally replace all occurrences
of a variable, whereas in term rewriting we may only wish to replace a particular
occurrence. This can be solved by using A-abstraction to represent a context that
identifies the precise location in the term structure where the substitution is to
take place.

Definition 1. A context is a term of the form Ac.D where ¢ appears free exactly
once in D.

For example, given a term (f a (f a b)), the “context” C = Ac.(f a (f ¢ b))
identifies the second occurrence of a as the one to be replaced, so that the
B-reduction of (C'S) will replace that occurrence of a with the term S. The
replacement of subterms using this higher-order representation is therefore a
three-place relation involving a context in addition to the original and final
terms.

There remains, however, many problems with such a formulation. The first
of which is control and computational feasibility. Consider again term-rewriting.
Given an arbitrary term 7" and a rewrite rule of the form [hs — rhs, we need to
be able to determine what, if any subterms of 7', along with their contexts, can
be rewritten using this rule. That is, what context C' and subterm S exist such
that S is an instance of [hs and (C' S) = T'. One may be tempted to specify this
relation using Huet’s formulation of higher-order unification [7]. Such a specifi-
cation, however, is computationally unacceptable since higher-order unification
is undecidable and the set of unifiers for a problem is generally too large. That
is, only a few of the multitude of unifiers are acceptable as correct solutions for
S and C, because we require C' to be a context.

An even more serious problem occurs when the object-theory itself may in-
volve A-terms, and this forms the major focus of this paper. In [15], Nipkow
extended the critical pair formulation used in the well-known Knuth-Bendix

Completion procedure to a rewriting system involving (a restricted class of) A-
terms. In this system, subterms that are subject to rewrite rules may contain
bound variables. For example, assume that g is an (object-level) unary operator
and f some binary operator. Given a sample term T' = Az.(f (Az.x) Ay.(g z)),
we would like to consider (g x) as a subterm of T'. This is because it is valid to
apply a rewrite rule, such as (g9 Z) — (h Z), to (g z), yielding the term (h z).
We also need to graft (h x) back into the context for (g) in T to form the final
term Az.(f (Az.z) \y.(h z)). But in both (h z) and (g) x is a free variable. This
process therefore requires the recapturing of the free variable x by A-abstraction.
But capturing a free variable under A-abstraction is in direct opposition to sub-
stitution as (B-reduction. Furthermore, we also must ensure that z is captured
under the original abstraction that bound it in 7', namely the outermost Az, and
not the inner Ay. The names of bound variables in T are now critical. It may
therefore appear that a-equivalence classes, as well as 8-reduction, are both in-
consistent with higher-order term-rewriting systems. Yet af-equivalence forms
the basis of higher-order abstract syntax. This apparent inconsistency induces
the abandonment of higher-order logic as meta-language. We would need to use
an essentially first order theory as the meta logic of a higher order system.
This approach was in fact adopted by Nipkow in his formulation of higher-order
critical pairs.

The inconsistency described above is only one of many which may arise in
meta-programming. Related to the problem of substitution is the issue of how to
represent object-level variables in the meta-logic. The naive approach of using
free variables in the meta-logic to represent free variables in the object-logic,
known as the “non-ground representation,” is insufficient for all but the most
trivial systems3. In order for a meta-logic to properly represent the object-theory,
it can be enriched with new features that will allow it to address certain issues
directly. Alternatively, we can try to preserve the meta-logic and address the
same issue by changing the representation of the object-theory in the meta-logic.
In [9] for example, it was shown how meta-level bound variables can be used to
represent free type variables in an object-level typing system. The problem of
determining subterms is similar in that meta-level substitution (i.e, S-reduction)
must not be used to represent subterm replacement at the object-level. In order
to preserve the A-calculus as meta-theory, we must first adopt a different repre-
sentation of a “subterm” of an expression in the A-calculus, and then redefine
the subterm-replacement relation using this new representation. a-equivalence
classes can be preserved (with all the benefits of adopting them) using this new
representation. (-reduction will still be used to implement term-replacement,
but in a restricted and indirect manner.

2 Term Trees with A-expressions

Term-rewriting requires the notion of “subterm” to be regarded in the widest
possible sense. In [15], Nipkow showed that the traditional treatment of first-

3 This is well documented (see [6]).

order term trees can be extended to A-terms by simply treating each occurrence
of Az as a unary first-order term constructor. Each subterm of an expression or
term is associated with a unique sequence representing the position of the sub-
term in the tree. The empty sequence € represents the position of the “root” of the
tree, or the term itself. Each member of the sequence is an integer starting from 1
to the maximum branching factor (or the maximum arity of the constructors) of
the expression. We will use Tigp to represent the subterm at position p in 7'. In-
ductively, Tee = T and for any n-ary operator op, (op X1,...,Xn)ai.p = X;ep-
For example, position 1 represents the leftmost subtree of the root. Position
1.3 represents the third descendent of the first subtree of the root, and so on.
The notation T'[S]/ep is used to represent T with S replacing the subterm at
position p. Each A-binding Az represents one node in the term tree (the z is
not a separate node). If we confine ourselves to pure A-terms with only applica-
tion and abstraction, then positions are sequences over {1,2}. The term tree for
Az.(f (Az.xz) Ay.(g x)) is given in Figure 1. The subterm Az.z is at position 1.1.

Az

Fig. 1. Term tree for Az.(f (Az.z) Ay.(g z))

Under this formulation, subexpressions with bound variables can be extracted
by “pruning” off a subtree. Expressions with free variables can be inserted or
“grafted” into a tree - allowing for the capture of free variables under A-bindings.
a-equivalence is therefore not preserved under such an interpretation. In par-
ticular, x can be considered a subterm of (for example) Az\y.(f y) because
z = Az y.(f y x))el.1.2. We shall call z a free subterm when considered in this
manner.

Definition 2. S is a free subterm of T if for some sequence p, Tap = S.

We emphasize that x is a free subterm of Az.x but not of Ay.y although
the two A-expressions are a-equivalent. Nipkow used free subterms and term
trees in formulating higher-order critical pairs. The clarity of this formulation
suffers from the need to explicitly maintain consistent names for free and bound
variables - something that a higher-order meta logic should provide for auto-
matically. A reformulation of the representation of subterms and substitution

is required - one that preserves a-equivalence classes and yet respects the first-
order notion of replacing subterms in a term tree. This formulation is necessarily
different from traditional g-reduction because of reasons stated above.

3 Subterm Redefined

The meta-language we shall use in the reformulation is the A-Calculus with a-
equivalence. Concerning S-reduction, only a restricted form is required. This is
the “By” reduction of Miller [12]. A fp-redex is a (B-redex of the form (Az.A)y
where y is a A-bound variable - or equivalently, an arbitrary variable not ap-
pearing free elsewhere?. Given a-convertibility, Bp-reduction can be simplified
to (Az.A)z =5, A. We shall write E” to represent the By-reduced form of E.
Bo-reduction is terminating since no new redeces can be introduced. The meta
language need not involve types (though our result will usually be applied to
object-level An-long normal forms in practice).
Our general approach can be summarized by the following:

The free variables in a free subterm should be represented by bound vari-
ables at the meta-level.

If a-equivalence is to be preserved, some mechanism must be applied to associate
the free variables in a free subterm with the bound variables in the parent term.
Consider the term represented by the tree in Figure 1. The free occurrence of x
in the free subterm (g) must be associated with the outermost A-abstraction,
and not with either of the two other A-abstractions occurring in the parent
term. This relationship between variables in free subterms and the scopes of
A-abstractions they fall under can be cleanly represented by A-abstraction itself
(at the meta-level). For each A-bound variable in the parent term, we include
the A-abstraction in representing the free subterm. The free subterm (g z) of the
term in Figure 1 will be represented by (the a-equivalence class of) AzAy.(g).

We shall call AxAy.(g =) a A-subterm of its parent term. The ordering of the
A-abstraction prefix of a A-subterm, not the names of bound variables, preserves
the relationship between variables in the subterm and A-bindings in the parent
term.

In the following definition of A-subterms we do not distinguish meta-level \-
abstraction from object-level A-abstraction. Although in practice this distinction
is usually made, the result we prove is more general without the distinction.
We show how to add the distinction in discussing the implementation of this
technique in Section 5.

Definition 3. (A-subterms)
The three-place relation Agypierm is inductively defined over the third argument
(representing the context) on all terms A, B, D, X and X}, ..., X, as follows:

1. Asupterm X X Ac.c.

* See [13] for the formulation of this equivalence.

2. Agupterm A (op X1 ... X;... X)) Ae.(op Xy ... (D c)’g0 ...X,) if and only if
Agubterm A X; D, where op is any n-ary operator symbol (including applica-
tion) that is not of the form \z.?

3. Asupterm A B AeAz.(D x ¢)? if and only if Agyupterm (A x)ﬁo (B :U)ﬁo (D a:)ﬁo
where z is an arbitrary variable not appearing free in A, B or Az.(D z)%.

The intuitive meaning of Agypserm S T C is that S is a A-subterm of T" under
the context C. The context replaces the position sequence in first order term
trees. We say that S is a A-subterm of T if Asypterm S T C holds for some
context CS.

3.1 Examples
Some sample derivations of A-subterms are provided below:
1. The first example does not involve A-bindings:
Asubterm a (f (g a) b) Ac.(f (g) b)
holds if, by the second clause of the definition of Agupterm, with ¢ =1,
Asubterm a (g @) Ac.(g c)
holds. Again using clause two, this holds if
Agupterm @ a Ac.c

holds. But Agupterm @ a Ac.c holds by clause one.

2. For the second example,
Agubterm A2AY.(g) Az.(f Oz.z) Ay.(g9) Acdz.(f (Az.x) Ay.c)

holds since (by clause three with D = AzAc.(f (Az.z) Ay.c) and arbitrary
variable z)

Asupterm Ay-(9 z) (f (Az.z) Ay.(g 2)) Ae.(f (Az.z) Ay.c)
holds since (by clause two)
Asubterm Ay-(9 2) Ay-(g 2) AeMy.c
holds since (by clause three with D = AyAc.c and arbitrary variable z)

Agubterm (g z) (g z) Ac.c

holds by clause one. The reader is invited to verify that AyAz.(g z) would be
a A-subterm of A\z.(f (Az.x) Ay.(g y)), but not of Az.(f (\x.z) Ay.(g x)).

5 For pure A-terms, op would just be application and this case would be for (X1 X»).
We generalize this case to arbitrary operators in order to better connect the definition
with arbitrary term trees.

6 Agubterm is defined so that C' must be a context if Agypterm ST C holds (see
Theorem 6).

3. The final example demonstrates the generality of the Ay pserm relation. It is
possible to consider y as a free subterm of Az \y.(y x) by treating op implicitly
as the application (app) operation of the A-calculus. (y z) can then be read
as (app y). As a A-subterm, y becomes Az\y.y:

Asubterm AzAy.y AzAy.(y) Ae.dzAy.(c z)

holds since (by clause three with D = AzAcAy.(c) and arbitrary variable
u)
Asubterm)‘yy }‘y(y u))\c.)\y.(c u)

holds since (again by clause three with D = AyAe.(c u) and arbitrary variable

v)

Asubterm v (v u) Ae.(c u)

holds since (by clause two)
Asubterm v U Ae.c
holds by clause one.

It is worthwhile to note that, as in the second example, the A,y pterm rela-
tion will also hold under different contexts. Specifically, Az\y.(g x) is also a A-
subterm of \z.(f (Az.z) \y.(g x)) under the context Ac.Az.(f (Az.z) ¢). In this
case, AxAy.(g =) would correspond to the free subterm Ay.(¢g z) and not (g z).
This ambiguity as to how to interpret the A-bindings is resolved by attaching
the precise context to the Agypterm relation. It can also be resolved by separating
meta-level A-abstraction from object-level A-abstraction, which we do in Section
5.

3.2 Rewriting with A-subterms

The Agypterm relation can be used for term-rewriting because we can now safely
extract the subterm to be replaced. A rewrite rule can be applied by “looking
inside” the A-bindings for the subterm to be replaced. That is, we can define the
application of rewrite rules in higher-order abstract syntax as follows:

Definition 4. Given a rewrite rule R = [hs —» rhs, we say that B replaces
A under R if either

1. A — B is an instance of [hs — rhs, or
2. (B)P replaces (A z)% under R for an arbitrary variable 2 not appearing
free in A, B or R.

Thus Audv.(h u) replaces AxAy.(g x) under the rule (g Z) — (h Z) (where
Z is a free variable). That is, the “replaces” relation rewrites a A-subterm to a
term that preserves the A-abstraction prefix. The rewritten term can be grafted
into a context to form a new term. We can define rewriting for general A-terms
as follows:

Definition 5. A rewrites to B under rule R if:

1. for some term S;, Asupterm Sa A C' holds for some (context) C.
2. for some term Sy, Sy replaces S, under R.
3. Asubterm Sb B C holds.

That is, if S, is a A-subterm of A and Sy is a A-subterm of B under the same
context, and such that Sy replaces S, under R, then A rewrites to B under R.
Thus Az.(f (A\z.z) A\y.(g z)) rewrites to Au.(f (Az.z) Mv.(h u)) under the rule
(9 Z) — (h Z) because:

1. Asupterm Audv.(g u) Az.(f (Az.z) My.(9) AeAz.(f (A\x.z) Ay.c) holds
2. Mudv.(h u) replaces Az\y.(g =) under (g Z) — (h Z).
3. Asubterm Audv.(h u) Au.(f (Az.z) d.(hu)) Aedz.(f (Az.z) Ay.c) holds.

The reader is invited to verify that this example is preserved under a-equivalent
classes of terms.

The technique used in Definition 4 of looking inside A-bindings to find a
matching instance of a rewrite rule is similar to how higher-order rewriting is
formulated by Felty in [3]. Instead of extracting a subterm together with its
context explicitly, Felty’s method essentially combines the stripping away of \-
bindings with the finding of a subterm that can be rewritten. While this approach
suffices for the implementation of a higher-order rewriting system, it can not be
used for the meta-level reasoning about properties of such systems. Nipkow’s
higher-order critical pairs provide the best example, for it requires a greater
degree of flexibility in reasoning about individual subterms and their contexts.
Consider the rewrite rules Ay.(h (¢ (f y))) — a and (g X) — (b X). A critical
pair is formed by the terms a and Ay.(h (b (f v))). By Nipkow’s definitions this
pair is formed by extracting the free subterm (g (f y)) together with its position
and grafting the term (b (f y)) into the same position. Notice that the variable
y becomes recaptured under the original A-binding. This process can not be
formulated using only the “tacticals” of [3]. The subterm and context must be
extracted explicitly, but in a way that preserves a-equivalence classes. As shown
above, both the extracting and grafting of subterms can be formulated using the
Asubterm relation.

4 Correctness Theorem

In this section we show that this higher-order formulation of subterms is correct
in the sense that it is consistent with the term-tree representation.

Theorem 6. For any terms S, T, and C, Asypterm S T C holds if and only if:

1. 8§ =4 Ax1 ... x,,.S" for somen >0 (if n =0 then S =, S'), such that

2. for some position p, Tap = S’ where

3. x1,...,%y, are all the A-bound variables in T that includes Tep in their scope,
and such that if i < j then Az; includes Ax; in its scope, and

4. C is a contest, and (C z)?° =, T[z]/ap for an arbitrary variable x not
occurring in S, T or C.

Proof: both the forward and reverse directions are proved by induction on the
structure of the context C:

Forward Direction:

Base Case: if C = Ac.c: assume Agypierm S S Ac.c holds. Here, let S’ =S, p=-¢
and so the first and third conditions holds vacuouly. If p = € then Sge =S5 = 5’
and the second condition is satisfied. Finally, for an arbitrary z, (Ac.c)z =g, z,
and S[z]/e€ = = and so the fourth condition is also satisfied.

Inductive Case for C = Ac.op X ...(D ¢)? ... X,: T must have the form

By definition of Agypterm, Asupterm S Xi D holds, which by inductive hypotheses
yields:

1. S=4 Az ... Az,.S'

2. there’s a sequence p such that X;qp = 5’

3. z1,...,%, are all bound variables in X; that contain S’ in their scopes are
for ¢ < j Az; is in the scope of Az;.

4. D is a context, and for an arbitrary z, (D z)? =, X;[z]/ap

Now we need to show that each condition holds for the larger context:

1. S remain the same and S =, A\z; ... \z,.5'

2. Let p' = i.p. Then since Tai = X;, Tap' = Xiap=S".

3. Since x1,...,2, satisfies the third condition with respect to S’ in X;, then
Z1,-.., T, also satisfies the condition with respect to S’ in T'.

4. for an arbitrary =z,

(Ac.op Xy ...(D &) ... X))z =p, 0p X;...(Dx) ... X,
By part 4 of the inductive hypothesis,
opXi...Dx) .. . X,=o0pX;.. .Xi[z]/ap ... Xn = T[z]ai-p
Finally, C is a context since D is a context.

Inductive Case for C = Ac.Ax.(D z c): assume that Agypterm S T C holds. Then
by definition of Agypierm,

Agusterm (S)% (T z)P° (D z)P°
holds. Application of the inductive hypothesis yields:

1. (Sz)% =4 Azy ... Az,.S'
2. for some sequence p, (T z)%gp =5’

3. x1,...,2, are all bound variables in (T x)? that contain S’ in their scopes
are for ¢ < j Az; is in the scope of Az;.
4. (D)P is a context and for an arbitrary y, (D = y)% =, (T z)*[y]/ap

Again we need to show that these four conditions are preserved:

1. Since (S z)% =, Az1 ... 2,.S', S =4 AxAz1 ... A2, S’
2. Let p' = 1.p. T can be written as Az.(T z)?. Since (T z)P0qp = ', we have

Az.(T z)Pgp' = S

3. Since w1, ...,z, satisfies the third condition with respect to S’ in (T z)Po,
T,Ty,...,T, satisfies the condition with respect to S’ in Az.(T z)P.

4. For an arbitrary y, (Ac.Az.(D z ¢)?°)y =5, Az.(D z y)P°. By inductive hy-
pothesis, (D z 4)% =, (T 2)%[y]/ap; 50 Az.(D & 4)% =4 Az.[(T 2)™[4]/ap.
But Az.[(T 2)?[y]/ap] = Az.(T x)%[y]/ap’. Finally, Ae.Az.(D z c)% is a
context since (D z)% is a context implies that ¢ occurs exactly once in
\z.(D z c)P.

Reverse Direction:

Base Case: assuming C' =, Ac.c (since C' must be a context) and the four
conditions of the theorem holds for C. By the fourth condition, T[z]-@p =
(C x)P° = 2. We can derive from this that p = €. Now by the second condition,
Tap =T = S’ where (by condition one) S =4 Az1 ... Az,.S". Now by condition
three,n =0 (z1,..., T, is an empty sequence) since z1, ..., T, are variablesin T
that contain T, which is equal ot Tep, in their scopes. Thus we have S = S5’ =T,

and
Asubterm SSsSC

holds by definition.

Inductive Case for C = Ac.op X;...X,,: since by the fourth condition ¢ is a
context, ¢ appears in exactly one X; among Xi,...,X,,. Let D = Ac.X;. D is
therefore also a context. We need to show that all four conditions holds for D
in order to apply the inductive hypothesis. We can write

C=MxopXi...(De)...Xp,.
Condition four also yields
T[z]/ap = (C)% =0p X1 ...(D)% ... X

for some arbitrary variable x. Since x can occur only in (D z)%, p = i.p, for
some sequence po. Let Ty = Tgi. Then T[z]/ep = op X1 ...To[z]/ap2 - - - Xm.
Now we have (D)% =, Ts[z]/ap2 (condition four is satisfied for D). Since by
condition two Tgp = S’, Teep: = S’. Conditions one and three gives us that
S =4 Axy...22,.8" where z1,...,2, are all bound variables in T' containing S’
in their scope. But this also means that z1,...,z, are all bound variables in T5

containing S’ in their scope (there are no more A-abstractions outside of T5).
Now we are read to apply the inductive hypothesis, which yields that

Asubterm S T2 D
holds. Then by definition of the Asypterm relation, Asyprerm S T C also holds.

Inductive Case for C = Ac.Az.D': let D = Az.Ac.D'. Then C = Ac.\z.(D z c)P°
We are allowed to assume that the four conditions hold for S, T" and C. We need
to show that they also hold for (S z)P° (T z)% and (D z)P° in order to apply the
inductive hypothesis. Since C' is a context, (D z)? must be a context. Condition
four also yields T[y]/ap =a (C y)?° = A\z.(D x y)” for some arbitrary variable
y. This implies p = 1.p, for some py. Since T[y]/ap =a Mz.(D z y)?°. T is an
abstraction of the form Az.Ta1, and in particular (T)% = Tgl. But then
Xz.(D z y)* =q Tly)/ep = Az.Tally]/ap2.

This implies that
(D y)*® =a Tallyl/ap> = (T 2)™[y]/ap>
And so the fourth condition is satisfied for (T x)%. By condition two on Tap,
(T 2)* gp2 = Talap: = Tap = S’

so condition two is also satisfied for (T 2)%°. If S =, Az; ... z,.S" and z1,...,2,
statisfies condition three, then x; = x since T' = Az.Tg1. This means

(S z)Po =4 A\zy .. Azp. S
and x»,...x, satisfies condition three with respect to (T x)?° since Taql =
(T z)P°. We can now apply the inductive hypothesis on (S z)?, (T z)% and

(D z)P° so that
Asubterm (S -Z')BO (T x)ﬁo (D m)ﬁo

holds. So by definition of the Asypterm relation we have that
Asubterm ST C

also holds.

O

We summarize the result of this theorem in the following corollary, which
is directly derivable. It formalizes the relationship between A-subterms and free
subterms:

Corollary 7. For all terms S and T':

1. if S is a A-subterm of T then (for somen > 0) S =, A\x1... 2,.S' such
that S' is a free subterm of T.

2. if S is a free subterm of T and x1,...,x, are all the bound variables in T
that contain a common occurrence of S in their scope, and such that for
i < j Azj is in the scope of Ax;, then Azy ... z,.S is a A-subterm of T

5 Declarative Implementation

The inductive definition of Agyperm Suggests that, in addition to the A-calculus,
the meta-logic must support some form of logical inference, such as natural-
deduction style theorem proving. Many systems, such as Coq [1, 2] and Isabelle
[16], meet this criteria. Furthermore, to use the Agyptern relation as a meta-
programming device requires a system that involves a form of automated proof
search. A higher-order logic programming interpreter in the sense of [14] meets
this criteria. In particular, the Agypierm relation has a direct formulation in the
logic programming language Ly [12], which is the subset of the better known
AProlog language [11] that involves only higher-order patterns. A higher-order
pattern is a term in -normal form where in every occurrence of subterms of the
form (F X;...X,) with F a free variable, Xi,...,X, must be a distinct list
of bound variables. In other words, solutions to higher-order patterns can only
involve By-redeces. Unification of higher-order patterns is decidable and yields
most-general unifiers. Furthermore, Ly supports negative occurrences of univer-
sal quantifiers. The operational interpretation of a logic programming query of
the form VzA is to prove A with a fresh variable z not occurring elsewhere.
L) is the simplest known language capable of supporting meta-programming in
higher-order abstract syntax. A formulation in L is therefore also a formulation
in a wide variety of systems in which L, is embedded.

It is appropriate in describing the implementation of Agypserm in Ly to sep-
arate the meta-language from the object-language. Object-level application and
A-abstraction can be represented at the meta-level with a pair of higher order
constants app and abs respectively. Although the meta-language need not be
typed, it is helpful to think of app as having type 7 — 7 — 7 and abs as having
type (t = 7) — 7, where 7 is the type of object-level expressions. The object-
level term Az.(z y) is represented as (abs A\z.(app = y)) at the meta-level. We
also need another constant in order to eliminate the ambiguity mentioned in
Section 3.1. The outermost A-bound variables of A-subterms intuitively repre-
sent free variables at the object level. We therefore introduce the constant fv
(of type (1 — 7) = 7) to “label” a meta-level Al-bound variable as representing
an object-level free variable. A-subterms can be modified to use fv-abstractions.
A A-subterm such as (fv Az.z) is a A-subterm of (abs Az.xz) under only the
context Ac.(abs Az.c), and not Ac.c.

Figure 2 contains the logic programming concrete-syntax’ reformulation of
the Asupterm relation for object-level A-terms (app and abs terms). The symbol
pi represents universal quantification and x\e represents Az.e. As is common in
logic programming, upper-case letters represent universally quantified variables
over the entire clause.

The closure under the 1subterm clauses represents the Agypterm relation with
separated meta- and object-language. As a logic program, these clauses can be
used to implement a higher-order term rewriting system. Given a term 7, the
query lsubterm S 7 C (where S and C are free logic variables) will return a

" This syntax is actually for AProlog, which directly embeds L.

lsubterm X X (c\c).
lsubterm S (app A B) (c\(app (D c) B) :- lsubterm S A D.
lsubterm S (app A B) (c\(app A (D ¢)) :- lsubterm S B D.
lsubterm (fv S) (abs T) (c\(abs x\(D x c))) :-

pi x\(lsubterm (S x) (T x) (D x)).

Fig. 2. Asypterm as logic program clauses

solution instantiating S and C such that S is a A-subterm of 7 under context
C. Conversely, given a context v and a term o, solving lsubterm o T v will, if
possible, instantiate T as the term with ¢ “grafted” into the position indicated
by context . Finally, given ¢ and 7 and with C as a free logic variable, the query
lsubterm o 7 C will succeed if and only if o is some A-subterm of 7.

A slightly modified form of the 1subterm clauses (among other techniques
out of scope here) was used in giving a declarative implementation of Nipkow’s
formulation of higher-order critical pairs. This implementation is described in

[8].

6 Conclusion

Higher-order term rewriting systems require a degree of flexibility in reasoning
about free variables and subterms. This flexibility, however, is seemingly incom-
patible with substitution as g-reduction in the A-calculus, which forms the basis
of many meta-theoretic frameworks such as theorem provers and logic program-
ming languages. Term trees provide an unsatisfactory meta-level representation
of A-terms because a-equivalence classes are lost.

We have shown that the A-calculus can be preserved as the basis of a meta-
theory for reasoning about higher-order term rewriting systems. Substitution
can be reformulated by replacing -reduction with the simpler (p-reduction com-
bined with the ability to deduce Agypeerm relations. This combination exists in
many systems. The simplified logic programming language L in particular can
give a direct implementation of A-subterms.

For future work, we hope to apply the A-subterm concept to more generic
problems than higher-order term rewriting systems.

Acknowledgments

The author wishes to thank Dale Miller and Amy Felty for helpful discussions.

References

1. Thierry Coquand and Gérard Huet. The calculus of constructions. Information
and Computation, 76(2/3):95-120, February/March 1988.

10.

11.

12.

13.

14.

15.

16.

17.

Joélle Despeyroux, Amy Felty, and André Hirschowitz. Higher-order abstract syn-
tax in Coq. In Second International Conference on Typed Lambda Calculi and
Applications, pages 124-138. Springer-Verlag Lecture Notes in Computer Science,
April 1995.

Amy Felty. A logic programming approach to implementing higher-order term
rewriting. In Lars-Henrik Eriksson, Lars Hallnas, and Peter Schroeder-Heister, ed-
itors, Second International Workshop on Eztensions to Logic Programming, pages
135-161. Springer-Verlag, 1992. Volume 596 of Lecture Notes in Artificial Intelli-
gence.

Amy Felty. Implementing tactics and tacticals in a higher-order logic programming
language. Journal of Automated Reasoning, 11(1):43-81, August 1993.

John Hannan. Extended natural semantics. Journal of Functional Programming,
3(2):123-152, April 1993.

P. M. Hill and J. G. Gallagher. Meta-programming in logic programming. Tech-
nical Report Report 94.22, University of Leeds, hill@scs.leeds.ac.uk, August 1994.
To appear in Vol. 5 of the Handbook of Logic in Artificial Intelligence and Logic
Programming, Oxford University Press.

Gérard Huet. A unification algorithm for typed A-calculus. Theoretical Computer
Science, 1:27-57, 1975.

Chuck Liang. Substitution, Unification and Generalization in Meta-Logic. PhD
thesis, University of Pennsylvania, September 1995.

Chuck Liang. Let-polymorphism and eager type schemes. In TAPSOFT ’97:
Theory and Practice of Software Development, pages 490-501. Springer Verlag
LNCS Vol. 1214, 1997.

R. McDowell and D. Miller. A logic for reasoning with higher-order abstract syn-
tax. In Symposium on Logic in Computer Science. IEEE, 1997.

Dale Miller. Abstractions in logic programming. In Piergiorgio Odifreddi, editor,
Logic and Computer Science, pages 329-359. Academic Press, 1990.

Dale Miller. A logic programming language with lambda-abstraction, function
variables, and simple unification. Journal of Logic and Computation, 1(4):497—
536, 1991.

Dale Miller. Unification under a mixed prefix. Journal of Symbolic Computation,
pages 321-358, 1992.

Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform
proofs as a foundation for logic programming. Annals of Pure and Applied Logic,
51:125-157, 1991.

Tobias Nipkow. Higher-order critical pairs. In G. Kahn, editor, Sizth Annual
Symposium on Logic in Computer Science, pages 342-349. IEEE, July 1991.
Lawrence C. Paulson. The foundation of a generic theorem prover. Journal of
Automated Reasoning, 5:363—-397, September 1989.

Frank Pfenning and Conal Elliot. Higher-order abstract syntax. In Proceedings
of the ACM-SIGPLAN Conference on Programming Language Design and Imple-
mentation, pages 199-208. ACM Press, June 1988.

This article was processed using the IXTgX macro package with LLNCS style

