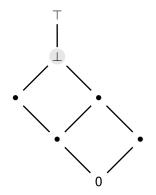
ICL: Intuitionistic Control Logic



Chuck Liang and Dale Miller

Outline

- Overview of Goals of ICL and its Basic Characteristics
- The Semantics of ICL: from Kripke Models to Categories
- The Interpretation of Proofs
- Sequent Calculus/Tableaux and Cut Elimination
- Natural Deduction and $\lambda\gamma$ -calculus
- ▶ The Representations of *call/cc* and *C*
- The Computational Content of Contraction and Disjunction

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Discussion of Related Systems.

Quick Summary of ICL:

- ▶ Propositional Logic with \land , \lor , \supset , \top , 0, and \bot .
- Identical to Intuitionistic Logic if *L* removed
- Two forms of negation: $\sim A = A \supset 0$; $\neg A = A \supset \bot$
- **Law of excluded middle:** $A \lor \neg A$ (but not $A \lor \sim A$)
- But no involutive negation: both ¬¬A ⊃ A and ~~A ⊃ A are unprovable. (but ~¬A ⊃ A is provable).
- ▶ No simple translation to linear logic: not just $!A \multimap B$ plus \perp .
- Can also be described as intuitionistic logic plus a version of Peirce's law.
- Goals: good semantics and proof systems with cut-reduction procedures.

Kripke Semantics

All Models has a *Root* r: $\langle \mathbf{W}, \mathbf{r}, \preceq, \models \rangle$

- ▶ $u \models \top; \quad u \not\models 0$
- ▶ r ⊭ ⊥
- $q \models \bot$ for all $q \succ r$
- $u \models A \land B$ iff $u \models A$ and $u \models B$
- $u \models A \lor B$ iff $u \models A$ or $u \models B$
- $u \models A \supset B$ iff for all $v \succeq u$, $v \not\models A$ or $v \models B$.
- A model $M \models A$ if and only if $\mathbf{r} \models A$ by monotonicity of \models .
- ▶ $\mathbf{r} \models A$ if and only if $\mathbf{r} \not\models \neg A$. Thus $\mathbf{r} \models A \lor \neg A$
- Neither 0 nor ⊥ has a model (both inconsistent)

Other Important Properties of \perp

A formula that does not contain \(\box) as a subformula is valid in ICL if and only if it is valid in intuitionistic logic.

Because A ∨ ¬A is valid, the disjunction property is guaranteed only for formulas that does not contain ⊥.

(日) (日) (日) (日) (日) (日) (日)

- Formulas that contain \perp can still have intuitionistic proofs $(\neg A \supset \neg A)$.
- No more need for polarization

The semantics of *disproofs*

What can this little model show?

 $\begin{array}{c} \mathbf{q} : \{B\} \\ \uparrow \\ \mathbf{r} : \{ \} \end{array}$ $\mathbf{r} \nvDash A; \ \mathbf{r} \nvDash B; \ \mathbf{q} \nvDash A, \ \mathbf{q} \vDash B \end{array}$

 $\mathbf{r} \not\models \sim B \lor B; \quad \mathbf{r} \not\models \sim \sim B \supset B$ $\mathbf{r} \not\models \neg \neg A \supset A$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

(But note: $\mathbf{r} \models B \lor \neg B$ since $\mathbf{r}, \mathbf{q} \models \neg B$)

Sample Truths and Falsehoods

Valid	Invalid
$\neg A \lor A$	$\sim A \lor A$
$(\neg P \supset P) \supset P$	$((P \supset Q) \supset P) \supset P$
$0 \supset A$	$\perp \supset A$
$\neg A \lor B \equiv \neg (A \land \neg B)$	$\sim A \lor B \equiv \sim (A \land \sim B)$
$ eg (A \land B) \equiv (\neg A \lor \neg B) $	$\neg (A \land \neg B) \equiv \neg \neg (A \supset B)$
$\neg \neg A \equiv A \lor \bot$	$\sim \sim A \supset A$
$\sim \neg A \supset A$	$\neg \neg A \supset A$
$A \supset \neg \sim A$	$\neg \sim A \supset A$
$A \supset \neg \neg A$	$A \supset \sim \neg A$
$A \supset \sim \sim A$	$(\neg B \supset \neg A) \supset (A \supset B)$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Classical Logic inside ICL

- Define Classical Implication $A \Rightarrow B$ as $\neg A \lor B$
- ► $\neg A \lor B \equiv \neg (A \land \neg B)$, so no "negative" translation needed. ($\sim A \lor B$ does *not* represent classical implication.)
- Hilbert's axiom $(\neg B \Rightarrow \neg A) \Rightarrow (A \Rightarrow B)$ holds.
- ► A General Law of Admissible Rules: if A ⇒ B is valid, then A is valid implies B is also valid

• E.g.,
$$\neg \neg A \supset A$$
 is invalid, but $\neg \neg A \Rightarrow A$ is valid, so $\frac{\neg \neg A}{A}$ is admissible

 Every classical implication corresponds to at least an admissible rule in ICL

\perp in Cartesian Closed Categories

- Let D be any cartesian closed category with products, coproducts, terminal object T and initial object 0.
- Let 2 be the two-element boolean algebra represented as a category with two objects and three arrows: 2 : false —> true.

- Let D₂ be a functor from D to 2:
 - ▶ $D_2(X) = false$ if X is uninhabited; $D_2(X) = true$ if $T \rightarrow X$ exists.
 - $\blacktriangleright \mathbf{D}_{\mathbf{2}}(X \to Y) = \mathbf{D}_{\mathbf{2}}(X) \to \mathbf{D}_{\mathbf{2}}(y).$
- Assume that D has a right-adjoint R₂ of D₂:
- ▶ Then $\mathbf{R}_2(true) \cong \mathbf{T}$ (terminal), as expected
- but R₂(false) is not isomorphic to 0 (initial).

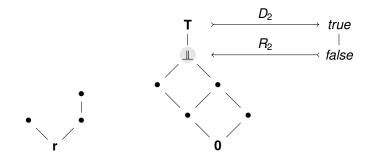
Let \bot = R₂(false)

- ▶ ⊥ is a terminal object in the full subcategory of uninhabited objects of *D*.
- Essential Property of 1:

For each object X in a category D with \bot , X is uninhabited if and only if there is a unique arrow $\eta_X : X \to \bot$.

- ► Consequence: $\mathbf{T} \rightarrow A + \mathbb{L}^A$ "does not not exist". ($A \lor \neg A$ is OK).
- "Constructive" semantics stops short here: more specific models required (in terms of Freyd covers). But this semantics can still be useful...
- There is no arrow from $\mathbb{L}^{(\mathbb{L}^{A})}$ to *A*. No involutive negation.

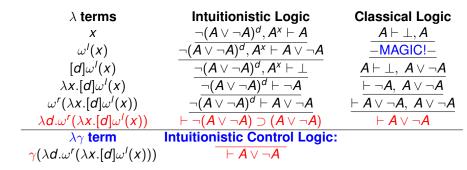
From Categories to Kripke Models



Kripke Frame with Root, Heyting Algebra with Second-Largest Point, and Boolean Algebra 2

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

How to Represent Proofs



where $\gamma : (\neg P \supset P) \supset P$ (our version of Peirce's Law) Categorically: $\gamma : P^{(\perp)} \rightarrow P$ "exists" by the special property of \perp .

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

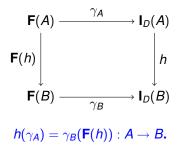
Semantics of Proofs *modulo* γ

 γ as a Natural Transformation (from François Lamarche)

• Define functor $\mathbf{F}(X) = X^{(\perp^x)}$.

 $\mathbf{F}(h: X \to Y) = \lambda K \lambda u.h(K(\lambda x.u(h(x)))) : X^{(\perp^{X})} \to Y^{(\perp^{Y})}$

Then the collection of arrows γ is characterizable as a natural transformation from F to identity.



How to represent γ as inference rule(s)

or

$$\frac{\Gamma \vdash B; \ [B, \Delta]}{\Gamma \vdash B; \ [\Delta]} \ Con \qquad \frac{\Gamma \vdash B; \ [\Delta]}{\Gamma \vdash \bot; \ [B, \Delta]} \ Esc$$

- First version more accurate conceptually.
- Second set of rules enjoy better proof theoretic properties:
 - 1. preserves subformula property,
 - clearly identifies intuitionistic/non-intuitionistic parts of proofs.
 - 3. clarifies cut reduction/normalization procedure.

γ in Proof Theory

$$\frac{\neg B, \Gamma \vdash B}{\Gamma \vdash B} \quad \text{or as} \quad \frac{\Gamma \vdash B; \ [B, \Delta]}{\Gamma \vdash B; \ [\Delta]} \ Con \quad \text{and} \quad \frac{\Gamma \vdash B; \ [\Delta]}{\Gamma \vdash \bot; \ [B, \Delta]} \ Esc$$

$$\frac{\frac{s: \ \neg B, \Gamma \vdash B}{\lambda d.s: \ \Gamma \vdash \neg B \supset B} \supset I}{\gamma(\lambda d.s): \ \Gamma \vdash B} \supset D \supset B} \supset E \text{ (cut)}$$

- Write γ(λd.s) as just γd.s
- $\blacktriangleright (\lambda x.s) t \longrightarrow_{\beta} s[t/x], \text{ but } (\gamma d.s) t \longrightarrow \gamma d.(s\{[d](w t)/[d]w\} t)$
- Why is γ or μ still in the reduced term?
- Because, in a sense, it represents a cut that cannot be eliminated, only permuted.

Sequent Calculus LJC

$$\frac{A, B, \Gamma \vdash C; \ [\Delta]}{A \land B, \Gamma \vdash C; \ [\Delta]} \land L \qquad \frac{A, \Gamma \vdash C; \ [\Delta]}{A \lor B, \Gamma \vdash C; \ [\Delta]} \lor L$$

$$\frac{\Gamma \vdash A; \ [\Delta] \quad B, \Gamma \vdash C; \ [\Delta]}{A \supset B, \Gamma \vdash C; \ [\Delta]} \supset L \qquad \frac{1}{0, \Gamma \vdash A; \ [\Delta]} \quad 0L \qquad \frac{1}{\bot, \Gamma \vdash \bot; \ [\Delta]} \quad \botL$$

$$\frac{\Gamma \vdash A; \ [\Delta] \quad \Gamma \vdash B; \ [\Delta]}{\Gamma \vdash A \land B; \ [\Delta]} \land R \qquad \frac{\Gamma \vdash A; \ [\Delta]}{\Gamma \vdash A \lor B; \ [\Delta]} \lor R_1 \qquad \frac{\Gamma \vdash B; \ [\Delta]}{\Gamma \vdash A \lor B; \ [\Delta]} \lor R_2$$

$$\frac{A, \Gamma \vdash B; \ [\Delta]}{\Gamma \vdash A \supset B; \ [\Delta]} \supset R \qquad \overline{\Gamma \vdash \top; \ [\Delta]} \ \top R \qquad \overline{A, \Gamma \vdash A; \ [\Delta]} \ Id$$

$$\frac{\Gamma \vdash A; \ [A, \Delta]}{\Gamma \vdash A; \ [\Delta]} \ Con \qquad \frac{\Gamma \vdash A; \ [\Delta]}{\Gamma \vdash \bot; \ [A, \Delta]} \ Esc$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ● ○ ○ ○ ○

Natural Deduction System *NJC* with terms: The \supset Fragment

$$\frac{t:A^{x}, \Gamma \vdash B; \ [\Delta]}{(\lambda x.t): \Gamma \vdash A \supset B; \ [\Delta]} \supset I \qquad \frac{t: \Gamma \vdash A \supset B; \ [\Delta] \quad s: \Gamma' \vdash A; \ [\Delta']}{(t \ s): \Gamma \Gamma' \vdash B; \ [\Delta \Delta']} \supset E$$

$$\frac{s:\Gamma \vdash 0; \ [\Delta]}{abort \ s:\Gamma \vdash A; \ [\Delta]} \ 0E \qquad \frac{exit:\Gamma \vdash \top; \ [\Delta]}{exit:\Gamma \vdash \top; \ [\Delta]} \ \top I \qquad \frac{x:A^{x},\Gamma \vdash A; \ [\Delta]}{x:A^{x},\Gamma \vdash A; \ [\Delta]} \ Id$$
$$\frac{t:\Gamma \vdash A; \ [\Delta]}{[d]t:\Gamma \vdash \bot; \ [A^{d},\Delta]} \ Esc \qquad \frac{u:\Gamma \vdash A; \ [A^{d},\Delta]}{\gamma d.u:\Gamma \vdash A; \ [\Delta]} \ Con$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

The Con Escapes! (and \perp is the key)

$$\frac{s: \Gamma \vdash B; \ [B^{d}, \Delta]}{\gamma d.s: \Gamma \vdash B; \ [\Delta]} \ Con \qquad \frac{r: \Gamma \vdash B; \ [\Delta]}{[d]r: \Gamma \vdash \bot; \ [B^{d}, \Delta]} \ Esc$$

- ► $B^d \in \Delta$ is possible in *Esc*. (Contraction inside Γ, Δ is free)
- The rest of the rules are entirely intuitionistic (LJ or NJ)
- If *Esc* not used, then proof is still intuitionistic (*Con* will be vacuous).
- Contrast Con with Decide/Dereliction/Passivate in classical proof systems:

$$\frac{\vdash \Gamma, P; P}{\vdash \Gamma, P; -} \qquad D \text{ rule in LC}$$

(ロ) (同) (三) (三) (三) (○) (○)

Here the *P* leaves the stoup.

How to permute cut above *Con*?

$$\frac{\Gamma \vdash A; \ [\Delta] \quad A, \Gamma' \vdash B; \ [\Delta']}{\Gamma\Gamma' \vdash B; \ [\Delta\Delta']} \ cut$$

Problem: clashes with β -reduction (looses confluence)

To preserve confluence we can:

- 1. Adopt call-by-value reduction strategy.
- 2. Require the contracted formula to be of the form $A \supset B$:

$$\frac{s: \Gamma \vdash A \supset B; \ [(A \supset B)^{d}, \Delta]}{\frac{\gamma d.s: \Gamma \vdash A \supset B; \ [\Delta]}{(\gamma d.s) \ t: \Gamma \Gamma' \vdash B; \ [\Delta \Delta']}} \ cut$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

(Similar choice made in original $\lambda\mu$ calculus)

 $\frac{q: \Gamma_1 \vdash A \supset B; \ [\Delta_1] \quad t: \Gamma' \vdash A; \ [\Delta']}{\frac{qt: \ \Gamma_1 \Gamma' \vdash B; \ [\Delta_1 \Delta']}{[d](qt): \ \Gamma_1 \Gamma' \vdash \bot; \ [B^d, \Delta_1 \Delta']}} cut$ $\frac{\overline{r: \Gamma_{2}\Gamma' \vdash A \supset B; [B^{d}, \Delta_{2}\Delta']} \quad t:\Gamma' \vdash A; [\Delta']}{\frac{rt: \Gamma_{2}\Gamma' \vdash B; [B^{d}, \Delta_{2}\Delta']}{[d](rt): \Gamma_{2}\Gamma' \vdash \bot; [B^{d}, \Delta_{2}\Delta']}} \quad cut$ $\overline{s\{[d](wt)/[d]w\}}: \ \Gamma\Gamma' \vdash A \supset B; \ [B^d, \Delta\Delta'] \qquad t: \Gamma' \vdash A; \ [\Delta'] \qquad cut$ $\frac{(s\{[d](wt)/[d]w\} t): \Gamma\Gamma' \vdash B; [B^d, \Delta\Delta']}{\gamma d.(s\{[d](wt)/[d]w\} t): \Gamma\Gamma' \vdash B; [\Delta\Delta']} Con$

 $(\gamma d.s) t \longrightarrow \gamma d.(s\{[d](wt)/[d]w\} t)$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のQ@

$\lambda\gamma$ calculus

- 1. $(\lambda x.s) t \longrightarrow s[t/x]$. (β -reduction)
- 2. $(\gamma d.s) t \longrightarrow \gamma d.(s\{[d](w t)/[d]w\} t)$. $(\mu\gamma$ -reduction)
- 3. $abort(s) t \longrightarrow abort(s)$. (aborted reduction)
- 4. $\gamma a.s \longrightarrow s$ when *a* does not appear free in *s*. (vacuous γ)

A D F A 同 F A E F A E F A Q A

- 5. $\gamma a. \gamma b. s \longrightarrow \gamma a. s[a/b]$. (γ -renaming)
- 6. $[d]\gamma a.s \longrightarrow [d]s[d/a]$. (μ -renaming)

Confluent and Strongly Normalizing

Renaming rules eliminate redundant contractions (*Cons*)

 $[d]\gamma a.s \longrightarrow [d]s[d/a]$ (also found in $\lambda \mu$):

$$\frac{\frac{s:\Gamma \vdash A; \ [A^{b}, \Delta]}{\gamma b.s:\Gamma \vdash A; \ [\Delta]} \ Con}{[d]\gamma b.s:\Gamma \vdash \bot; \ [A^{d}, \Delta]} \ Esc \quad \longrightarrow \quad \frac{s[d/b]:\Gamma \vdash A; \ [A^{d}, \Delta]}{[d]s[d/b]:\Gamma \vdash \bot; \ [A^{d}, \Delta]} \ Esc$$

Because $A^d \in \Delta$ is possible (contraction inside [Δ] is always available).

 $\gamma a.\gamma b.s \longrightarrow \gamma a.s[a/b]$: eliminates consecutive contractions. $\gamma a.s \longrightarrow s$ when a is not free in s: all intuitionistic proof terms reduce to λ -terms

The Computational Content of Contraction: call/cc and C operators

Our version of Peirce's Law: $(\neg P \supset P) \supset P = ((P \supset \bot) \supset P) \supset P$:

$$\frac{x:(\neg P \supset P)^{x} \vdash \neg P \supset P;[]}{(d)y:(\neg P \supset P)^{x},P^{y} \vdash L;[P^{d}]} \xrightarrow{Id} Esc}{\sum (\neg P \supset P)^{x},P^{y} \vdash L;[P^{d}]} \xrightarrow{\supset I} \\ \frac{x:(\neg P \supset P)^{x} \vdash \neg P \supset P;[]}{\sqrt{y}.[d]y:(\neg P \supset P)^{x} \vdash \neg P;[P^{d}]} \xrightarrow{\supset I} \\ \frac{(x \ \lambda y.[d]y):(\neg P \supset P)^{x} \vdash P;[P^{d}]}{\gamma d.(x \ \lambda y.[d]y):(\neg P \supset P)^{x} \vdash P;[]} Con} \\ \frac{\mathcal{K} = \lambda x. \gamma d.(x \ \lambda y.[d]y): \vdash (\neg P \supset P) \supset P;[]}{\mathcal{K} = \lambda x. \gamma d.(x \ \lambda y.[d]y): \vdash (\neg P \supset P) \supset P;[]}$$

 $\blacktriangleright \mathcal{K} = \lambda x. \gamma (\lambda d. (x \ \lambda y. dy)) =_{\eta} \gamma$

 $\blacktriangleright (\mathcal{K} \ M \ k_1 \ k_2) \longrightarrow \gamma d.(M \ \lambda y.[d](y \ k_1 \ k_2)) \ k_1 \ k_2$

• Given $E[z] = (z \ k_1 \ k_2), \ E[\mathcal{K}M] \longrightarrow \gamma d.E[M(\lambda y.[d]E[y])]$

For the *C* operator, $\neg \neg A \supset A$ and $\sim \sim A \supset A$ are both unprovable. But we have $\sim \neg A \supset A = ((A \supset \bot) \supset 0) \supset A$:

$$\frac{\overline{y:\sim \neg A^{x}, A^{y} \vdash A;[]} \quad \stackrel{Id}{\overset{Id}{[d]y:\sim \neg A^{x}, A^{y} \vdash \bot; \quad [A^{d}]}{\underbrace{[d]y:\sim \neg A^{x}, A^{y} \vdash \bot; \quad [A^{d}]} \quad \supseteq I}}{\frac{x:\sim \neg A^{x} \vdash \neg A;[]}{\underbrace{\lambda y.[d]y:\sim \neg A^{x} \vdash \neg A; \quad [A^{d}]}} \quad \supseteq E}$$

$$\frac{\frac{x \lambda y.[d]y:\sim \neg A^{x} \vdash 0; \quad [A^{d}]}{\underbrace{abort(x \lambda y.[d]y):\sim \neg A^{x} \vdash A; \quad [A^{d}]}} \quad OE}{\underbrace{\gamma d.abort(x \lambda y.[d]y):\sim \neg A^{x} \vdash A; \quad [I]}} \quad On$$

$$\frac{\overline{\mathcal{C} = \lambda x. \gamma d.abort(x \lambda y.[d]y):\vdash \sim \neg A \supseteq A; \quad [I]}}{\underbrace{\mathcal{C} = \lambda x. \gamma d.abort(x \lambda y.[d]y):\vdash \neg \neg A \supseteq A; \quad [I]}}$$

- $(CM k_1 k_2) = \gamma d.abort(M \lambda y.[d](y k_1 k_2))$
- $\blacktriangleright CM = \mathcal{K}(\lambda k.abort(Mk))$
- $C(\lambda z.M) = abort(M)$ for z not free in M
- abort replaces free variable φ in λx.μα.[φ](x λy.μδ.[α]y) (original λμ term).

NJC with Non-Additive Disjunction (partial future work)

$$\frac{s:\Gamma \vdash A; \ [\Delta] \quad t:\Gamma' \vdash B; \ [\Delta']}{(s,t):\Gamma\Gamma' \vdash A \land B; \ [\Delta\Delta']} \land I \quad \frac{s:\Gamma \vdash A \land B; \ [\Delta]}{(s)_{\ell}:\Gamma \vdash A; \ [\Delta]} \land E_1 \quad \frac{s:\Gamma \vdash A \land B; \ [\Delta]}{(s)_{r}:\Gamma \vdash B; \ [\Delta]} \land E_2$$
$$\frac{s:\Gamma \vdash A; \ [B^d, \Delta]}{\omega^{\ell}d.s:\Gamma \vdash A \lor B; \ [\Delta]} \lor I_1 \qquad \frac{s:\Gamma \vdash B; \ [A^d, \Delta]}{\omega^{r}d.s:\Gamma \vdash A \lor B; \ [\Delta]} \lor I_2$$

$$\frac{\boldsymbol{v}: \boldsymbol{\Gamma}_{1} \vdash \boldsymbol{A} \lor \boldsymbol{B}; \ [\Delta_{1}] \quad \boldsymbol{s}: \boldsymbol{A}^{\boldsymbol{x}}, \boldsymbol{\Gamma}_{2} \vdash \boldsymbol{C}; \ [\Delta_{2}] \quad \boldsymbol{t}: \boldsymbol{B}^{\boldsymbol{y}}, \boldsymbol{\Gamma}_{3} \vdash \boldsymbol{C}; \ [\Delta_{3}]}{(\lambda \boldsymbol{x}. \boldsymbol{s}, \lambda \boldsymbol{y}. \boldsymbol{t}) \ \boldsymbol{v}: \boldsymbol{\Gamma}_{1} \boldsymbol{\Gamma}_{2} \boldsymbol{\Gamma}_{3} \vdash \boldsymbol{C}; \ [\Delta_{1} \Delta_{2} \Delta_{3}]} \lor \boldsymbol{E}$$

$$\begin{array}{l} (u,v) (\omega^{\ell}d.t) \longrightarrow \gamma d.(u \ t\{[d](v \ w)/[d]w\}); \\ (u,v) (\omega^{r}d.t) \longrightarrow \gamma d.(v \ t\{[d](u \ w)/[d]w\}) \ (\omega \text{-reduction}) \end{array}$$

$$\blacktriangleright (u, v) \gamma d.t \longrightarrow \gamma d.(u, v) t\{[d](u, v)w/[d]w\} (\omega \gamma \text{-reduction})$$

►
$$(u, v)_{\ell} \longrightarrow u; (u, v)_r \longrightarrow v.$$
 (projections)

$$\begin{array}{l} \bullet \quad (\gamma d.s)_{\ell} \longrightarrow \gamma d.s_{\ell} \{ [d] w_{\ell} / [d] w \}; \\ (\gamma d.s)_{r} \longrightarrow \gamma d.s_{r} \{ [d] w_{r} / [d] w \}. \quad (\gamma \text{-projections}) \end{array}$$

$$\frac{\frac{u: \Gamma \vdash A; \ [B^{d}, \Delta]}{\omega^{\ell} d. u: \Gamma \vdash A \lor B; \ [\Delta]} \lor I_{1}}{(\lambda x. s, \lambda y. t) \omega^{\ell} d. u: \Gamma \vdash C; \ [\Delta]} t: B^{y}, \Gamma \vdash C; \ [\Delta]} \lor E \text{ (cut)}$$

Reduces to:

$$\frac{u: \Gamma \vdash A; \ [B^{d}, \Delta] \qquad t: B^{y}, \Gamma \vdash C; \ [\Delta]}{u\{[d](\lambda y.t)w/[d]w\}: \Gamma \vdash A; \ [C^{d}, \Delta]} \quad cut_{2} \qquad s: A^{x}, \Gamma \vdash C; \ [\Delta]} \quad cut_{2} \qquad \frac{(\lambda x.s) u\{[d](\lambda y.t)w/[d]w\}: \Gamma \vdash C; \ [C^{d}, \Delta]}{\gamma d.(\lambda x.s) u\{[d](\lambda y.t)w/[d]w\}: \Gamma \vdash C; \ [\Delta]} \quad cut_{2} \qquad cu$$

 $(u, v) (\omega^{\ell} d.t) \longrightarrow \gamma d.(u t\{[d](v w)/[d]w\})$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The Computational Content of Disjunction

public int f(String s) throws IOEXCEPTION try ($\lambda z.t$)s catch exception e with $\lambda y.u$. ($\lambda x.(x s), \lambda y.u$) ($\omega^{\ell} d.\lambda z.t$).

▶ *x* is not free in *s*: reverses application: $(\lambda x.x \ s)t = (t \ s)$

- $\blacktriangleright \omega^{\ell} d.\lambda z.t : (\mathbf{A} \supset \mathbf{C}) \lor \mathbf{B}$
- Exception handler $\lambda y.u : \mathbf{B} \supset \mathbf{C}$
- Term reduces to $\gamma d.t\{[d]\lambda(y.u)e/[d]e\}[s/z] : C$
- ▶ [*d*]*e* throws exception
- Reduces to t[s/z] if no exceptions thrown (vacuous γ).
- ► V-elimination replaces ⊃-elimination for such procedures.

Comparisons: Ong and Stewart's $\lambda \mu$

$$\frac{\Gamma; \Delta \vdash s : A}{\Gamma; \Delta, A^{\alpha} \vdash [\alpha^{A}]s : \bot} \perp -intro \qquad \frac{\Gamma; \Delta, B^{\beta} \vdash s : \bot}{\Gamma; \Delta \vdash \mu\beta^{B}.s : B} \perp -elim$$

- \perp -intro is very similar to *Esc*, but what is \perp -elim?
- "⊥" appears to be playing two different roles: enables contraction and 0-elimination (0 ⊃ A).
- The $\neg \neg A \Rightarrow A$ has fine proof (no free variables)
- But why should Peirce's law require *1*-elim?
- The computational content of Peirce's law is not attributed to contraction. (¬P ⊃ P) ⊃ P is contraction.

A D F A 同 F A E F A E F A Q A

Comparisons: Girard's LC

Similarities:

- Formula must stay in the stoup until something significant happens.
- ⊥ is "negative"; the other constants and atoms are "positive"

 A ∧ B is negative if both A and B are negative, else positive.

 A ∨ B is negative if either A or B is negative, else positive.
- negative means Esc rule is possible; positive means purely intuitionistic.

Differences:

- LC does not contain intuitionistic implication: In ICL, A ⊃ B is negative if B is negative, else positive.
- **Polarization not needed in ICL.** No built-in "dual" atoms A^{\perp} .
- ▶ Relationship to focusing (focalisation) also lost with ⊃.

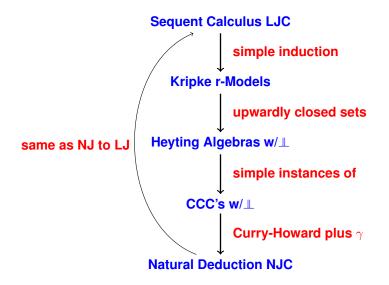
Can ICL be translated into linear logic?

- Just translate IL into LL around the formula !A → B, then "throw in" ⊥. Not even close!
- ► $A \lor \neg A \stackrel{?}{=} A \oplus (!A \multimap \bot)$: linear formula not provable.
- ▶ Better attempt: use a **polarized** translation (like LC's): Recognize $A \lor \neg A$ as **negative**, then use $A \otimes (!A \multimap \bot)$.
- Still doesn't work for Peirce's formula: (¬P ⊃ P) ⊃ P: need contraction on P

Not as long as \supset is translated using $|A \multimap B|$.

- ▶ Only apparent solution: use classical implication: $(\neg P \Rightarrow P) \Rightarrow P$ where $A \Rightarrow B = !A \multimap ?B$. But when to use \Rightarrow instead of \supset ?
- What can we conclude, if no reasonable translation exists? Linear logic is not subtle enough to go in between intuitionistic and classical logic.

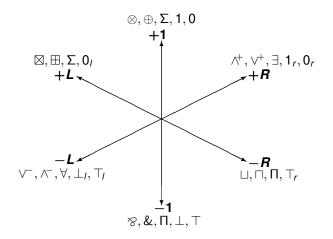
Soundness and Completeness



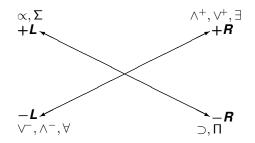
Where did ICL came from:

Attempt to find a unified logic

- Starting point: Girard's system LU.
- Our early attempt at an unified logic, LUF:



Second attempt at a unified logic: PIL:



A D F A 同 F A E F A E F A Q A

- The proof theory of PIL contained both LJ and LC.
- Breakthrough: found Kripke Semantics for PIL
- Possible to unify classical and intuitionistic logics inside an intuitionistic semantics.
- The identification of ⊥ as a constant, which makes A ∨ ¬A possible, replaced the need for polarized connectives.