Combining Classical Logic and Intuitionistic Logic

Double Negation, Polarization, Focusing, and Semantics

Chuck Liang and Dale Miller

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Challenges of Combining Intuitionistic Logic with Classical Logic Using a Double Negation Translation

- Intuitionistic implication should not collapse into classical implication. Consider A ∨^e (B ⊃ C) → ∼ (∼A∧ ∼(B ⊃ C))
- How to distinguish the introduction of a translated classical "connective" from intuitionistic introductions.

Introduction of classical disjunction $A \vee^e B$:

$$\frac{\sim A, \sim B, \Gamma \vdash}{\sim A \land \sim B, \Gamma \vdash}$$
$$\overline{\vdash} \sim (\sim A \land \sim B)$$

No guarantee that sequence won't be interrupted by other rules.

How to recognize classical "dualities". How is ~(~A∧ ~B) the "dual" of (~A∧ ~B) in an intuitionistic sense, given that ~~P ≠ P.

Challenges Continued ...

► How to distinguish classical from intuitionistic equivalence.

Classical versus Intuitionistic Cut Elimination.

$$\frac{A, \Gamma \vdash B \quad \sim A, \Gamma \vdash B}{\Gamma \vdash B}$$

Admissible in classical logic but not in intuitionistic logic.

How do we simulate this cut in an intuitionistic proof system?

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• What is the *meaning* of mixed formulas such as $A \vee^e (B \supset (C \vee D))$?.

Outline and Overview:

- Goal: Combine LJ and LC into Polarized Intuitionistic Logic
- LC does not include intuitionistic implication
- Start with Intuitionistic Logic with a designated atom ⊥.
- ▶ ⊥ is just minimal "false" this logic predates ICL.
 - ICL is a stand-alone logic
 - PIL combine logics
- Assign labels, i.e., "polarities" to formulas.
- Define Double-Negation translation.
- Use focusing (focalization) to isolate "classical connectives"

(ロ) (同) (三) (三) (三) (○) (○)

- Derive Unified Sequent Calculus
- Define Kripke/Algebraic Semantics

Syntax and Colors

- Formulas freely generated from atoms, ∧, ∨, ⊃, 0 and designated atom ⊥.
- Define $\neg A = A \supset \bot$; $(A \supset 0 = \sim A)$
- Formulas are Red or Green as follows:
 - $A \land B$, $A \lor B$, 0, and $A \supset B$ where $B \neq \bot$ are red.
 - All atoms are red, except \perp , which is green.
 - ▶ $\neg A$ ($A \supset \bot$) is green.
 - ▶ $\neg^{2n}(R)$, n > 0, are *reddish green* (also includes \bot)
 - $\neg^{2n+1}(R)$ are solidly green
- ▶ Red and Green formulas can be logically equivalent: $(A \land B) \supset \bot \equiv A \supset (B \supset \bot)$
- ► This polarization is not same as duality in linear logic: ?X-o!Y

Recovering Classical "Dualities"

• $M^{\perp} = \neg M$ for red or reddish-green M

$$\blacktriangleright (\neg M)^{\perp} = M$$

Syntactic Identity: $A^{\perp\perp} = A$

- A[⊥] is convenient way to refer to doubly-negated formulas
- ► A^{\perp} is not a connective.
- ▶ if $A \equiv B$, then A^{\perp} is only *classically* \equiv to B^{\perp} $((A \land B) \supset \bot)^{\perp} = A \land B$, $(A \supset (B \supset \bot))^{\perp} = \neg(A \supset \neg B)$

Double Negation as Macro Expansion

R red and E green

 $\blacktriangleright \ A \vee^e B = (A^{\perp} \wedge B^{\perp})^{\perp} = \neg (A^{\perp} \wedge B^{\perp})$

$$\blacktriangleright A \wedge^{e} B = (A^{\perp} \vee B^{\perp})^{\perp} = \neg (A^{\perp} \vee B^{\perp})$$

▶ 1 = \bot^{\bot} = $\bot \supset \bot$; \top = 0[⊥] = 0 ⊃ \bot

To complete the definition of A^{\perp} , we need *missing link*:

►
$$A \propto B = \neg (A \supset B^{\perp})$$

includes special case: $(R \propto 1) = \neg \neg R$

These are not yet new connectives, just labels

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The following holds:

Caution: do not equate "green" with "classical."

Classical fragment will use \lor and \lor^e , \land and \land^e , 0 and \bot , 1 and \top . The classical fragment will be more LC than LK.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Intuitionistic Sequent Calculus LJ

$$\frac{A, B, \Gamma \vdash D}{A \land B, \Gamma \vdash D} \land L \qquad \frac{A, \Gamma \vdash D \land B, \Gamma \vdash D}{A \lor B, \Gamma \vdash D} \lor L \qquad \frac{A \supseteq B, \Gamma \vdash A \land B, \Gamma \vdash D}{A \supseteq B, \Gamma \vdash D} \supset L$$
$$\frac{\Gamma \vdash A \land \Gamma \vdash B}{\Gamma \vdash A \land B} \land R \qquad \frac{\Gamma \vdash A_i}{\Gamma \vdash A_1 \lor A_2} \lor R \qquad \frac{A, \Gamma \vdash B}{\Gamma \vdash A \supseteq B} \supset R$$
$$\frac{A, \Gamma \vdash B}{A \supseteq B} \land R$$
$$\frac{A, \Gamma \vdash B}{A \supseteq B} \supset R$$

 \perp is considered a special atom

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

 \vee^{e} , \wedge^{e} and \propto as Synthetic Connectives in LJ?

Distinguish between sequents $\Gamma \vdash A$ and $\Gamma \vdash \bot$: Correspond to sequents with and without a *stoup* Introduction of a green formula $\neg A = A \supset \bot$:

$$\frac{A, \Gamma \vdash \bot}{\Gamma \vdash A \supset \bot} \supset R \qquad \qquad \frac{A \supset \bot, \Gamma \vdash A \quad \overline{\bot, \Gamma \vdash \bot}}{A \supset \bot, \Gamma \vdash \bot} \stackrel{Id}{\supset} L$$

. .

В

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

But LJ is not good enough

We don't want the following:

$$\frac{B \supset C, \Gamma \vdash B \quad C, \Gamma \vdash A \supset \bot}{B \supset C, \Gamma \vdash A \supset \bot} \qquad \qquad \frac{A \supset \bot, \Gamma \vdash A \quad \bot, \Gamma \vdash A}{A \supset \bot, \Gamma \vdash B}$$

Looking for one-to-one mapping between proofs

Derive new introduction rules for $A \vee^e B = \neg (A^{\perp} \wedge B^{\perp})$:

$$\frac{\Gamma \vdash_{\bullet} A, B}{\Gamma \vdash A \lor^{e} B} \lor^{e} R \qquad \frac{A \lor^{e} B, \Gamma \vdash_{\circ} A^{\perp} \quad A \lor^{e} B, \Gamma \vdash_{\circ} B^{\perp}}{A \lor^{e} B, \Gamma \vdash_{\bullet}} \lor^{e} L$$

Want this to correspond one-to-one with the following fragments:

$$\frac{\underline{A^{\perp}, B^{\perp}, \Gamma \vdash \bot}}{\underline{A^{\perp} \land B^{\perp}, \Gamma \vdash \bot}} \qquad \frac{\neg (\underline{A^{\perp} \land B^{\perp}}), \Gamma \vdash \underline{A^{\perp}} \quad \neg (\underline{A^{\perp} \land B^{\perp}}), \Gamma \vdash \underline{B^{\perp}}}{\neg (\underline{A^{\perp} \land B^{\perp}}), \Gamma \vdash \underline{A^{\perp} \land B^{\perp}}} \qquad \underline{\bot, \Gamma \vdash \bot} \\ \frac{\neg (\underline{A^{\perp} \land B^{\perp}}), \Gamma \vdash \underline{A^{\perp} \land B^{\perp}}}{\neg (\underline{A^{\perp} \land B^{\perp}}), \Gamma \vdash \bot}$$

Need focused intuitionistic sequent calculus (LJF) even for *unfocused* synthetic introduction rules

A new dimension of polarization

- Atoms are "positive," except ⊥, which is "negative"
- ▶ \lor , \land^+ , 1 and 0 are positive
- ▶ \wedge^- , \supset , are negative
- Positives are "synchronous" on the right; Negatives are synchronous on the left
- Asynchronous rules are always invertible
- Synchronous (and asynchronous) rules can be stringed together into a single phase.

(ロ) (同) (三) (三) (三) (○) (○)

- $\blacktriangleright \ A \lor^{e} B = (A^{\perp} \wedge^{+} B^{\perp})^{\perp}$
- Caution: Do not confuse positive with red polarities: $A \supset B$ is red but negative (red=positive only in LC)

Use Delays to Fine-Tune Focusing

$$\partial^+(A) = A \wedge^+ 1; \quad \partial^-(A) = 1 \supset A$$

F	F ^ℓ (left)	F ^r (right)
atomic a	$\partial^{-}(a)$	а
0	∂ [−] (0)	0
1	$\partial^{-}(1)$	1
$A \wedge B$	$\partial^+(A^\ell)\wedge^-\partial^+(B^\ell)$	$\partial^+ (A^r \wedge^- B^r)$
$A \lor B$	$\partial^-(A^\ell \vee B^\ell)$	$\partial^{-}(A^{r}) \vee \partial^{-}(B^{r})$
$A \supset B$	$\partial^{-}(A')\supset\partial^{+}(B^{\ell})$	$\partial^+ (A^\ell \supset B^r)$

Deriving the Sequent Calculus LP

Different modes of sequents:

Structural Rules (R red, E green)

$$\frac{\Gamma \vdash_{\bullet} E}{\Gamma \vdash_{\circ} E} Signal/Stop \qquad \qquad \frac{A^{\perp}, \Gamma \vdash_{\circ} A}{A^{\perp}, \Gamma \vdash_{\bullet}} Load/Go$$

 \simeq

$$\begin{array}{c} [\Gamma, \partial^{-}(A)] \longrightarrow [\bot] \\ \hline [\Gamma, \partial^{-}(A)] \longrightarrow \bot \\ \hline [\Gamma], \partial^{-}(A) \longrightarrow \bot \\ \hline [\Gamma] \longrightarrow \partial^{-}(A) \supset \bot \end{array} \end{array} \xrightarrow{-} \begin{array}{c} [A \supset \bot, \Gamma] \longrightarrow A \\ \hline [A \supset \bot, \Gamma] -_{A} \longrightarrow \\ \hline [A \supset \bot, \Gamma] \xrightarrow{A} [\bot] \\ \hline [A \supset \bot, \Gamma] \xrightarrow{A} [\bot] \\ \hline [A \supset \bot, \Gamma] \xrightarrow{A} [\bot] \\ \hline [A \supset \bot, \Gamma] \longrightarrow [\bot] \end{array}$$

$$\frac{\Gamma \vdash_{\circ} A \qquad \Gamma \vdash_{\bullet} B}{\Gamma \vdash_{\bullet} A \propto B} \propto R$$

$$\downarrow$$

$$\frac{[\dots, \Gamma] \longrightarrow \partial^{-}(A')}{[\dots, \Gamma] - \partial^{-}(A') \rightarrow} R_{r} \qquad \frac{[\dots, \Gamma], \partial^{+}(B^{\perp \ell}) \longrightarrow [\bot]}{[\dots, \Gamma] \xrightarrow{\partial^{+}(B^{\perp \ell})} [\bot]} \supset L$$

$$\frac{[\dots, \Gamma] \xrightarrow{\partial^{-}(A') \supset \partial^{+}(B^{\perp \ell})} [\bot]}{[\partial^{-}(A') \supset \partial^{+}(B^{\perp \ell}), \Gamma] \longrightarrow [\bot]} Lf$$

Correspondence between focusing phases and synthetic introduction rules must be relaxed:

 $A \propto B \equiv (A \supset B^{\perp}) \supset \perp$, which is – followed by +

-+, +- are OK, but not +-+.

Sequent Calculus LP

Structural Rules and Identity

 $\frac{\Gamma \vdash_{\bullet} E}{\Gamma \vdash_{\bullet} F} Signal \qquad \frac{A, \Gamma \vdash_{\bullet} \Theta}{\Gamma \vdash_{\bullet} A^{\perp} \Theta} Store \qquad \frac{A^{\perp}, \Gamma \vdash_{\circ} A}{A^{\perp}, \Gamma \vdash_{\bullet}} Load \qquad \frac{A, \Gamma \vdash_{\circ} A}{a, \Gamma \vdash_{\circ} a} I$ **Right-Red Introduction Rules** $\frac{\Gamma \vdash_{\circ} A \quad \Gamma \vdash_{\circ} B}{\Gamma \vdash_{\bullet} A \land B} \land R \qquad \frac{\Gamma \vdash_{\circ} A_{i}}{\Gamma \vdash_{\bullet} A \lor \lor A_{\circ}} \lor R \qquad \frac{A, \Gamma \vdash_{\circ} B}{\Gamma \vdash_{\bullet} A \supset B} \supset R$ Left-Red Introduction Rules $\frac{A, B, \Gamma \vdash_{\circ} R}{A \land B \ \Gamma \vdash_{\circ} R} \land L \quad \frac{A, \Gamma \vdash_{\circ} R \quad B, \Gamma \vdash_{\circ} R}{A \lor B \ \Gamma \vdash_{\circ} R} \lor L \quad \frac{A \supset B, \Gamma \vdash_{\circ} A \quad B, \Gamma \vdash_{\circ} R}{A \supset B, \Gamma \vdash_{\circ} R} \supset L$ **Right-Green Introduction Rules** $\frac{\Gamma \vdash_{\bullet} A \quad \Gamma \vdash_{\bullet} B}{\Gamma \vdash_{\bullet} A \stackrel{e}{\sim} B} \wedge^{e} R \qquad \frac{\Gamma \vdash_{\bullet} A, B}{\Gamma \vdash_{\bullet} A \vee \stackrel{e}{\sim} B} \vee^{e} R \qquad \frac{\Gamma \vdash_{\circ} A \quad \Gamma \vdash_{\bullet} B}{\Gamma \vdash_{\bullet} A \sim B} \propto R$ **Rules for Constants** $\frac{\Gamma \vdash_{\circ} R}{\Gamma \vdash_{\circ} 1} 1R = \frac{\Gamma \vdash_{\circ} R}{1, \Gamma \vdash_{\circ} R} 1L = \frac{\Gamma \vdash_{\circ} R}{0, \Gamma \vdash_{\circ} R} 0L = \frac{\Gamma \vdash_{\bullet}}{\Gamma \vdash_{\bullet} \bot} \bot R = \frac{\Gamma \vdash_{\bullet} T}{\Gamma \vdash_{\bullet} \top} \top R$

Extends to First Order

Rules for Quantifiers

$$\frac{\Gamma \vdash_{\circ} A[t/x]}{\Gamma \vdash_{\circ} \exists x.A} \exists R \quad \frac{\Gamma \vdash_{\circ} A}{\Gamma \vdash_{\circ} \Pi y.A} \ \Pi R \quad \frac{A, \Gamma \vdash_{\circ} R}{\exists y.A, \Gamma \vdash_{\circ} R} \exists L \quad \frac{A[t/x], \Pi x.A, \Gamma \vdash_{\circ} R}{\Pi x.A, \Gamma \vdash_{\circ} R} \ \Pi L$$

$$\frac{\Gamma \vdash_{\bullet} A[t/x]}{\Gamma \vdash_{\bullet} \Sigma x.A} \Sigma R \qquad \frac{\Gamma \vdash_{\bullet} A}{\Gamma \vdash_{\bullet} \forall y.A} \forall R \qquad \text{Here, } y \text{ is not free in } \Gamma \text{ and } R.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Why not remove delays and get focused *LPF*? Possible, but first ...

LC Inside LP

LC invariant: no "positive" introductions outside of the stoup ...subsumed by LP invariant: *no green introduction in* ⊢₀ *mode* LC is accidentally almost focused, but not LP

(日) (日) (日) (日) (日) (日) (日)

Independence from Double Negation Translation

- ∨^e, ∧^e, ∝, ⊥ and ⊤ are now first-class green connectives and constants.
- A[⊥] is now De Morgan negation, defined by "dualities:" ∨^e/∧, ∧^e/∨, ∝/⊃, ⊥/1, ⊤/0,
- ▶ "dual atoms" a/a^{\perp} ; Formulas are in negation normal form. If $A \vdash_{\circ} B$ is provable, then $B^{\perp} \vdash_{\bullet} A^{\perp}$ is provable.
- Reclassification of some formulas:

1 and $R \supset \bot$ are now red. $(R \supset \bot)^{\bot} = R \propto 1$

► Every green formula is of the form R[⊥] for some red R. Given A and A[⊥], one is red, the other is green.

(日) (日) (日) (日) (日) (日) (日)

Kripke Semantics

Hybrid Model (Propositional Case): $\langle W, \preceq, C, \models \rangle$ Requirements and definitions:

- ➤ ≤ is a transitive, reflexive ordering on non-empty set W of "possible worlds."
- is a monotonic relation between elements of W and sets of atomic formulas.
- $\mathbf{C} \subseteq \mathbf{W}$ ("classical worlds")
- ▶ $\triangle_u = \{k \mid k \in C \text{ and } u \preceq k\}$ ("classical cover" of u)
- ▶ required: $\triangle_{\mathbf{k}} = \{\mathbf{k}\}$ for all $\mathbf{k} \in \mathbf{C}$. (for propositional models)
- if $\triangle_{\mathbf{u}} = \emptyset$ then **u** is **imaginary**.

Every Kripke Model for IL is immediately a Hybrid Model, with a more structured interpretation of possible worlds.

Rules of \models

for $\mathbf{u}, \mathbf{v} \in \mathbf{W}$; $\mathbf{c}, \mathbf{k} \in \mathbf{C}$, green E:

• $\mathbf{u} \models 1$ and $\mathbf{u} \not\models 0$

•
$$\mathbf{u} \models A \lor B$$
 iff $\mathbf{u} \models A$ or $\mathbf{u} \models B$

- $\mathbf{u} \models A \land B$ iff $\mathbf{u} \models A$ and $\mathbf{u} \models B$
- ▶ $\mathbf{u} \models A \supset B$ iff for all $\mathbf{v} \succeq \mathbf{u}$, $\mathbf{v} \models A$ implies $\mathbf{v} \models B$
- $\mathbf{u} \models E$ iff for all $\mathbf{k} \in \triangle_{\mathbf{u}}$, $\mathbf{k} \models E$
- $c \models E$ iff $c \not\models E^{\perp}$

E.g., $\mathbf{c} \models A \propto B$ iff $\mathbf{c} \not\models A \supset B^{\perp}$ iff for some $\mathbf{v} \succeq c$, $\mathbf{v} \models A$ and $\mathbf{v} \not\models B^{\perp}$. Monotonicity preserved by condition $\triangle_{\mathbf{c}} = {\mathbf{c}}$.

• If $\triangle_u = \emptyset$, then $u \models E$ for all green *E*. • $u \models A \lor^e A^{\perp}$

Important Countermodels

$$\begin{array}{c} s_1:\{a,a^{\perp}\} \\ & \swarrow \\ & k:\{a^{\perp}\} \end{array} \hspace{1.5cm} s_2:\{a^{\perp}\} \\ \end{array}$$

shows that $a \lor^e \sim a$ and $\sim a \lor^e \sim \sim a$ are not valid shows that intuitionistic implication does not collapse

k : {*p*, *q*} ↑ *s* : {}

shows that $(p \wedge^e q) \supset p$, $(p \vee^e q) \supset (p \vee q)$, etc... are not valid:

$$\frac{P \vdash R}{P \wedge^{e} Q \vdash R} \wedge L \qquad \frac{P \vdash R \quad Q \vdash R}{P \vee^{e} Q \vdash R} \vee L \qquad \frac{P \wedge^{e} Q}{P} \wedge E$$

... are not valid inference rules; some *device* needed.

Semantics and Cut Admissibility

LP is sound/complete by Hintikka-Henkin constructions

Some admissible cuts guaranteed by semantics:

$$\frac{\Gamma \vdash_{\circ} A \quad A, \Gamma' \vdash_{\circ} B}{\Gamma \Gamma' \vdash_{\circ} B} \ Cut \quad \frac{A, \Gamma \vdash_{\bullet} \Theta \quad A^{\perp}, \Gamma' \vdash_{\bullet} \Theta'}{\Gamma \Gamma' \vdash_{\bullet} \Theta \Theta'} \ cut_{\bullet} \quad \frac{\Gamma \vdash_{\circ} A \quad \Gamma' \vdash_{\circ} A^{\perp}}{\Gamma \Gamma' \vdash_{\bullet}} \ cut_{\perp}$$

A non-admissible cut:

$$\frac{\Gamma \vdash_{\bullet} P \quad P, \Gamma' \vdash_{\circ} Q}{\Gamma \Gamma' \vdash_{\circ} Q} \text{ bad cut}$$

when P, Q are red.

(ロ) (同) (三) (三) (三) (○) (○)

Procedural Cut Elimination

Reduces to:

▲□▶▲□▶▲目▶▲目▶ 目 のへで

Let's Be Naive ...

$$\frac{A, \Gamma \vdash_{\circ} R}{A \wedge^{e} B, \Gamma \vdash_{\circ} R} \text{ naive-} \wedge^{e} L$$

Try to reduce the following cut:

$$\frac{\Gamma \vdash_{\bullet} A \quad \Gamma \vdash_{\bullet} B}{\frac{\Gamma \vdash_{\bullet} A \wedge^{e} B}{\Gamma \vdash_{\circ} A \wedge^{e} B}} \frac{\Lambda^{e} R}{Signal} \quad \frac{A, \Gamma' \vdash_{\circ} R}{A \wedge^{e} B, \Gamma' \vdash_{\circ} R} \text{ naive-} \wedge^{e} L$$

$$\Gamma\Gamma' \vdash_{\circ} R \quad Cut$$

would require

$$\frac{\Gamma \vdash_{\bullet} A \quad A, \Gamma\Gamma' \vdash_{\circ} R}{\Gamma\Gamma' \vdash_{\circ} R} \text{ bad cut}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Violates LP Invariant: no green introduction rules in \vdash_{\circ} mode

Alternative Proof System LPM

Right-Red Rules

 $\frac{\Gamma \vdash A, B, \Delta}{\Gamma \vdash A \lor B, \Delta} \lor R \quad \frac{\Gamma \vdash A, \Delta \quad \Gamma \vdash B, \Delta}{\Gamma \vdash A \land B, \Delta} \land R \quad \frac{A, \Gamma \vdash B}{\Gamma \vdash A \supset B, \Delta} \supset R \qquad \frac{\Gamma \vdash 1, \Delta}{\Gamma \vdash 1, \Delta}$ Left-Red Rules $\frac{A, \Gamma \vdash \Delta}{A \lor B, \Gamma \vdash \Delta} \lor L \quad \frac{A, B, \Gamma \vdash \Delta}{A \land B, \Gamma \vdash \Delta} \land L \quad \frac{A \supset B, \Gamma \vdash A}{A \supset B, \Gamma \vdash \Delta} \supset L$ Left-Green Rules $\frac{A, \Gamma \vdash B, \Gamma \vdash}{A \lor^{e} B \Gamma \vdash} \lor^{e} L \quad \frac{A, B, \Gamma \vdash}{A \land^{e} B, \Gamma \vdash} \land^{e} L \quad \frac{A, \Gamma \vdash B^{\perp}}{A \curvearrowright B, \Gamma \vdash} \propto L \qquad \frac{1}{1 \downarrow \Gamma \vdash} \bot L$ The Lift Rule and Identity $\frac{E^{\perp}, \Gamma \vdash}{\Gamma \vdash E, \Delta} Lift \qquad \frac{}{a, \Gamma \vdash a, \Delta} I_r \qquad \frac{}{a, a^{\perp}, \Gamma \vdash} I_{\ell} \qquad \frac{}{0, \Gamma \vdash \Delta} 0L$ E is a green formula and a is an atomic formula ◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Some Properties of PIL

- A ∨^e ¬A is valid/provable (LEM)
- if $A \lor B$ provable, either A or B provable (Disjunction Prop.)
- $\blacktriangleright A \propto 1 \equiv A \vee^{e} \bot \equiv \neg \neg A$
- Classical and intuitionistic connectives can mix freely: In A ∨^e (B ⊃ C), ⊃ does not collapse

But limitations still exist...

Define classical implication: A ⇒ B = A[⊥] ∨^e B: Can prove

$$((P \Rightarrow Q) \Rightarrow P) \Rightarrow P$$
$$((P \Rightarrow Q) \supset P) \Rightarrow P$$
$$((P \supset \bot) \supset P) \Rightarrow P$$

but not

$$((P \supset \bot) \supset P) \supset P$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

And the outermost \supset is most important.

Algebraic Perspective

 $\mathbb{L} = \{ \mathbf{u} \in \mathbf{W} : \mathbf{u} \models \bot \} = \{ \mathbf{u} \in \mathbf{W} : \bigtriangleup_{\mathbf{u}} = \emptyset \}$

Kripke Frame, $\mathbf{C} = \{\mathbf{c}, \mathbf{k}\}$ Heyting Algebra with \bot Boolean Algebra 2^C

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Embedded Algebra = { $K \cup \mathbb{L}$: $K \subseteq C$ }

Interpretation of formulas

$$h(1) = h(\top) = \mathbf{W}; \quad h(\bot) = \bot$$

►
$$h(A \lor B) = h(A) \sqcup h(B)$$
, $h(A \land B) = h(A) \sqcap h(B)$

▶
$$h(A \supset B) = h(A) \rightarrow h(B)$$
.

▶
$$h(R^{\perp}) = h(R) \rightarrow \bot$$
 for all green R^{\perp} .

Top of embedded boolean algebra = $\mathbf{C} \cup \mathbb{L}$.

(Alternatively, let $1 = \mathbf{C} \cup \mathbb{L}$, change $\Gamma \vdash_{\circ} 1$ to $\Gamma \vdash_{\bullet} 1$)

Define secondary interpretation $h'(A) = (h(\neg \neg A) \cap \mathbf{C}) \cup \bot$:

►
$$h'(A \land B) = h'(A \land^e B) = h'(A) \cap h'(B)$$

►
$$h'(A \lor B) = h'(A \lor^e B) = h'(A) \cup h'(B)$$

▶ $\overline{h'(A)} = h'(A^{\perp})$; \overline{X} is boolean complement in embedded algebra.

• But
$$h'(A \supset B) \neq h'(A) \rightarrow h'(B)$$

▶ $h'(E) = \mathbf{C} \cup \bot$ iff $h(E) = \mathbf{T}$ for green *E*.

Black Hole ($\sim \sim$) versus Worm Hole ($\neg \neg$)

Black Hole: all points $A \to \emptyset$ (or $(A \to \emptyset) \to \emptyset$) (Glivenko 1929)

Not closed under \lor , closed under \rightarrow $(A \rightarrow \emptyset) \rightarrow (B \rightarrow \emptyset) \equiv ((A \rightarrow \emptyset) \land B) \rightarrow \emptyset$. No escape!

Worm Hole: all points $(A \cap C) \cup \bot$ (based on $\neg \neg A$)

Closed under \lor , not closed under \rightarrow

Semantic Alternatives; Conclusions

• Require $\mathbf{C} \neq \emptyset$: so $\mathbb{L} \neq \mathbf{T}$

But \perp is nolonger just an atom.

▶ Add red constant $\Diamond = \mathbf{C} \cup \mathbb{I}$: $\Diamond \approx$?1; $\mathbf{k} \models \Diamond$ iff $\mathbf{k} \in \mathbf{C}$.

$$\overline{\Gamma \vdash_{\bullet} \Diamond} \Diamond R$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

- Extend to first order quantifiers: lose property $\triangle_{c} = \{c\}$
- Let ⊥ be the second-largest element: ICL
 A ∨⁻ ¬A valid without a different version of disjunction.

Summary

- Can a double-negation translation allow us to combine classical logic with intuitionistic logic?
- Yes, polarize the doubly-negated formulas; then focus.
- ► Derive sequent calculus LP with two modes ⊢₀ and ⊢₀; satisfies cut-elimination
- Intuitionistic implication does not collapse in PIL.
- A ≡ B intuitionistically if A ⊢₀ B and B ⊢₀ A; implies B[⊥] ⊢₀ A[⊥] and A[⊥] ⊢₀ B[⊥]
- Semantics completes the lifting of labels into connectives; Defines new logic.
- No need to involve linear logic.

 $?A^{\perp} \otimes B$ ($!A \multimap B$) is properly linear (*B* is "neutral"). No neutrals needed; combination can occur within intutionistic logic, with focusing and enriched semantics.

LPF: Focused LP

Separate positive/negative from red/green polarization

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Can we cross-focus between +Green and +Red?

- + to +: OK (focusing in LJF).
- ► + to +: OK; $A \propto (B \propto C) = \neg (A \supset (B \supset C^{\perp})).$
- ► + to +: OK; $(A \lor B) \propto C = \neg((A \lor B) \supset C^{\perp})$
- ► + to +: Not a chance! $A \lor (B \propto C) = A \lor \neg (B \supset C^{\perp})$. Pattern is + - +. In linear logic, $!A \oplus !?(!B \otimes C)$

A D F A 同 F A E F A E F A Q A

Need two layers of focusing with lateral transition rules.

- $\uparrow^{\bullet}/\Downarrow^{\bullet}$ along -/+ axis. $\uparrow^{\circ}/\Downarrow^{\circ}$ along -/+ axis.
- \vdash_{\circ} corresponds to \uparrow° , \Downarrow^{\bullet} .
- \vdash_{\bullet} corresponds to \uparrow^{\bullet} , \Downarrow° .

LPF (one sided version)

Structural/Reaction Rules

Lateral Reactions

$$\frac{\vdash \Gamma : \Delta \Uparrow^{\bullet} \Upsilon}{\vdash \Gamma : \Delta \Uparrow^{\bullet} \Upsilon} L \Uparrow \qquad \frac{\vdash \Gamma : \Downarrow^{\bullet} R}{\vdash \Gamma : \Downarrow^{\bullet} R} L \Downarrow$$

Negative Reactions

 $\frac{\vdash \Gamma : R \Uparrow^{\circ} \Theta}{\vdash \Gamma : \Uparrow^{\circ} R, \Theta} R_{1} \Uparrow \quad \frac{\vdash D, \Gamma : \Delta \Uparrow^{\circ} \Theta}{\vdash \Gamma : \Delta \Uparrow^{\circ} D, \Theta} R_{2} \Uparrow \quad \frac{\vdash \Gamma : \Downarrow^{\circ} S}{\vdash \Gamma : S \Uparrow^{n}} D_{1} \quad \frac{\vdash T, \Gamma : \Delta \Downarrow^{\circ} T}{\vdash T, \Gamma : \Delta \Uparrow^{n}} D_{2}$ $\frac{\text{Positive Reactions}}{\vdash \Gamma : \Delta \Downarrow^{\circ} N} R_{1} \Downarrow \quad \frac{\vdash \Gamma : \Uparrow^{\circ} M}{\vdash \Gamma : \Downarrow^{\bullet} M} R_{2} \Downarrow \quad \frac{\vdash \Gamma : a^{\perp} \Downarrow^{n} a}{\vdash \Gamma : a^{\perp} \Downarrow^{n} a} l_{1} \quad \frac{\vdash a^{\perp}, \Gamma : \Downarrow^{n} a}{\vdash a^{\perp}, \Gamma : \Downarrow^{n} a} l_{2}$

 Υ contains only green formulas; *R*: red formula; *D*: positive formula or negative green literal; *S*: positive red formula; *T*: positive formula; *N*: negative green formula; *M*: negative formula; *a*, positive atom.

(ロ) (同) (三) (三) (三) (○) (○)

LPF Introduction Rules

Constants