Combining Classical Logic and Intuitionistic Logic

Double Negation, Polarization, Focusing, and Semantics

Chuck Liang and Dale Miller

Challenges of Combining Intuitionistic Logic with Classical Logic Using a Double Negation Translation

- Intuitionistic implication should not collapse into classical implication. Consider $A \vee^{e}(B \supset C) \longrightarrow \sim(\sim A \wedge \sim(B \supset C))$
- How to distinguish the introduction of a translated classical "connective" from intuitionistic introductions.
Introduction of classical disjunction $A \vee^{e} B$:

$$
\frac{\frac{\sim A, \sim B, \Gamma \vdash}{\sim A \wedge \sim B, \Gamma \vdash}}{\Gamma \vdash \sim(\sim A \wedge \sim B)}
$$

No guarantee that sequence won't be interrupted by other rules.

- How to recognize classical "dualities". How is $\sim(\sim A \wedge \sim B)$ the "dual" of ($\sim A \wedge \sim B$) in an intuitionistic sense, given that $\sim \sim P \not \equiv P$.

Challenges Continued ...

- How to distinguish classical from intuitionistic equivalence.
- Classical versus Intuitionistic Cut Elimination.

$$
\frac{A, \Gamma \vdash B \sim A, \Gamma \vdash B}{\Gamma \vdash B}
$$

Admissible in classical logic but not in intuitionistic logic.
How do we simulate this cut in an intuitionistic proof system?

- What is the meaning of mixed formulas such as $A \vee{ }^{e}(B \supset(C \vee D))$?.

Outline and Overview:

- Goal: Combine LJ and LC into Polarized Intuitionistic Logic
- LC does not include intuitionistic implication
- Start with Intuitionistic Logic with a designated atom \perp.
$-\perp$ is just minimal "false" - this logic predates ICL.
- ICL is a stand-alone logic
- PIL combine logics
- Assign labels, i.e., "polarities" to formulas.
- Define Double-Negation translation.
- Use focusing (focalization) to isolate "classical connectives"
- Derive Unified Sequent Calculus
- Define Kripke/Algebraic Semantics

Syntax and Colors

- Formulas freely generated from atoms, $\wedge, \vee, \supset, 0$ and designated atom \perp.
- Define $\neg A=A \supset \perp ;(A \supset 0=\sim A)$
- Formulas are Red or Green as follows:
- $A \wedge B, A \vee B, 0$, and $A \supset B$ where $B \neq \perp$ are red.
- All atoms are red, except \perp, which is green.
- $\neg A(A \supset \perp)$ is green.
- $\neg^{2 n}(R), n>0$, are reddish green (also includes \perp)
- $\neg^{2 n+1}(R)$ are solidly green
- Red and Green formulas can be logically equivalent: $(A \wedge B) \supset \perp \equiv A \supset(B \supset \perp)$
- This polarization is not same as duality in linear logic: ? $X-\infty!Y$

Recovering Classical "Dualities"

- $M^{\perp}=\neg M$ for red or reddish-green M
- $(\neg M)^{\perp}=M$

Syntactic Identity: $A^{\perp \perp}=A$

- A^{\perp} is convenient way to refer to doubly-negated formulas
- A^{\perp} is not a connective.
- if $A \equiv B$, then A^{\perp} is only classically \equiv to B^{\perp}

$$
((A \wedge B) \supset \perp)^{\perp}=A \wedge B, \quad(A \supset(B \supset \perp))^{\perp}=\neg(A \supset \neg B)
$$

Double Negation as Macro Expansion

R red and E green

- $A \vee^{e} B=\left(A^{\perp} \wedge B^{\perp}\right)^{\perp}=\neg\left(A^{\perp} \wedge B^{\perp}\right)$
- $A \wedge^{e} B=\left(A^{\perp} \vee B^{\perp}\right)^{\perp}=\neg\left(A^{\perp} \vee B^{\perp}\right)$
- $1=\perp^{\perp}=\perp \supset \perp ; \quad \top=0^{\perp}=0 \supset \perp$

To complete the definition of A^{\perp}, we need missing link:

- $A \propto B=\neg\left(A \supset B^{\perp}\right)$
includes special case: $(R \propto 1)=\neg \neg R$
These are not yet new connectives, just labels

The following holds:

- $1^{\perp}=\perp ; \top^{\perp}=0$
- $\left(A \vee^{e} B\right)^{\perp}=A^{\perp} \wedge B^{\perp}$
- $\left(A \wedge^{e} B\right)^{\perp}=A^{\perp} \vee B^{\perp}$
- $(A \propto B)^{\perp} \equiv A \supset B^{\perp} \quad(\bmod \neg \neg \neg P \equiv \neg P)$

Caution: do not equate "green" with "classical."
Classical fragment will use \vee and \vee^{e}, \wedge and $\wedge^{e}, 0$ and $\perp, 1$ and T.
The classical fragment will be more LC than LK.

Intuitionistic Sequent Calculus LJ

$$
\begin{array}{cll}
\frac{A, B, \Gamma \vdash D}{A \wedge B, \Gamma \vdash D} \wedge L & \frac{A, \Gamma \vdash D B, \Gamma \vdash D}{A \vee B, \Gamma \vdash D} \vee L & \frac{A \supset B, \Gamma \vdash A \quad B, \Gamma \vdash D}{A \supset B, \Gamma \vdash D} \supset L \\
\frac{\Gamma \vdash A}{\Gamma \vdash A \wedge B} \wedge R & \frac{\Gamma \vdash A_{i}}{\Gamma \vdash A_{1} \vee A_{2}} \vee R & \frac{A, \Gamma \vdash B}{\Gamma \vdash A \supset B} \supset R \\
& \\
\overline{a, \Gamma \vdash a} l d & \overline{0, \Gamma \vdash D} 0 L & \overline{\Gamma \vdash 1} 1 R \\
& \perp \text { is considered a special atom }
\end{array}
$$

\vee^{e}, \wedge^{e} and \propto as Synthetic Connectives in LJ?

Distinguish between sequents $\Gamma \vdash A$ and $\Gamma \vdash \perp$:
Correspond to sequents with and without a stoup
Introduction of a green formula $\neg A=A \supset \perp$:

$$
\frac{A, \Gamma \vdash \perp}{\Gamma \vdash A \supset \perp} \supset R \quad \frac{A \supset \perp, \Gamma \vdash A \overline{\perp, \Gamma \vdash \perp}}{A \supset \perp, \Gamma \vdash \perp} \supset L
$$

But LJ is not good enough
We don't want the following:

$$
\frac{B \supset C, \Gamma \vdash B \quad C, \Gamma \vdash A \supset \perp}{B \supset C, \Gamma \vdash A \supset \perp} \quad \frac{A \supset \perp, \Gamma \vdash A \perp, \Gamma \vdash B}{A \supset \perp, \Gamma \vdash B}
$$

Looking for one-to-one mapping between proofs

Derive new introduction rules for $A \vee^{e} B=\neg\left(A^{\perp} \wedge B^{\perp}\right)$:

$$
\frac{\Gamma \vdash_{0} A, B}{\Gamma \vdash A \vee^{e} B} \vee^{e} R \quad \frac{A \vee^{e} B, \Gamma \vdash_{0} A^{\perp} A \vee^{e} B, \Gamma \vdash_{0} B^{\perp}}{A \vee^{e} B, \Gamma \vdash_{0}} \vee^{e} L
$$

Want this to correspond one-to-one with the following fragments:

$$
\frac{\frac{A^{\perp}, B^{\perp}, \Gamma \vdash \perp}{A^{\perp} \wedge B^{\perp}, \Gamma \vdash \perp}}{\Gamma \vdash \neg\left(A^{\perp} \wedge B^{\perp}\right)} \quad \frac{\neg\left(A^{\perp} \wedge B^{\perp}\right), \Gamma \vdash A^{\perp} \quad \neg\left(A^{\perp} \wedge B^{\perp}\right), \Gamma \vdash B^{\perp}}{} \quad \frac{\neg\left(A^{\perp} \wedge B^{\perp}\right), \Gamma \vdash A^{\perp} \wedge B^{\perp}}{\neg\left(A^{\perp} \wedge B^{\perp}\right), \Gamma \vdash \perp} \quad \perp, \Gamma \vdash \perp
$$

Need focused intuitionistic sequent calculus (LJF) even for unfocused synthetic introduction rules

A new dimension of polarization

- Atoms are "positive," except \perp, which is "negative"
- $\vee, \wedge^{+}, 1$ and 0 are positive
- \wedge^{-}, \supset, are negative
- Positives are "synchronous" on the right; Negatives are synchronous on the left
- Asynchronous rules are always invertible
- Synchronous (and asynchronous) rules can be stringed together into a single phase.
- $A \vee^{e} B=\left(A^{\perp} \wedge^{+} B^{\perp}\right)^{\perp}$
- Caution: Do not confuse positive with red polarities: $A \supset B$ is red but negative (red=positive only in LC)

Use Delays to Fine-Tune Focusing

$$
\partial^{+}(A)=A \wedge^{+} 1 ; \quad \partial^{-}(A)=1 \supset A
$$

F	$F^{\ell}($ left $)$	F^{r} (right)
atomic a	$\partial^{-}(a)$	a
0	$\partial^{-}(0)$	0
1	$\partial^{-}(1)$	1
$A \wedge B$	$\partial^{+}\left(A^{\ell}\right) \wedge^{-} \partial^{+}\left(B^{\ell}\right)$	$\partial^{+}\left(A^{r} \wedge^{-} B^{r}\right)$
$A \vee B$	$\partial^{-}\left(A^{\ell} \vee B^{\ell}\right)$	$\partial^{-}\left(A^{r}\right) \vee \partial^{-}\left(B^{r}\right)$
$A \supset B$	$\partial^{-}\left(A^{r}\right) \supset \partial^{+}\left(B^{\ell}\right)$	$\partial^{+}\left(A^{\ell} \supset B^{r}\right)$

F	F^{ℓ} (left)	F^{r} (right)
\perp	\perp	\perp
a^{\perp}, atomic a	$\neg\left(\partial^{-}(a)\right)$	$\neg \partial^{-}(a)$
$A \wedge^{e} B$	$\neg\left(\partial^{-}\left(A^{\perp r}\right) \vee \partial^{-}\left(B^{\perp r}\right)\right)$	$\neg \partial^{-}\left(A^{\perp \ell} \vee B^{\perp \ell}\right)$
$A \vee^{e} B$	$\neg\left(\partial^{-}\left(A^{\perp r}\right) \wedge^{+} \partial^{-}\left(B^{\perp r}\right)\right)$	$\neg \partial^{-}\left(A^{\perp \ell} \wedge^{+} B^{\perp \ell}\right)$
$A \propto B$	$\neg\left(A^{\ell} \supset B^{\perp r}\right)$	$\neg\left(\partial^{-}\left(A^{r}\right) \supset \partial^{+}\left(B^{\perp \ell}\right)\right)$

Deriving the Sequent Calculus $L P$

Different modes of sequents:
$-\Gamma \vdash, A_{1}, \ldots, A_{n} \cong A_{1}^{\perp}, \ldots, A_{n}^{\perp}, \Gamma \vdash \perp \quad(\Gamma \vdash \cdot \cong \Gamma \vdash \perp)$

- $\Gamma \vdash \vdash_{\circ} \cong \Gamma \vdash A$

Structural Rules (R red, E green)

$$
\begin{array}{cc}
\frac{\Gamma \vdash \cdot E}{\Gamma \vdash_{0} E} \text { Signal/Stop } & \frac{A^{\perp}, \Gamma \vdash_{0} A}{A^{\perp}, \Gamma \vdash_{\bullet}} \text { Load/Go } \\
\frac{\left[\Gamma, \partial^{-}(A)\right] \longrightarrow[\perp]}{\left[\Gamma, \partial^{-}(A)\right] \longrightarrow \perp} & \frac{[A \supset \perp, \Gamma] \longrightarrow A}{[\Gamma], \partial^{-}(A) \longrightarrow \perp} \\
\frac{[A \supset \perp, \Gamma]-A \rightarrow}{[\Gamma] \longrightarrow \partial^{-}(A) \supset \perp} & \frac{[A \supset \perp, \Gamma] \xrightarrow{A \supset \perp}[\perp]}{[A \supset \perp, \Gamma] \longrightarrow[\perp]}
\end{array}
$$

$$
\begin{gathered}
\frac{\Gamma \vdash_{0} A \Gamma \vdash_{\bullet} B}{\Gamma \vdash_{\bullet} A \propto B} \propto R \\
\frac{\downarrow}{[\ldots, \Gamma]-\partial^{-}\left(A^{r}\right) \rightarrow} R_{r} \quad \frac{[\ldots, \Gamma], \partial^{+}\left(B^{\perp \ell}\right) \longrightarrow[\perp]}{[\ldots, \Gamma]} \xrightarrow{\partial^{+}\left(B^{\perp \ell}\right)}[\perp] \\
\frac{[\ldots, \Gamma]}{\partial^{-}\left(A^{r}\right) \supset \partial^{+}\left(B^{\perp \ell}\right)}[\perp] \\
{\left[\partial^{-}\left(A^{r}\right) \supset \partial^{+}\left(B^{\perp \ell}\right), \Gamma\right] \longrightarrow[\perp]} \\
\\
\hline
\end{gathered}
$$

Correspondence between focusing phases and synthetic introduction rules must be relaxed:
$A \propto B \equiv\left(A \supset B^{\perp}\right) \supset \perp$, which is - followed by + ,-++- are OK, but not +-+ .

Sequent Calculus LP

Structural Rules and Identity

$$
\frac{\Gamma \vdash_{\bullet} E}{\Gamma \vdash_{0} E} \text { Signal } \frac{A, \Gamma \vdash_{\bullet} \Theta}{\Gamma \vdash_{\bullet} A^{\perp}, \Theta} \text { Store } \quad \frac{A^{\perp}, \Gamma \vdash_{0} A}{A^{\perp}, \Gamma \vdash_{\bullet}} \text { Load } \quad \overline{a, \Gamma \vdash_{0} a} I
$$

Right-Red Introduction Rules

$$
\frac{\Gamma \vdash_{0} A\left\ulcorner\vdash_{0} B\right.}{\Gamma \vdash_{0} A \wedge B} \wedge R \quad \frac{\Gamma \vdash_{0} A_{i}}{\Gamma \vdash_{0} A_{1} \vee A_{2}} \vee R \quad \frac{A, \Gamma \vdash_{0} B}{\Gamma \vdash_{0} A \supset B} \supset R
$$

Left-Red Introduction Rules
$\frac{A, B, \Gamma \vdash_{0} R}{A \wedge B, \Gamma \vdash_{0} R} \wedge L \frac{A, \Gamma \vdash_{0} R \quad B, \Gamma \vdash_{0} R}{A \vee B, \Gamma \vdash_{0} R} \vee L \frac{A \supset B, \Gamma \vdash_{0} A B, \Gamma \vdash_{0} R}{A \supset B, \Gamma \vdash_{0} R} \supset L$
Right-Green Introduction Rules

$$
\frac{\Gamma \vdash_{0} A \Gamma \vdash_{0} B}{\Gamma \vdash_{0} A \wedge^{e} B} \wedge^{e} R \quad \frac{\Gamma \vdash_{0} A, B}{\Gamma \vdash_{0} A \vee^{e} B} \vee^{e} R \quad \frac{\Gamma \vdash_{0} A \Gamma \vdash_{0} B}{\Gamma \vdash_{0} A \propto B} \propto R
$$

Rules for Constants
$\overline{\Gamma \vdash_{0} 1} 1 R \quad \frac{\Gamma \vdash_{0} R}{1, \Gamma \vdash_{0} R} 1 L \quad \overline{0, \Gamma \vdash_{0} R} 0 L \quad \frac{\Gamma \vdash_{\bullet}}{\Gamma \vdash_{\bullet} \perp} \perp R \quad \overline{\Gamma \vdash_{\bullet} \top} \top R$

Extends to First Order

Rules for Quantifiers
$\frac{\Gamma \vdash_{0} A[t / x]}{\Gamma \vdash_{0} \exists x \cdot A} \exists R \quad \frac{\Gamma \vdash_{0} A}{\Gamma \vdash_{0} \Pi y \cdot A} \Pi R \quad \frac{A, \Gamma \vdash_{0} R}{\exists y \cdot A, \Gamma \vdash_{0} R} \exists L \quad \frac{A[t / x], \Pi x \cdot A, \Gamma \vdash_{0} R}{\Pi x \cdot A, \Gamma \vdash_{0} R} \Pi L$
$\frac{\Gamma \vdash_{\bullet} A[t / x]}{\Gamma \vdash_{\bullet} \Sigma x \cdot A} \Sigma R \quad \frac{\Gamma \vdash_{\bullet} A}{\Gamma \vdash_{\bullet} \forall y \cdot A} \forall R \quad$ Here, y is not free in Γ and R.

Why not remove delays and get focused LPF?
Possible, but first ...

LC Inside LP

$$
\begin{array}{lll}
\frac{\vdash \Gamma, N, P ; S}{\vdash \Gamma, N \vee P ; S} & \longmapsto & \frac{\Gamma, P, N \vdash_{0} S}{\Gamma, P \wedge N \vdash_{0} S} \wedge L \\
\frac{\vdash \Gamma, N, P ;}{\vdash \Gamma, N \vee P ;} & \longmapsto & \frac{\Gamma \vdash \cdot N, P}{\Gamma \vdash_{0} N \vee^{e} P} \vee^{e} R \\
\frac{\vdash \Gamma ; P \vdash \Delta, N ;}{\vdash \Gamma \Delta ; P \wedge N} & & \frac{\Gamma \vdash_{0} P \frac{\Gamma \vdash_{0} N}{\Gamma \vdash_{0} N} \text { Signal }}{\Gamma \vdash_{0} P \wedge N} \wedge R
\end{array}
$$

LC invariant: no "positive" introductions outside of the stoup ...subsumed by LP invariant: no green introduction in \vdash_{\circ} mode LC is accidentally almost focused, but not LP

Independence from Double Negation Translation

- $\vee^{e}, \wedge^{e}, \propto, \perp$ and \top are now first-class green connectives and constants.
- A^{\perp} is now De Morgan negation, defined by "dualities:" $\vee^{e} / \wedge, \wedge^{e} / \wedge, \propto / \supset, \perp / 1, \top / 0$,
- "dual atoms" a / a^{\perp}; Formulas are in negation normal form. If $A \vdash_{0} B$ is provable, then $B^{\perp} \vdash_{0} A^{\perp}$ is provable.
- Reclassification of some formulas: 1 and $R \supset \perp$ are now red. $(R \supset \perp)^{\perp}=R \propto 1$
- Every green formula is of the form R^{\perp} for some red R. Given A and A^{\perp}, one is red, the other is green.

Kripke Semantics

Hybrid Model (Propositional Case): $\langle\mathbf{W}, \preceq, \mathbf{C}, \models\rangle$ Requirements and definitions:

- \preceq is a transitive, reflexive ordering on non-empty set W of "possible worlds."
- \models is a monotonic relation between elements of \mathbf{W} and sets of atomic formulas.
- $\mathbf{C} \subseteq \mathbf{W}$ ("classical worlds")
- $\triangle_{\mathbf{u}}=\{\mathbf{k} \mid \mathbf{k} \in \mathbf{C}$ and $\mathbf{u} \preceq \mathbf{k}\} \quad$ ("classical cover" of \mathbf{u})
- required: $\triangle_{\mathbf{k}}=\{\mathbf{k}\}$ for all $\mathbf{k} \in \mathbf{C}$. (for propositional models)
- if $\triangle_{\mathbf{u}}=\emptyset$ then \mathbf{u} is imaginary.

Every Kripke Model for IL is immediately a Hybrid Model, with a more structured interpretation of possible worlds.

Rules of \models

for $\mathbf{u}, \mathbf{v} \in \mathbf{W} ; \mathbf{c}, \mathbf{k} \in \mathbf{C}$, green E :

- $\mathbf{u} \vDash 1$ and $\mathbf{u} \not \vDash 0$
- $\mathbf{u} \vDash A \vee B$ iff $\mathbf{u} \vDash A$ or $\mathbf{u} \models B$
- $\mathbf{u} \vDash A \wedge B$ iff $\mathbf{u} \models A$ and $\mathbf{u} \models B$
- $\mathbf{u} \models A \supset B$ iff for all $\mathbf{v} \succeq \mathbf{u}, \mathbf{v} \models A$ implies $\mathbf{v} \models B$
- $\mathbf{u} \mid=E$ iff for all $\mathbf{k} \in \triangle_{\mathbf{u}}, \mathbf{k} \models E$
- $\mathbf{c} \models E$ iff $\mathbf{c} \not \models E^{\perp}$
E.g., $\mathbf{c} \vDash A \propto B$ iff $\mathbf{c} \not \models A \supset B^{\perp}$ iff for some $\mathbf{v} \succeq c, \mathbf{v} \neq A$ and $\mathbf{v} \not \models B^{\perp}$. Monotonicity preserved by condition $\triangle_{\mathbf{c}}=\{\mathbf{c}\}$.
- If $\triangle_{\mathbf{u}}=\emptyset$, then $\mathbf{u} \models E$ for all green E.
- $\mathbf{u} \models A \vee^{e} A^{\perp}$

Important Countermodels

$$
\underset{k:\left\{a^{\perp}\right\}}{s_{1}:\left\{a, a^{\perp}\right\}} \underset{s_{2}:\left\{a^{\perp}\right\}}{ }
$$

shows that $a \vee^{e} \sim a$ and $\sim a \vee^{e} \sim \sim a$ are not valid shows that intuitionistic implication does not collapse

$$
\begin{gathered}
k:\{p, q\} \\
\uparrow \\
s:\{ \}
\end{gathered}
$$

shows that $\left(p \wedge^{e} q\right) \supset p,\left(p \vee^{e} q\right) \supset(p \vee q)$, etc... are not valid:

$$
\frac{P \vdash R}{P \wedge^{e} Q \vdash R} \wedge L \quad \frac{P \vdash R \quad Q \vdash R}{P \vee^{e} Q \vdash R} \vee L \quad \frac{P \wedge^{e} Q}{P} \wedge E
$$

... are not valid inference rules; some device needed.

Semantics and Cut Admissibility

LP is sound/complete by Hintikka-Henkin constructions
Some admissible cuts guaranteed by semantics:

$$
\frac{\Gamma \vdash_{0} A A, \Gamma^{\prime} \vdash_{0} B}{\Gamma \Gamma^{\prime} \vdash_{0} B} \operatorname{Cut} \frac{A, \Gamma \vdash_{\bullet} \Theta A^{\perp}, \Gamma^{\prime} \vdash_{\bullet} \Theta^{\prime}}{\Gamma \Gamma^{\prime} \vdash_{\bullet} \Theta \Theta^{\prime}} \text { cut } t_{\bullet} \frac{\Gamma \vdash_{0} A \Gamma^{\prime} \vdash_{0} A^{\perp}}{\Gamma \Gamma^{\prime} \vdash_{\bullet}} \text { cut }_{\perp}
$$

A non-admissible cut:

$$
\frac{\Gamma \vdash_{0} P \quad P, \Gamma^{\prime} \vdash_{0} Q}{\Gamma \Gamma^{\prime} \vdash_{0} Q} \text { bad cut }
$$

when P, Q are red.

$$
\begin{gathered}
k: \\
: \\
\uparrow \\
\uparrow: \\
s:\{ \}
\end{gathered}
$$

Procedural Cut Elimination

Reduces to:

$$
\frac{\frac{\Gamma \vdash_{0} A \vee^{e} B}{\Gamma \vdash_{0} A \vee^{e} B} A \vee^{e} B, \Gamma^{\prime} \vdash_{0} B^{\perp}}{\frac{\Gamma \Gamma^{\prime} \vdash_{0} B^{\perp}}{} \frac{\frac{\Gamma \vdash_{0} A \vee^{e} B}{\Gamma \vdash_{0} A \vee^{e} B} A \vee^{e} B, \Gamma^{\prime} \vdash_{0} A^{\perp}}{\Gamma \Gamma^{\prime} \vdash_{0} A^{\perp}} \text { cut } A^{\perp}, B^{\perp}, \Gamma \vdash_{0}}{B^{\perp}, \Gamma \Gamma^{\prime} \vdash_{0}}_{\Gamma^{\prime} \vdash_{\bullet}}^{c u t}
$$

Let's Be Naive ...

$$
\frac{A, \Gamma \vdash_{0} R}{A \wedge^{e} B, \Gamma \vdash_{0} R} \text { naive }-\wedge^{e} L
$$

Try to reduce the following cut:

$$
\begin{aligned}
& \frac{\Gamma \vdash_{0} A \Gamma \vdash_{0} B}{\Gamma \vdash_{0} A \wedge^{e} B} \wedge^{e} R \\
& \frac{\Gamma \vdash_{0} A \wedge^{e} B}{} \text { Signal } \frac{A, \Gamma^{\prime} \vdash_{0} R}{A \wedge^{e} B, \Gamma^{\prime} \vdash_{0} R} \text { naive }-\wedge^{e} L \\
& \Gamma \Gamma^{\prime} \vdash_{0} R
\end{aligned}
$$

would require

$$
\frac{\Gamma \vdash \cdot A \quad A, \Gamma \Gamma^{\prime} \vdash_{0} R}{\Gamma \Gamma^{\prime} \vdash_{0} R} \text { bad cut }
$$

Violates LP Invariant: no green introduction rules in \vdash_{\circ} mode

Alternative Proof System LPM

Right-Red Rules

$$
\begin{gathered}
\frac{\Gamma \vdash A, B, \Delta}{\Gamma \vdash A \vee B, \Delta} \vee R \frac{\Gamma \vdash A, \Delta \quad \Gamma \vdash B, \Delta}{\Gamma \vdash A \wedge B, \Delta} \wedge R \\
\text { Left-Red Rules }
\end{gathered}
$$

$$
\frac{A, \Gamma \vdash \Delta \quad B, \Gamma \vdash \Delta}{A \vee B, \Gamma \vdash \Delta} \vee L \frac{A, B, \Gamma \vdash \Delta}{A \wedge B, \Gamma \vdash \Delta} \wedge \frac{A \supset B, \Gamma \vdash A \quad B, \Gamma \vdash \Delta}{A \supset B, \Gamma \vdash \Delta} \supset L
$$

Left-Green Rules

$$
\frac{A, \Gamma \vdash B, \Gamma \vdash}{A \vee^{e} B, \Gamma \vdash} \vee^{e} L \quad \frac{A, B, \Gamma \vdash}{A \wedge^{e} B, \Gamma \vdash} \wedge^{e} L \quad \frac{A, \Gamma \vdash B^{\perp}}{A \propto B, \Gamma \vdash} \propto L \quad \overline{\perp, \Gamma \vdash} \perp L
$$

The Lift Rule and Identity

$$
\frac{E^{\perp}, \Gamma \vdash}{\Gamma \vdash E, \Delta} \text { Lift } \quad \overline{a, \Gamma \vdash a, \Delta} I_{r} \quad \overline{a, a^{\perp}, \Gamma \vdash} I_{\ell} \quad \overline{0, \Gamma \vdash \Delta} 0 L
$$

E is a green formula and a is an atomic formula

Some Properties of PIL

- $A \vee \vee^{e} \neg A$ is valid/provable (LEM)
- if $A \vee B$ provable, either A or B provable (Disjunction Prop.)
- $A \propto 1 \equiv A \vee{ }^{e} \perp \equiv \neg \neg A$
- Classical and intuitionistic connectives can mix freely: In $A \vee^{e}(B \supset C)$, \supset does not collapse

But limitations still exist...

- Define classical implication: $A \Rightarrow B=A^{\perp} \vee^{e} B$:

Can prove

$$
\begin{aligned}
& ((P \Rightarrow Q) \Rightarrow P) \Rightarrow P \\
& ((P \Rightarrow Q) \supset P) \Rightarrow P \\
& ((P \supset \perp) \supset P) \Rightarrow P
\end{aligned}
$$

but not

$$
((P \supset \perp) \supset P) \supset P
$$

And the outermost \supset is most important.

Algebraic Perspective

$$
\Perp=\{\mathbf{u} \in \mathbf{W}: \mathbf{u} \vDash \perp\}=\left\{\mathbf{u} \in \mathbf{W}: \Delta_{\mathbf{u}}=\emptyset\right\}
$$

Kripke Frame, $\mathbf{C}=\{\mathbf{c}, \mathbf{k}\} \quad$ Heyting Algebra with $\Perp \quad$ Boolean Algebra 2^{C} Embedded Algebra $=\{K \cup \Perp: K \subseteq \mathbf{C}\}$

Interpretation of formulas

- $h(1)=h(\top)=\mathbf{W} ; \quad h(\perp)=\Perp$
- $h(A \vee B)=h(A) \sqcup h(B), \quad h(A \wedge B)=h(A) \sqcap h(B)$
- $h(A \supset B)=h(A) \rightarrow h(B)$.
- $h\left(R^{\perp}\right)=h(R) \rightarrow \Perp$ for all green R^{\perp}.

Top of embedded boolean algebra $=\mathbf{C} \cup \Perp$.
(Alternatively, let $\mathbf{1}=\mathbf{C} \cup \Perp$, change $\Gamma \vdash$ 。 1 to $\Gamma \vdash$. 1)
Define secondary interpretation $h^{\prime}(A)=(h(\neg \neg A) \cap \mathbf{C}) \cup \Perp$:

- $h^{\prime}(A \wedge B)=h^{\prime}\left(A \wedge^{e} B\right)=h^{\prime}(A) \cap h^{\prime}(B)$
- $h^{\prime}(A \vee B)=h^{\prime}\left(A \vee^{e} B\right)=h^{\prime}(A) \cup h^{\prime}(B)$
- $\overline{h^{\prime}(A)}=h^{\prime}\left(A^{\perp}\right) ; \quad \bar{X}$ is boolean complement in embedded algebra.
- But $h^{\prime}(A \supset B) \neq h^{\prime}(A) \rightarrow h^{\prime}(B)$
- $h^{\prime}(E)=\mathbf{C} \cup \Perp$ iff $h(E)=\mathbf{T}$ for green E.

Black Hole (~~) versus Worm Hole ($\neg \neg)$

Black Hole: all points $A \rightarrow \emptyset$ (or $(A \rightarrow \emptyset) \rightarrow \emptyset) \quad$ (Glivenko 1929)
Not closed under \vee, closed under \rightarrow $(A \rightarrow \emptyset) \rightarrow(B \rightarrow \emptyset) \equiv((A \rightarrow \emptyset) \wedge B) \rightarrow \emptyset . \quad$ No escape!

Worm Hole: all points $(A \cap C) \cup \Perp$ (based on $\neg \neg A)$
Closed under \vee, not closed under \rightarrow

Semantic Alternatives; Conclusions

- Require $\mathbf{C} \neq \emptyset:$ so $\Perp \neq \mathbf{T}$

But \perp is nolonger just an atom.

- Add red constant $\diamond=\mathbf{C} \cup \Perp: \diamond \approx$? $1 ; \mathbf{k} \models \diamond$ iff $\mathbf{k} \in \mathbf{C}$.

$$
\overline{\Gamma \vdash_{\cdot} \diamond} \diamond R
$$

- Extend to first order quantifiers: lose property $\triangle_{\mathbf{c}}=\{\mathbf{c}\}$
- Let \Perp be the second-largest element: ICL
$A \vee^{-} \neg A$ valid without a different version of disjunction.

Summary

- Can a double-negation translation allow us to combine classical logic with intuitionistic logic?
- Yes, polarize the doubly-negated formulas; then focus.
- Derive sequent calculus LP with two modes \vdash_{\circ} and \vdash_{0}; satisfies cut-elimination
- Intuitionistic implication does not collapse in PIL.
- $A \equiv B$ intuitionistically if $A \vdash_{0} B$ and $B \vdash_{0} A$; implies $B^{\perp} \vdash_{0} A^{\perp}$ and $A^{\perp} \vdash_{\text {• }} B^{\perp}$
- Semantics completes the lifting of labels into connectives; Defines new logic.
- No need to involve linear logic.
? $A^{\perp} \varnothing B(!A \multimap B)$ is properly linear (B is "neutral").
No neutrals needed; combination can occur within intutionistic logic, with focusing and enriched semantics.

LPF: Focused LP

Separate positive/negative from red/green polarization

Can we cross-focus between +Green and +Red?

- + to +: OK (focusing in LJF).
- + to +: OK; $A \propto(B \propto C)=\neg\left(A \supset\left(B \supset C^{\perp}\right)\right)$.
- + to +: OK; $(A \vee B) \propto C=\neg\left((A \vee B) \supset C^{\perp}\right)$
- + to +: Not a chance! $A \vee(B \propto C)=A \vee \neg\left(B \supset C^{\perp}\right)$.

Pattern is +-+ . In linear logic, ! $A \oplus!?(!B \otimes C)$

Need two layers of focusing with lateral transition rules.
\Uparrow •/ $\|^{\bullet}$ along -/+ axis.
$\pi^{\circ} / \Downarrow^{\circ}$ along -/+ axis.
\vdash_{\circ} corresponds to $\Uparrow^{0}, \Downarrow^{\bullet}$.
\vdash. corresponds to $\Uparrow^{\bullet}, \Downarrow^{\circ}$.

LPF (one sided version)

Structural/Reaction Rules

Lateral Reactions

$$
\frac{\vdash \Gamma: \Delta \Uparrow^{\bullet} \Upsilon}{\vdash \Gamma: \Delta \Uparrow^{\circ} \Upsilon} L \Uparrow \quad \frac{\vdash \Gamma: \Downarrow^{\bullet} R}{\vdash \Gamma: \Downarrow^{\circ} R} L \Downarrow
$$

Negative Reactions

$$
\frac{\vdash \Gamma: R \Uparrow^{\circ} \Theta}{\vdash \Gamma: \Uparrow^{\circ} R, \Theta} R_{1} \Uparrow \frac{\vdash D, \Gamma: \Delta \Uparrow^{\bullet} \Theta}{\vdash \Gamma: \Delta \Uparrow^{\bullet} D, \Theta} R_{2} \Uparrow \frac{\vdash \Gamma: \Downarrow^{\circ} S}{\vdash \Gamma: S \Uparrow^{n}} D_{1} \frac{\vdash T, \Gamma: \Delta \Downarrow^{\circ} T}{\vdash T, \Gamma: \Delta \Uparrow^{n}} D_{2}
$$

Positive Reactions
$\frac{\vdash \Gamma: \Delta \Uparrow^{\bullet} N}{\vdash \Gamma: \Delta \Downarrow^{\circ} N} R_{1} \Downarrow \quad \frac{\vdash \Gamma: \Uparrow^{0} M}{\vdash \Gamma: \Downarrow^{\bullet} M} R_{2} \Downarrow \quad \overline{\vdash \Gamma: a^{\perp} \Downarrow^{n} a} l_{1} \quad \overline{\vdash a^{\perp}, \Gamma: \Downarrow^{n} a} l_{2}$
\uparrow contains only green formulas; R : red formula; D : positive formula or negative green literal; S : positive red formula; T : positive formula; N : negative green formula; M : negative formula; a, positive atom.

LPF Introduction Rules
Constants

$$
\frac{\vdash \Gamma: \Delta \Uparrow^{\bullet} \Theta}{\vdash \Gamma: \Delta \Uparrow^{\bullet} \perp, \Theta} \perp \quad \overline{\vdash \Gamma: \Delta \Uparrow^{\bullet} \top, \Theta}{ }^{\top} \quad \overline{\vdash \Gamma: \Downarrow^{\bullet} 1} 1
$$

Negative Connectives

$$
\begin{aligned}
& \frac{\vdash \Gamma: \Delta \Uparrow^{\bullet} A, B, \Theta}{\vdash \Gamma: \Delta \Uparrow^{\bullet} A \vee^{e} B, \Theta} \vee^{e} \frac{\vdash \Gamma: \Delta \Uparrow^{\bullet} A, \Theta \vdash \Gamma: \Delta \Uparrow^{\bullet} B, \Theta}{\vdash \Gamma: \Delta \Uparrow^{\bullet} A \wedge^{e} B, \Theta} \wedge^{e} \frac{\vdash \Gamma: \Delta \Uparrow^{\bullet} A, \Theta}{\vdash \Gamma: \Delta \Uparrow^{\bullet} \forall x . A} \\
& \frac{\vdash \Gamma: \Uparrow^{\circ} A, \Upsilon}{\vdash \Gamma: \Uparrow^{\circ} \Pi x \cdot A, \Upsilon} \Pi \quad \frac{\vdash \Gamma: \Uparrow^{\circ} A, \Upsilon \vdash \Gamma: \uparrow^{\circ} B, \Upsilon}{\vdash \Gamma: \uparrow^{\circ} A \wedge^{-} B, \Upsilon} \wedge^{-} \quad \frac{\vdash \Gamma: \Uparrow^{\circ} B, A^{\perp}, \Upsilon}{\vdash \Gamma: \uparrow^{\circ} A \supset B, \Upsilon} \supset R
\end{aligned}
$$

x is not free in $\Gamma, \Delta, \Theta ; \Upsilon$ contains only green formulas
Positive Connectives

$$
\begin{aligned}
\frac{\vdash \Gamma: \Downarrow^{\bullet} A \vdash \Gamma: \Downarrow^{\bullet} B}{\vdash \Gamma: \Downarrow^{\bullet} A \wedge^{+} B} \wedge^{+} & \frac{\vdash \Gamma: \Downarrow^{\bullet} A_{i}}{\vdash \Gamma: \Downarrow^{\bullet} A_{1} \vee^{+} A_{2}} V^{+} \quad \frac{\vdash \Gamma: \Downarrow^{\bullet} A[t / y]}{\vdash \Gamma: \Downarrow^{\bullet} \exists y \cdot A} \exists \\
& \frac{\vdash \Gamma: \Delta \Downarrow^{\circ} A[t / y]}{\vdash \Gamma: \Delta \Downarrow^{\bullet} \Sigma y \cdot A} \Sigma
\end{aligned} \quad \frac{\vdash \Gamma: \Downarrow^{\bullet} D \vdash \Gamma: \Delta \Downarrow^{\circ} B}{\vdash \Gamma: \Delta \Downarrow^{\circ} D \propto B} \propto(\supset L)
$$

