Chapter 7

Low Level Programming Languages

Y

M

F
piglBletliel o]
oy

=
L |
W AN

o
1_' AR
¥ - &)

3

: mov ax, 5
® inc bx

add ax, bx

‘ Assembler

0010 0011 Maschinen-
1001 0110 sprache
1001 0010

computer science, LoCLUUDS

Layers of a Computing System

Communication

Operating System
Programming

Hofstra University — Overview of
Computer Science, CSC005 2

Chapter Goals

List the operations that a computer can perform

Describe the important features of a virtual
computer

Distinguish between immediate mode addressing
and direct addressing

Convert a simple algorithm into a machine-
language program

Distinguish between machine language and
assembly language

Describe the steps in creating and running an
assembly-language program

Computer Operations

A computer is a programmable electronic
device that can store, retrieve, and
process data

- Data and instructions to manipulate the
data are logically the same and can be
stored in the same place

« Store, retrieve, and process are actions
that the computer can perform on data

Machine Language

- Machine language The instructions
built into the hardware of a particular
computer

+ Initially, humans had no choice but to
write programs in machine language
because other programming languages
had not yet been invented

Machine Language

- Every processor type has its own set
of specific machine instructions

+ The relationship between the processor
and the instructions it can carry out is
completely integrated

« Each machine-language instruction does
only one very low-level task

Pep/7: A Virtual Computer

* Virtual computer A hypothetical
machine designed to contain the
important features of real computers that
we want to illustrate

> Pep/7
» desighed by Stanley Warford
» has 32 machine-language instructions

- We are only going to examine a few
of these instructions

Features in Pep/7

» The memory unit is made up of 4,096 bytes

» Pep/7 Registers/Status Bits Covered

* The program counter (PC) (contains the address
of the next instruction to be executed)

*» The instruction register (IR)
(contains a copy of the instruction being executed)

» The accumulator (A register)
— Status bit N (1 if A register is negative; 0 otherwise)
— Status bit Z (1 if the A reqister is 0; and 0 otherwise)

Features in Pep/7

Pep/7's CPU (as discussed in this chapter)

N Z

Status bits

A register (accumulator)

Programcounter(CP) | [| | | | | | |

Instruction Register (IR) {

Pep/7's Memory

0000
0001
0002

Figure 7.1 Pepl/7’s architecture
OFFE

OFFF

Instruction Format

» There are two parts to an instruction

» The 8-bit instruction specifier
» And optionally, the 16-bit operand specifier

Instruction
specifier

Operand
specifier

(a) The two parts of an instruction

0
A ~ J o\ J

L L Addressing mode specifier

Register specifier

Operation code

(b) The instruction specifier part of an instruction

Instruction Format

» The instruction specifier is made up of
several sections

» The operation code
» The register specifier
» The addressing-mode specifier

Instruction Format

» The operation code specifies which
instruction is to be carried out

« The 1-bit register specifier is O if register
A (the accumulator) is involved, which is
the case in this chapter.

« The 2-bit addressing-mode specifier says
how to interpret the operand part of the
instruction

Instruction Format

Instruction specifier 0Ol0

Data l

(a) Immediate-mode addressing: Operand is shaded gray

Operand specifier

Instruction specifier Ol1

Address of data

Operand specifier

(b) Direct-mode addressing: Operand is shaded gray

Figure 7.3 Difference between immediate-mode and direct-mode addressing

Some Sample Instructions

Opcode Meaning of Instruction

00000 Stop execution

00001 Load operand into a register (either A of X)

00010 Store the contents of register (either A or X) into operand
00011 Add the operand to register (either A or X)

00100 Subtract the operand from register (either A or X)

11011 Character input to operand

11100 Character output from operand

Figure 7.3 Subset of Pep/7 instructions

A Program Example

» Let's write "Hello" on the screen

Module | Binary Instruction Hex Instruction
Write "H" 11100000 EO
0000000001001000 | 0048
Write "e" 11100000 EO
0000000001100101 | 0065
Write "I" 11100000 EO
0000000001101100 | 006C
Write "I" 11100000 EO
0000000001101100 | O06C
Write "o" 11100000 EO
0000000001101111 | O06F
Stop 00000000 00

Pep/7 Simulator

» A program that behaves just like the Pep/7
virtual machine behaves

» To run a program, we enter the hexadecimal
code, byte by byte with blanks between each

O progl Hl B

E0 00 45 E0 0 &5 EO 0 &C EQ 00 &2 EO QO &F 00 zzl

L J LS

O Pep/7 Output ==

Hello

4»]

Assembly Language

- Assembly languages A language that
uses mnemonic codes to represent
machine-language instructions

» The programmer uses these alphanumeric
codes in place of binary digits

» A program called an assembler reads each
of the instructions in mnemonic form and
translates it into the machine-language
equivalent

Pep/7 Assembly Language

Operand,
Mnemonic Mode Meaning of Instruction
Specifier
STOP Stop execution
LOADA h#f008B, i Load 008B into register A
LOADA h#008B,d Load the contents of location 8B into register A
STOREA h#008B,d Store the contents of register A into location 8B
ADDA h{#f008B, i Add 008B to register A
ADDA h#f008B, d Add the contents of location 8B to register A
SUBA h#f008B, i Subtract 008B from register A
SUBA h#f008B, d Subtract the contents of location 8B from register A
CHARI h#f008B,d Read a character and store it into byte 8B
CHARO cit/B/, i Write the character B
h#f008B, d Write the character stored in byte 8B
DECI h#f008B, d Read a decimal number and store it into location 8B
DECO h#f008B, i Write the decimal number 139 (8B in hex)
hi#f008B, d Write the decimal number stored in 8B

DECO

Assembly Process

Z y

Program \ Program
in Input A | I Output in
Assembly Sl i Machine

Language q ﬁ Code

A Simple Program

Set sum to O
Read numi

Add num1 to sum
Read hum?2

Add num?2 to sum
Read humd

Add humd to sum
Write sum

sum:

numl :
num?2 :
num3 :
Main:

Our Completed Program

BR Main
.WORD d#f0
.BLOCK d#f2
.BLOCK dff2
.BLOCK d#f2
LOADA sum,d
DECI numl,d
ADDA numl,d
DECI num2,d
ADDA num2,d
DECI num3,d
ADDA num3,d
STOREA sum,d
DECO sum,d
STOP

.END

;branch to location Main

;set up word with zero as the contents
;set up a two byte block for numl

;set up a two byte block for num2

;set up a two byte block for num3

;load a copy of sum into accumulator
;read and store a decimal number in numl
;add the contents of numl to accumulator
;read and store a decimal number in num2
;add the contents of num2 to accumulator
sread and store a decimal number in num3
;add the contents of num2 to accumulator
;store contents of the accumulator into sum
;output the contents of sum

;stop the processing

;end of the program

ConunwerSdehce,CSCOOS %3%

Status Bits

Status bits allow a program to make a choice.

BRLT Setthe PC to the operand, if N 1s 1

(A register 1s less than zero)

BREQ Set the PC to the operand, 1f Z 1s 1

(A register 1s equal to zero)

Testing

 Test plan A document that specifies how
many times and with what data the program
must be run in order to thoroughly test the
program

» A code-coverage approach designs test cases
to ensure that each statement in the program
IS executed.

» A data-coverage approach designs test cases
to ensure that the limits of the allowable data
are covered.

Chapter 8

High Level Programming Languages
Apache~

\h“(_‘.im])

p’-'E . f-l:',f.-"{':tl

v ase, o) | Vs
c_|.__|_ MH HA I_JFI““K"
A

Chapter Goals

Describe the translation process and
distinguish between assembly, compilation,
Interpretation, and execution

Name four distinct programming paradigms
and name a language characteristic of each

Describe the following constructs: stream input
and output, selection, looping, and
subprograms

Construct Boolean expressions and describe
how they are used to alter the flow of control of
an algorithm

... Some Hands-On

Compilers

« Compiler A program that translates a
high-level language program into
machine code

- High-level languages provide a richer set
of instructions that makes the
programmer’s life even easier

Compilers

yi y4
Program \ Program
ina Input I Output in
high-level machine

language ——l — code

Figure 8.1 Compilation process

Interpreters

* Interpreter A translating program that
translates and executes the statements

In sequence

» Unlike an assembler or compiler which
produce machine code as output, which is
then executed in a separate step

» An interpreter translates a statement and
then immediately executes the statement

» Interpreters can be viewed as simulators

[7]

[7]

[7]

Y]

Java

Introduced in 1996 and swept the
computing community by storm

Portability was of primary importance

Java is compiled into a standard machine
language called Bytecode

A software interpreter called the JVM
(Java Virtual Machine) takes the
Bytecode program and executes it

Programming Language
Paradigms

- What is a paradigm?

+ A set of assumptions, concepts, values,
and practices that constitute a way of
viewing reality

Programming Language
Paradigms

(a) A C++ program John's C++ program
compiled and run
on different systems m
Windows PC UNIX Workstation Macintosh
C++ compiler C++ compiler C++ compiler
1 I I
—_——— —_— —_—
| | |
John's program in John's program in John's program in
machine language machine language machine language
Windows PC UNIX workstation Macintosh
] Executing Executing Executing
Figure 8.2 program program program

Portability provided
by standardized . . |

Ianguages versus ; ; ;
interpretation by
Bytecode + + +

Output Output Output

Programming Language
Paradigms

(b) Java program Nell's Java program
compiled into

Bytecode and run
on different systems

Java compiler
Windows PC
or UNIX
workstation or
Macintosh
—_—— =

Y

Nell's Bytecode program

T

: Windows PC UkNIX. Macintosh
Figure 8.2 running JVM wort station running JVM
Portability provided running JVM
by standardized . ' .
languages versus . e gL gL
interpretation by I I |

Bytecode + + +

Programming Language
Paradigms

» Imperative or procedural model

» FORTRAN, COBOL, BASIC, C, Pascal,
Ada, and C++

» Functional model
» LISP, Scheme (a derivative of LISP), and ML

Programming Language
Paradigms

+ Logic programming
» PROLOG

> Object-oriented paradigm
» SIMULA and Smalltalk

» C++ is as an imperative language with some
object-oriented features

» Java is an object-oriented language with
some imperative features

Functionality of Imperative
Languages

 Sequence Executing statements in sequence
until an instruction is encountered that
changes this sequencing

- Selection Deciding which action to take
» |teration (looping) Repeating an action

Both selection and iteration require the use of a
Boolean expression

Boolean Expressions

- Boolean expression A sequence of
identifiers, separated by compatible operators,
that evaluates to true or false

» Boolean expression can be
» A Boolean variable

» An arithmetic expression followed by a relational
operator followed by an arithmetic expression

» A Boolean expression followed by a Boolean
operator followed by a Boolean expression

Boolean Expressions

- Variable A location in memory that is
referenced by an identifier that contains
a data value

Thus, a Boolean variable is a location in
memory that can contain either true or false

Boolean Expressions

» A relational
operator between

two arithmetic

expressions is Relationship Symbol
asking if the equal to = or ==
relationship exists not equal to <Oorl=or /=
between the two less than or equal to (=
EXpressions greater than or equal to | >=

* For example, less than <
xValue < yValue greater than >

Strong Typing

- Strong typing The requirement that
only a value of the proper type can be
stored into a variable

- Data type A description of the set of
values and the basic set of operations
that can be applied to values of the type

[7]

[7]

[7]

[7]

[7]

Data Types

Integer numbers
Real numbers
Characters
Boolean values

Strings

Integers

» The range varies depending upon how
many bytes are assigned to represent an
integer value

- Some high-level languages provide
several integer types of different sizes

» Operations that can be applied to
integers are the standard arithmetic and
relational operations

Reals

- Like the integer data type, the range
varies depending on the number of bytes
assigned to represent a real number

- Many high-level languages have two
sizes of real numbers

 The operations that can be applied to
real numbers are the same as those that
can be applied to integer numbers

Characters

It takes one byte to represent characters
in the ASCII character set

- Two bytes to represent characters in the
Unicode character set

» Our English alphabet is represented in
ASCII, which is a subset of Unicode

Characters

» Applying arithmetic operations to
characters doesn’t make much sense

« Comparing characters does make sense,
so the relational operators can be applied
to characters

 The meaning of “less than” and “greater
than” when applied to characters is
“comes before” and “comes after” in the
character set

Boolean

- The Boolean data type consists of two
values: true and false

« Not all high-level languages support the
Boolean data type

« If a language does not, then you can
simulate Boolean values by saying that
the Boolean value true is represented by
1 and false is represented by O

Strings

» A string is a sequence of characters considered
as one data value

» For example: “This is a string.”

» Containing 17 characters: one uppercase letter, 12
lowercase letters, three blanks, and a period

» The operations defined on strings vary from
language to language

» They include concatenation of strings and
comparison of strings in terms of lexicographic order

Declarations

- Declaration A statement that associates
an identifier with a variable, an action, or
some other entity within the language
that can be given a name so that the
programmer can refer to that item by
name

Declarations

Language Variable Declaration

Ada sum Float := 0; --set up word with 0 as contents
numl: Integer; --set up a two-byte block for numl
num2: Integer; --set up a two-byte block for num2
num3: INTEGER; --set up a two-byte block for num3
numl:= 1;

VB.NET Dim sum As Single = 0.0F ' set up word with 0 as contents
Dim numl As Integer ' set up a two-byte block for numl
Dim num2 As Integer ' set up a two-byte block for num2
Dim num3 As Integer ' set up a two-byte block for num3
numl = 1

C++/Java | float sum = 0.0; // set up word with 0 as contents
int numl; // set up a block for numl
int num2; // set up a block for num2
int num3; // set up a block for num3
numl = 1;

Declarations

- Reserved word A word in a language
that has special meaning

- Case-sensitive Uppercase and
lowercase letters are considered the

Same

Assignment statement

 Assignment statement An action
statement (not a declaration) that says
to evaluate the expression on the right-
hand side of the symbol and store that

value into the place named on the left-
hand side

- Named constant A location in memory,
referenced by an identifier, that contains
a data value that cannot be changed

Assignment Statement

Constant Declaration

Ada

Comma

Message : constant String := "Hello";

constant Character := ', ':

Tax Rate : constant Float := 8.5;

VB.NET

Const
Const
Const

WORD1 As Char = ", "¢
MESSAGE As String = "Hello"
TaxRate As Double = 8.5

C++

const
const

const

char COMMA = ',';
string MESSAGE = "Hello";
double TAX RATE = 8.5;

Java

final
final
final

char COMMA = ',';
String MESSAGE = "Hello";
double TAX RATE = 8.5;

8-29

Homework

- Read Chapter Seven,
Concentrate on Slides

- Read Chapter Eight, Secs 8.1 &
8.2

Mid-Term

» Take Home Exam - Non-Trivial (think!)

« Cover Chapters 1-5 & 16 & Anything
Covered In Class

« Given Out: Oct 11

- Due Back: Oct 18

> No Lateness!!!

- You can emall, if you like :)

Have A Nice Weekend!

Hofstra University — Overview of
Computer Science, CSC005

54

