Outline

- Abstract spaces: objects and operations
 - Field of real numbers \mathbb{R}
 - Vector space over \mathbb{R}
 - Euclidean spaces
 - Affine spaces
 - Affine combinations
 - Convex combinations
 - Frames
 - Affine maps
 - Euclidean spaces
- Read: angel, Appendices B and C, Ch 4.1 43

Geometric ADTs

- Scalars, Points and Vectors are members of mathematical abstract sets
- Abstract spaces for representing and manipulating these sets of objects
- Field - scalars
- Linear Vector Space - vectors
- Euclidean Space - add concept of distance
- Affine Space - adds the point

Linear Vector Spaces (defined over scalars)

- S is a set of scalars (like the real numbers)
- The set V of objects called vectors, $\{u, v, w, \ldots\}$ is a (linear) vector space defined over S if there are two operations
 - Vector-vector addition, $u + v : V \times V \rightarrow V$
 - Scalar-vector multiplication, $\alpha u : \mathbb{F} \times V \rightarrow V$
- satisfying the following
 - Axioms
 - Unique additive unit, the zero vector, 0
 - $u + 0 = 0 + u = u$
 - Every vector u has additive inverse $-u$
 - $u + (-u) = (-u) + u = 0$

Vector Spaces (cont.)

- Axioms (cont.)
 - Vector-vector addition is commutative and associative
 - Scalar-vector multiplication is distributive
 - $\alpha (u + v) = \alpha u + \alpha v$
 - $(\alpha + \beta)u = \alpha u + \beta u$
- Examples
 - Geometric vectors over \mathbb{R}, i.e., directed line segments in 3D
 - $A = (1, 2, 3)$
 - $B = (4, 5, 6)$
 - $C = A + B$
 - Scalar multiples
 - $\alpha C = (\alpha 1, \alpha 2, \alpha 3)$

Examples

- n-tuples of real numbers (we will use triples usually)
 - A vector is identified with an n-tuple
 - $\vec{v} = (v_1, v_2, \ldots, v_n)$
 - $\vec{u} + \vec{v} = (u_1 + v_1, u_2 + v_2, \ldots, u_n + v_n)$
 - $\alpha \vec{u} = (\alpha u_1, \alpha u_2, \ldots, \alpha u_n)$
Vector Spaces (cont.)

- V is a linear vector space over a field S
 - $u_1, ..., u_k, u \in V$, u is a linear combination of $u_1, ..., u_k$, if
 \[\exists \alpha_1, \alpha_2, ..., \alpha_k \in S, s.t. \]
 \[u = \alpha_1 u_1 + \alpha_2 u_2 + ... + \alpha_k u_k \]
 - The non-zero vectors $u_1, ..., u_k$ are linearly independent if
 \[\forall \alpha_1, \alpha_2, ..., \alpha_k \in S, s.t. \]
 \[\alpha_1 u_1 + \alpha_2 u_2 + ... + \alpha_k u_k = 0 \Rightarrow \alpha_1 = \alpha_2 = ... = \alpha_k = 0 \]

Vector Spaces (cont.)

- V is a n-dimensional vector space over a field S
 - $B = \{u_1, ..., u_n\}$ is a basis:
 - Every vector u is represented uniquely as a linear combination of the basis, i.e., there exist unique scalars $\alpha_1, \alpha_2, ..., \alpha_n \in S, s.t.$
 \[u = \alpha_1 u_1 + \alpha_2 u_2 + ... + \alpha_n u_n \]
 - $\{\alpha_i\}_{i=1}^{n}$ representation (coordinates) of u in the basis B

We are concerned with 3D vector space

Represent w as linear combination of three linearly independent vectors, v_1, v_2, v_3:
\[w = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 \]

Vector Spaces: Changes of Basis

- How do we represent a vector if we change the basis?
- Suppose the $\{v1,v2,v3\}$ and $\{u1,u2,u3\}$ are two bases.
- Basis vector in second set can be represented in terms of the first basis.
- Given the representation of a vector in one basis, we can change to a representation of the same vector in the other basis by a linear transformation (i.e., matrix multiplication)

Vector Spaces: Change of Basis

- Two bases: u and v
 \[\begin{bmatrix}
 v_1 \\
 v_2 \\
 v_3
 \end{bmatrix} = \begin{bmatrix}
 u_1 \\
 u_2 \\
 u_3
 \end{bmatrix} \begin{bmatrix}
 u_1 \gamma_1 V_1 + \gamma_2 V_2 + \gamma_3 V_3 \\
 v_2 \gamma_1 V_1 + \gamma_2 V_2 + \gamma_3 V_3 \\
 v_3 \gamma_1 V_1 + \gamma_2 V_2 + \gamma_3 V_3
 \end{bmatrix} \]
 \[M = \begin{bmatrix}
 711 & 712 & 713 \\
 721 & 722 & 723 \\
 731 & 732 & 733
 \end{bmatrix} \]
 \[u = Mv \]
 \[v = M^{-1}u \]

Change of basis is a linear operation.
Vector Spaces: Change of Basis

Notation: for a matrix, a'' denotes the transpose.

Let in basis v the vector w is represented by a component column matrix a, and in u, by a component matrix b

$$a = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}, \quad v = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}, \quad b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}, \quad u = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}, \quad w = a'v, \quad w = b'u$$

Let $u = Mv$

$$M = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{bmatrix}$$

Then the representation b of w in the new basis u is $b = M^{-1}a$

$$b = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \quad \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \quad \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

Normalizing a vector:

"Unit vector: a vector of length 1"

The angle between two vectors is given by

$$\theta = \frac{u \cdot v}{|u||v|}$$

Keep in mind that points and vectors are different, i.e., for vectors u and v, $u \cdot v$ is a real number, such that

- Axioms
 - $u \cdot v = v \cdot u$
 - $(\alpha u + \beta v) \cdot w = \alpha(u \cdot w) + \beta(v \cdot w)$
 - $u \cdot u > 0, \quad u \neq \mathbf{0}$
 - $\mathbf{0} \cdot \mathbf{0} = 0$

Euclidean Space (cont.)

- Orthonormal basis: a basis consisting of unit vectors which are mutually orthogonal
- Projections:
 - $|u|\cos\theta = u \cdot v/|v|$ is the length of orthogonal projection of u onto v

Euclidean Space (cont.)

- If v is unit vector, the length of the projection of u onto v is $u \cdot v$
3D Euclidean Space

- Cross Product of two vectors \(u \) and \(v \) is a vector \(n = u \times v \), \(\times : V \times V \to V \).
- \(n \) is orthogonal to \(v \) and \(u \).
- The triple \((u,v,n)\) is right-handed.
- The length \(|u \times v| = |u| |v| \sin(\theta) \).

Euclidean Spaces (cont)

- Example: \(\mathbb{R}^3 \).
- Given vector \(u \),
 - Set \(e_1 = \frac{u}{|u|} \).
 - Calculate \(e_2 \) s.t. \(e_1 \cdot e_2 = 0, \ |e_2| = 1 \).
 - Calculate \(e_3 = e_1 \times e_2 \).
 - The basis \((e_1, e_2, e_3)\) is orthonormal.

Affine Spaces

- Given a vector space \(A \), an affine space \(A \) over the vector space has two types of objects:
 - Points, \(P,Q,... \)
 - Vectors, \(u,v,... \).
- and is defined by the following axioms:
 - All axioms of the vector space
 - Operations relating points and vectors
 - Point-point subtraction gives unique vector, \(P - Q = v \).
 - Point-vector addition gives unique point, \(P + v = Q \).
- Axioms:
 1. Two points define unique vector, \(P - Q = v \).
 2. Point and vector define unique point, \(Q + v = P \).
 3. \(Q - P = -(P - Q) \).
 4. Head-to-tail axiom: given points \(P,R \), for any other point \(Q \), \(P - R = (Q - R) + (P - Q) \).
 5. If \(Q \) is an arbitrary point, \(\forall u \in A, \exists! P \in A: P - O = u \).
Line: parametric equation

- A line, defined by a point \(P_0 \) and a vector \(d \) consists of all points \(P \) obtained by \(P(\alpha) = P_0 + \alpha d \) where \(\alpha \) varies over all scalars.
- \(P(\alpha) \) is a point for any value of \(\alpha \)
- For non-negative values, we get a ray emanating from \(P_0 \) in the direction of \(d \)

Plane: parametric equation

- A plane defined by a point \(P_0 \) and two non-collinear vectors (non-parallel, i.e., linearly independent) \(u \) and \(v \), consists of all points \(T(\alpha, \beta) \):
 \[T(\alpha, \beta) = P_0 + \alpha u + \beta v \]

Affine Spaces (cont)

- All the operations:
 - point-point subtraction,
 - point-vector addition,
 - vector-vector addition,
 - scalar-vector multiplication
- Point-point addition is not defined, but addition-like combinations of points are well-defined.

Affine Combinations of Two Points

- Given two points \(Q \) and \(R \), and two scalars \(\alpha_1, \alpha_2 \) where \(\alpha_1 + \alpha_2 = 1 \) the affine combination of \(Q \) and \(R \) with coefficients \(\alpha_1, \alpha_2 \) is a point \(P \) denoted by
 \[P = \alpha_1 Q + \alpha_2 R \]
and defined as follows
 \[\alpha_1 + \alpha_2 = 1 \Rightarrow \alpha_1 = 1 - \alpha_2 \]
 \[P = \alpha_1 Q + \alpha_2 R = Q + \alpha_2 (R - Q) \]
- All affine combinations of two points generate the line through that points.

Affine Combinations of Three Points

- Given three points \(P, Q, \) and \(R \), and three scalars \(\alpha_1, \alpha_2, \alpha_3 \) where \(\alpha_1 + \alpha_2 + \alpha_3 = 1 \) the affine combination of the three points with coefficients \(\alpha_1, \alpha_2, \alpha_3 \) is a point \(T \), denoted
 \[T = \alpha_1 P + \alpha_2 Q + \alpha_3 R \]
- The point \(T \) is defined by
 \[T = P + \alpha_1 (Q - P) + \beta (R - P), \]
 \[\alpha = \alpha_2, \beta = \alpha_3 \]
- All affine combinations of three non-collinear points generate the plane through that points.

Affine Combinations of n Points

- Given an affine space \(A \), a point \(P \) is an affine combination of \(P_1, P_2, ..., P_n \) iff there exist scalars
 \[\exists \alpha_1, \alpha_2, ..., \alpha_n : \sum_{i=1}^{n} \alpha_i = 1 \] such that
 \[P = \alpha_1 P_1 + \alpha_2 (P_2 - P_1) + ... + \alpha_n (P_n - P_1) \]
- The affine combination is denoted by
 \[P = \alpha_1 P_1 + \alpha_2 P_2 + ... + \alpha_n P_n \]
- If the vectors \(P_1 - P_2, ..., P_n - P_1 \) are coplanar, what is the set of all affine combinations of the \(n \) points?
Convexity

- **Convex set**: a set in which a line segment connecting any two points of the set is entirely in the set.
- For $0 \leq \alpha \leq 1$ the affine combinations of points Q and R is the line segment connecting Q and R
 \[P(\alpha) = (1-\alpha)Q + \alpha R \]
- This line segment is convex
- The midpoint, $\alpha = 0.5$
- Give the affine combination representing a point dividing the line segment in ratio $m:n$, starting from Q

\[
M = Q + (M - Q) \quad (1)
\]
\[
M - Q = \frac{m}{m+n}(R - Q) \quad (2)
\]

Now substitute (2) in (1):
\[
M = Q + \frac{m}{m+n}(R - Q)
\]
\[
M = (1-\frac{m}{m+n})Q + \frac{m}{m+n}R
\]
\[
M = \frac{n}{m+n}Q + \frac{m}{m+n}R
\]

Convexity

- **Convex combinations**: affine combinations with positive coefficients,
 \[P = \alpha_1P_1 + \alpha_2P_2 + ... + \alpha_nP_n \]
- $\alpha_1 + \alpha_2 + ... + \alpha_n = 1$
- $\alpha_i \geq 0, i = 1,2,...,n$

- **Convex hull** of a set of points is the set of all convex combination of this points.
- In particular, for any two points of the set the line segment connecting the points is in the convex hull, thus the convex hull is a convex set.
- In fact, the convex hull it is the smallest convex set that contains the original points.

Convex (affine) combinations

- **Convex combinations**: affine combinations with positive coefficients,
 \[P = \alpha_1P_1 + \alpha_2P_2 + ... + \alpha_nP_n \]
- $\alpha_1 + \alpha_2 + ... + \alpha_n = 1$
- $\alpha_i \geq 0, i = 1,2,...,n$

- **Convex hull** of a set of points is the set of all convex combination of this points.
- In particular, for any two points of the set the line segment connecting the points is in the convex hull, thus the convex hull is a convex set.
- In fact, the convex hull it is the smallest convex set that contains the original points.

Convex Polygons

- A convex polygon is completely specified by the set of its vertices
- A convex polygon: the convex hull of the vertices
- Given equilateral triangle give the representation of the center of the mass
- Generate random point inside a triangle

Geometric ADTs: Convexity

- The convex hull could be thought of as the set of points that we form by stretching a tight fitting surface over the given set of points - shrink wrapping the points (all points inside and on the surface)
- It is the smallest convex object that includes the set of points

Convex Polygons

- A convex polygon is completely specified by the set of its vertices
- A convex polygon: the convex hull of the vertices
- Given equilateral triangle give the representation of the center of the mass
- Generate random point inside a triangle

A normal to a plane

- **Normal** n to a plane: unit vector orthogonal to the plane
- If we are given the parametric equation of the plane
 \[T(\alpha, \beta) = P_0 + \alpha u + \beta v, \]
 \[n = u \times v / (u \times v) \]
- Given a polygon, write the outward/front normal
- Given a point P_0 and a vector n, there is unique plane that goes through P_0 and has normal n: it consists of all points P satisfying the normal equation of the plane
 \[(P - P_0) \cdot n = 0 \]
- Given a plane, defined by point P_0 and a normal n: the plane divides the space into two subspaces (one on the side pointed by the normal, $(P-P_0)n>0$, and the other in the side pointed by $-n$, $(P-P_0)n<0$.

Geometric ADTs: Convexity

- The convex hull could be thought of as the set of points that we form by stretching a tight fitting surface over the given set of points - shrink wrapping the points (all points inside and on the surface)
- It is the smallest convex object that includes the set of points

Convex Polygons

- A convex polygon is completely specified by the set of its vertices
- A convex polygon: the convex hull of the vertices
- Given equilateral triangle give the representation of the center of the mass
- Generate random point inside a triangle

A normal to a plane

- **Normal** n to a plane: unit vector orthogonal to the plane
- If we are given the parametric equation of the plane
 \[T(\alpha, \beta) = P_0 + \alpha u + \beta v, \]
 \[n = u \times v / (u \times v) \]
- Given a polygon, write the outward/front normal
- Given a point P_0 and a vector n, there is unique plane that goes through P_0 and has normal n: it consists of all points P satisfying the normal equation of the plane
 \[(P - P_0) \cdot n = 0 \]
- Given a plane, defined by point P_0 and a normal n: the plane divides the space into two subspaces (one on the side pointed by the normal, $(P-P_0)n>0$, and the other in the side pointed by $-n$, $(P-P_0)n<0$.

Geometric ADTs: Convexity

- The convex hull could be thought of as the set of points that we form by stretching a tight fitting surface over the given set of points - shrink wrapping the points (all points inside and on the surface)
- It is the smallest convex object that includes the set of points

Convex Polygons

- A convex polygon is completely specified by the set of its vertices
- A convex polygon: the convex hull of the vertices
- Given equilateral triangle give the representation of the center of the mass
- Generate random point inside a triangle

A normal to a plane

- **Normal** n to a plane: unit vector orthogonal to the plane
- If we are given the parametric equation of the plane
 \[T(\alpha, \beta) = P_0 + \alpha u + \beta v, \]
 \[n = u \times v / (u \times v) \]
- Given a polygon, write the outward/front normal
- Given a point P_0 and a vector n, there is unique plane that goes through P_0 and has normal n: it consists of all points P satisfying the normal equation of the plane
 \[(P - P_0) \cdot n = 0 \]
- Given a plane, defined by point P_0 and a normal n: the plane divides the space into two subspaces (one on the side pointed by the normal, $(P-P_0)n>0$, and the other in the side pointed by $-n$, $(P-P_0)n<0$.)
3D Primitives

Objects With Good Characteristics
- Described by their surfaces; thought to be hollow
- Specified through a set of vertices in 3D
- Composed of, or approximated by, flat convex polygons
- For a polygon, when you walk along the edges in order in which the vertices are specified, the right hand rule gives to outward normal.
- Be careful about the order of the vertices when you specify polygons. (in order, counter clockwise when looking from the outside towards the object).

Viewing
- Viewing volume – the volume that is seen by the synthetic camera. Only object inside that volume could possibly be seen in the image.
glOrtho() specifies rectangular volume aligned with the axes of the camera. The volume is enclosed by front, back, and side clipping planes.
- OpenGL uses a default viewing volume 2x2x2 cube (otherwise, viewing volume can be set by glOrtho())
- Viewing rectangle/window – the area of the image plane that is seen.
- For gluOrtho2D(), the viewing rectangle is at z=0

Displaying 3D Objects
- Hidden surface removal
 - Painter's algorithm
 - Z-buffer algorithm
- Z-buffer (depth buffer), to use in OpenGL
 - must add to display mode
 - must enable
 - must clear before drawing

Displaying 3D Objects In OpenGL

- In main():
 - glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
- In init():
 - glEnable(GL_DEPTH_TEST);
- In display():
 - glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
- Projection: only objects inside the viewing volume will be projected
 - glOrtho(xmin, xmax, ymin, ymax, zmin, zmax);
 - Glfloat ymin, Glfloat ymax,
 - Glfloat xmin, Glfloat xmax,
 - Glfloat zmin, Glfloat zmax;
- Vertices of object are in viewing coordinates. (x, y, z, 1).
 - x xmin<=x<=xmax, y ymin<=y<=ymax, z zmin<=z<=zmax
 - will be projected, the rest are clipped out

Initial Camera Position
- Objects are modeled independently from the location of the camera
- OpenGL places a camera at the origin of the world frame pointing in the negative z direction
- If model view matrix is an identity matrix, then the camera frame and world frame are identical
Default Position

Object and Viewpoint at the Origin

Movement of the Frames

gMatrixMode(GL_MODELVIEW);
gLoadIdentity();
gTranslatef(0.0, 0.0,-d);

Two Points of View

- Hold camera frame fixed, move objects in front of the camera: glTranslatef, glRotate
- Model objects stationary and move the camera away from the objects, gluLookAt

Affine Spaces (cont): Frames

- Frame: a basis at fixed origin
- Select a point O (origin) and a basis (coordinate vectors) \(B = \{v_1,...,v_n\} \)
 - Any vector \(u \) can be represented as uniquely as a linear combination of the basis vectors
 \[
 u = \alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_n v_n
 \]
 - Any point \(P \) can be represented uniquely as
 \[
 P = O + \beta_1 v_1 + \beta_2 v_2 + ... + \beta_n v_n
 \]
- Thus, we have affine coordinates for points and for vectors
- Given a frame, points and vectors can be represented uniquely by their affine coordinates

Affine Spaces: Frames (cont)

- If we change frames the coordinates change.
- The change of basis in a vector space is a linear transformation (represented as matrix multiplication)
- The change of frame in an affine space is NOT linear transformation
- We extend the affine coordinates, by adding one more dimension. The new coordinates are called homogeneous coordinates.
- The change of frame in homogeneous coordinates is a linear transformation (i.e. represented as matrix multiplication)

Affine coordinates in 3D

Given a frame \(\{v_1,v_2,v_3\} \), a vector \(w \) and a point \(P \) can be represented uniquely by:

\[
P = P_0 + \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3
\]
\[
w = \eta_1 v_1 + \eta_2 v_2 + \eta_3 v_3
\]

The affine coordinate (representations) of the vector and point are

\[
\begin{bmatrix}
\alpha_1 \\
\alpha_2 \\
\alpha_3
\end{bmatrix} \quad \rightarrow \quad \begin{bmatrix}
\eta_1 \\
\eta_2 \\
\eta_3
\end{bmatrix}
\]
Homogeneous Coordinates

- Use four dimensional column matrices to represent both points and vectors in homogeneous coordinates.
- The first three components are the affine coordinates.
- To maintain a distinction between points and vectors we use the fourth component: for a vector it is 0 and for a point it is 1.

From affine to Homogeneous Coordinates

We agree that:

\[
P = a_1 v_1 + a_2 v_2 + a_3 v_3 + 1.0 \rightarrow \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ 1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ 1 \end{bmatrix}
\]

We can write the coordinate equations in matrix form. For example:

\[
P = a_1 v_1 + a_2 v_2 + a_3 v_3 + 1.0 \rightarrow \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ 1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ 1 \end{bmatrix}
\]

Frames in OpenGL

Initial Camera Position

- Objects are modeled independently from the location of the camera.
- OpenGL places a camera at the origin of the world frame pointing in the negative z direction.
- If model view matrix is an identity matrix, then the camera frame and world frame are identical.
Movement of the Frames

```c
void glMatrixMode(GLint matrix)
{
    if (matrix != GL_MODELVIEW)
        return;

    glPushMatrix();
    glLoadIdentity();
    glTranslatef(0.0, 0.0, -d);
}
```

Frames In OpenGL

- We use two frames: the camera frame and the world frame
- We regard the camera frame as fixed
- The model-view matrix positions the world frame relative to the camera frame
- Model-view matrix that translates along z, to separate the two frames, so object could be in camera’s field of view:

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & -d \\
0 & 0 & 0 & 1
\end{bmatrix}
\]