ICL: Intuitionistic Control Logic

Chuck Liang and Dale Miller

Outline

- Overview of Goals of ICL and its Basic Characteristics
- The Semantics of ICL: from Kripke Models to Categories
- The Interpretation of Proofs
- Sequent Calculus/Tableaux and Cut Elimination
- Natural Deduction and $\lambda \gamma$-calculus
- The Representations of call/cc and \mathcal{C}
- The Computational Content of Contraction and Disjunction
- Discussion of Related Systems.

Quick Summary of ICL:

- Propositional Logic with $\wedge, \vee, \supset, \top, 0$, and \perp.
- Identical to Intuitionistic Logic if \perp removed
- Two forms of negation: $\sim A=A \supset 0 ; \neg A=A \supset \perp$
- Law of excluded middle: $A \vee \neg A$ (but not $A \vee \sim A$)
- But no involutive negation: both $\neg \neg A \supset A$ and $\sim \sim A \supset A$ are unprovable. (but $\sim \neg A \supset A$ is provable).
- No simple translation to linear logic: not just $!A \multimap B$ plus \perp.
- Can also be described as intuitionistic logic plus a version of Peirce's law.
- Goals: good semantics and proof systems with cut-reduction procedures.

Kripke Semantics

All Models has a Root r: $\langle\mathbf{W}, \mathbf{r}, \preceq, \models\rangle$

- $u \vDash T ; \quad u \not \vDash 0$
- $\mathbf{r} \not \models \perp$
- $q \vDash \perp$ for all $q \succ \mathbf{r}$
- $u \models A \wedge B$ iff $u \models A$ and $u \models B$
- $u \models A \vee B$ iff $u \models A$ or $u \models B$
- $u \models A \supset B$ iff for all $v \succeq u, v \not \models A$ or $v \models B$.
- A model $M \models A$ if and only if $\mathbf{r} \models A$ by monotonicity of \models.
- $\mathbf{r} \models A$ if and only if $\mathbf{r} \not \models \neg A$. Thus $\mathbf{r} \vDash A \vee \neg A$
- Neither 0 nor \perp has a model (both inconsistent)

Other Important Properties of \perp

- A formula that does not contain \perp as a subformula is valid in ICL if and only if it is valid in intuitionistic logic.
- Because $A \vee \neg A$ is valid, the disjunction property is guaranteed only for formulas that does not contain \perp.
- Formulas that contain \perp can still have intuitionistic proofs $(\neg A \supset \neg A)$.
- No more need for polarization

The semantics of disproofs

What can this little model show?

$$
\begin{gathered}
\mathbf{q}:\{B\} \\
\uparrow \\
\mathbf{r}:\{ \} \\
\mathbf{r} \not \models A ; \mathbf{r} \not \vDash B ; \mathbf{q} \not \models A, \mathbf{q} \models B \\
\mathbf{r} \not \vDash \sim B \vee B ; \mathbf{r} \not \neq \sim \sim B \supset B \\
\mathbf{r} \not \models \neg \neg A \supset A
\end{gathered}
$$

(But note: $\mathbf{r} \models B \vee \neg B$ since $\mathbf{r}, \mathbf{q} \models \neg B$)

Sample Truths and Falsehoods

Valid	Invalid
$\neg A \vee A$	$\sim A \vee A$
$(\neg \mathbf{P} \supset \mathbf{P}) \supset \mathbf{P}$	$((P \supset Q) \supset P) \supset P$
$0 \supset A$	$\perp \supset A$
$\neg A \vee B \equiv \neg(A \wedge \neg B)$	$\sim A \vee B \equiv \sim(A \wedge \sim B)$
$\neg(A \wedge B) \equiv(\neg A \vee \neg B)$	$\neg(A \wedge \neg B) \equiv \neg \neg(A \supset B)$
$\neg \neg A \equiv A \vee \perp$	$\sim \sim A \supset A$
$\sim \neg \mathbf{A} \supset \mathbf{A}$	$\neg \neg A \supset A$
$A \supset \neg \sim A$	$\neg \sim A \supset A$
$A \supset \neg \neg A$	$A \supset \sim \neg A$
$A \supset \sim \sim A$	$(\neg B \supset \neg A) \supset(A \supset B)$

Classical Logic inside ICL

- Define Classical Implication $A \Rightarrow B$ as $\neg A \vee B$
- $\neg A \vee B \equiv \neg(A \wedge \neg B)$, so no "negative" translation needed.
($\sim A \vee B$ does not represent classical implication.)
- Hilbert's axiom $(\neg B \Rightarrow \neg A) \Rightarrow(A \Rightarrow B)$ holds.
- A General Law of Admissible Rules: if $A \Rightarrow B$ is valid, then A is valid implies B is also valid
- E.g., $\neg \neg A \supset A$ is invalid, but $\neg \neg A \Rightarrow A$ is valid, so $\frac{\neg \neg A}{A}$ is admissible
- Every classical implication corresponds to at least an admissible rule in ICL

\perp in Cartesian Closed Categories

- Let D be any cartesian closed category with products, coproducts, terminal object \mathbf{T} and initial object $\mathbf{0}$.
- Let 2 be the two-element boolean algebra represented as a category with two objects and three arrows: $2:$ false \longrightarrow true.
- Let $\mathbf{D}_{\mathbf{2}}$ be a functor from D to $\mathbf{2}$:
- $\mathbf{D}_{\mathbf{2}}(X)=$ false if X is uninhabited; $\mathbf{D}_{\mathbf{2}}(X)=$ true if $\mathbf{T} \rightarrow X$ exists.
- $\mathbf{D}_{\mathbf{2}}(X \rightarrow Y)=\mathbf{D}_{\mathbf{2}}(X) \rightarrow \mathbf{D}_{\mathbf{2}}(y)$.
- Assume that D has a right-adjoint R_{2} of D_{2} :
- Then $\mathbf{R}_{\mathbf{2}}($ true $) \cong \mathbf{T}$ (terminal), as expected
- but $\mathbf{R}_{\mathbf{2}}$ (false) is not isomorphic to 0 (initial).

$$
\text { Let } \Perp=\mathbf{R}_{\mathbf{2}}(\text { false })
$$

$-\Perp$ is a terminal object in the full subcategory of uninhabited objects of D.

- Essential Property of \Perp :

For each object X in a category D with \Perp, X is uninhabited if and only if there is a unique arrow $\eta x: X \rightarrow \Perp$.

- Consequence: $\mathbf{T} \rightarrow A+\Perp^{A}$ "does not not exist". ($A \vee \neg A$ is OK).
- "Constructive" semantics stops short here: more specific models required (in terms of Freyd covers). But this semantics can still be useful...
- There is no arrow from $\Perp^{\left(\Perp^{A}\right)}$ to A. No involutive negation.

From Categories to Kripke Models

Kripke Frame with Root, Heyting Algebra with Second-Largest Point, and Boolean Algebra 2

How to Represent Proofs

λ terms
x
$\omega^{\prime}(x)$
$[d] \omega^{\prime}(x)$
$\lambda x \cdot[d] \omega^{\prime}(x)$
$\omega^{r}\left(\lambda x \cdot[d] \omega^{\prime}(x)\right)$
$\lambda d \cdot \omega^{r}\left(\lambda x \cdot[d] \omega^{\prime}(x)\right)$
$\lambda \gamma$ term Intuitionistic Control Logic:
$\gamma\left(\lambda d . \omega^{r}\left(\lambda x .[d] \omega^{\prime}(x)\right)\right)$
$\vdash A \vee \neg A$
where $\gamma:(\neg P \supset P) \supset P \quad$ (our version of Peirce's Law)

Categorically: $\gamma: P^{\left(\Perp^{P}\right)} \rightarrow P$ "exists" by the special property of \Perp.

Semantics of Proofs modulo γ

γ as a Natural Transformation (from François Lamarche)

- Define functor $\mathbf{F}(X)=X^{\left(\Perp^{x}\right)}$.

$$
\mathbf{F}(h: X \rightarrow Y)=\lambda K \lambda u \cdot h(K(\lambda x \cdot u(h(x)))): X^{\left(\Perp^{x}\right)} \rightarrow Y\left(\Perp^{Y}\right)
$$

- Then the collection of arrows γ is characterizable as a natural transformation from \mathbf{F} to identity.

How to represent γ as inference rule(s)

$$
\begin{gathered}
\frac{\neg B, \Gamma \vdash B}{\Gamma \vdash B} \\
\text { or } \\
\frac{\Gamma \vdash B ;[B, \Delta]}{\Gamma \vdash B ;[\Delta]} \text { Con } \frac{\Gamma \vdash B ;[\Delta]}{\Gamma \vdash \perp ;[B, \Delta]} \text { Esc }
\end{gathered}
$$

- First version more accurate conceptually.
- Second set of rules enjoy better proof theoretic properties:

1. preserves subformula property,
2. clearly identifies intuitionistic/non-intuitionistic parts of proofs.
3. clarifies cut reduction/normalization procedure.

γ in Proof Theory

$$
\begin{aligned}
& \frac{\neg B, \Gamma \vdash B}{\Gamma \vdash B} \quad \text { or as } \quad \frac{\Gamma \vdash B ;[B, \Delta]}{\Gamma \vdash B ;[\Delta]} \text { Con and } \frac{\Gamma \vdash B ;[\Delta]}{\Gamma \vdash \perp ;[B, \Delta]} \text { Esc } \\
& \left.\quad \frac{s: \neg B, \Gamma \vdash B}{\lambda d . s: \Gamma \vdash \neg B \supset B \supset I \quad \gamma: \vdash(\neg B \supset B) \supset B}\right) \supset E(\text { cut })
\end{aligned}
$$

- Write $\gamma(\lambda d . s)$ as just $\gamma d . s$
- $(\lambda x . s) t \longrightarrow_{\beta} s[t / x], \quad$ but $(\gamma d . s) t \longrightarrow \gamma d .(s\{[d](w t) /[d] w\} t)$
- Why is γ - or μ - still in the reduced term?
- Because, in a sense, it represents a cut that cannot be eliminated, only permuted.

Sequent Calculus LJC

$$
\begin{array}{cc}
\frac{A, B, \Gamma \vdash C ;[\Delta]}{A \wedge B, \Gamma \vdash C ;[\Delta]} \wedge L & \frac{A, \Gamma \vdash C ;[\Delta] \quad B, \Gamma \vdash C ;[\Delta]}{A \vee B, \Gamma \vdash C ;[\Delta]} \vee L \\
\frac{\Gamma \vdash A ;[\Delta] \quad B, \Gamma \vdash C ;[\Delta]}{A \supset B, \Gamma \vdash C ;[\Delta]} \supset L & \frac{0, \Gamma \vdash A ;[\Delta]}{} 0 L \quad \overline{\perp, \Gamma \vdash \perp ;[\Delta]} \perp L \\
\frac{\Gamma \vdash A ;[\Delta] \Gamma \vdash B ;[\Delta]}{\Gamma \vdash A \wedge B ;[\Delta]} \wedge R & \frac{\Gamma \vdash A ;[\Delta]}{\Gamma \vdash A \vee B ;[\Delta]} \vee R_{1} \\
\frac{A, \Gamma \vdash B ;[\Delta]}{\Gamma \vdash A \supset B ;[\Delta]} \supset R & \frac{\Gamma \vdash B ;[\Delta]}{\Gamma \vdash A \vee B ;[\Delta]} \vee R_{2} \\
\frac{\Gamma \vdash A ;[A, \Delta]}{\Gamma \vdash A ;[\Delta]} C o n & \frac{\Gamma \vdash A ;[\Delta]}{\Gamma \vdash \perp ;[A, \Delta]} E s c
\end{array}
$$

Natural Deduction System NJC with terms: The \supset Fragment

$$
\begin{gathered}
\frac{t: A^{x}, \Gamma \vdash B ;[\Delta]}{(\lambda x . t): \Gamma \vdash A \supset B ;[\Delta]} \supset I \\
\frac{t: \Gamma \vdash A \supset B ;[\Delta] \quad s: \Gamma^{\prime} \vdash A ;\left[\Delta^{\prime}\right]}{(t s): \Gamma \Gamma^{\prime} \vdash B ;\left[\Delta \Delta^{\prime}\right]} \supset E \\
\frac{s: \Gamma \vdash 0 ;[\Delta]}{\text { abort } s: \Gamma \vdash A ;[\Delta]} 0 E \quad \overline{\text { exit : } \Gamma \vdash \mathrm{T} ;[\Delta]} \top I \quad \overline{x: A^{x}, \Gamma \vdash A ;[\Delta]} I d \\
\frac{t: \Gamma \vdash A ;[\Delta]}{[d] t: \Gamma \vdash \perp ;\left[A^{d}, \Delta\right]} \text { Esc } \quad \frac{u: \Gamma \vdash A ;\left[A^{d}, \Delta\right]}{\gamma d . u: \Gamma \vdash A ;[\Delta]} \text { Con }
\end{gathered}
$$

The Con Escapes! (and \perp is the key)

$$
\frac{s: \Gamma \vdash B ;\left[B^{d}, \Delta\right]}{\gamma d . s: \Gamma \vdash B ;[\Delta]} \text { Con } \quad \frac{r: \Gamma \vdash B ;[\Delta]}{[d] r: \Gamma \vdash \perp ;\left[B^{d}, \Delta\right]} \text { Esc }
$$

- $B^{d} \in \Delta$ is possible in Esc. (Contraction inside Γ, Δ is free)
- The rest of the rules are entirely intuitionistic (LJ or NJ)
- If Esc not used, then proof is still intuitionistic (Con will be vacuous).
- Contrast Con with Decide/Dereliction/Passivate in classical proof systems:

$$
\frac{\vdash \Gamma, P ; P}{\vdash \Gamma, P ;-} \quad D \text { rule in LC }
$$

Here the P leaves the stoup.

How to permute cut above Con?

$$
\frac{\Gamma \vdash A ;[\Delta] \quad A, \Gamma^{\prime} \vdash B ;\left[\Delta^{\prime}\right]}{\Gamma \Gamma^{\prime} \vdash B ;\left[\Delta \Delta^{\prime}\right]} \text { cut }
$$

$$
\begin{aligned}
& \frac{\Gamma_{1} \vdash A ;\left[A, \Delta_{1}\right]}{\frac{\Gamma_{1} \vdash \perp ;\left[A, \Delta_{1}\right]}{\vdots}} \text { Esc } \\
& \frac{\Gamma_{2} \vdash A ;\left[A, \Delta_{2}\right]}{\Gamma_{2} \vdash \perp ;\left[A, \Delta_{2}\right]} \\
& \frac{\Gamma_{2}}{\vdots} \\
& \frac{\overline{\Gamma \vdash A ;[A, \Delta]}}{\frac{\Gamma \vdash A ;[\Delta]}{\Gamma \Gamma^{\prime} \vdash B ;\left[\Delta \Delta^{\prime}\right]} \quad \text { A, }{ }^{\prime} \vdash B ;\left[\Delta^{\prime}\right]} \text { cut }
\end{aligned}
$$

Problem: clashes with β-reduction (looses confluence)

To preserve confluence we can:

1. Adopt call-by-value reduction strategy.
2. Require the contracted formula to be of the form $A \supset B$:

$$
\frac{s: \Gamma \vdash A \supset B ;\left[(A \supset B)^{d}, \Delta\right]}{\frac{\gamma d . s: \Gamma \vdash A \supset B ;[\Delta]}{(\gamma d . s) t: \Gamma \Gamma^{\prime} \vdash B ;\left[\Delta \Delta^{\prime}\right]} \operatorname{Con} t: \Gamma^{\prime} \vdash A ;\left[\Delta^{\prime}\right]} \text { cut }
$$

(Similar choice made in original $\lambda \mu$ calculus)

$$
\begin{aligned}
& \frac{q: \Gamma_{1} \vdash A \supset B ;\left[\Delta_{1}\right] \quad t: \Gamma^{\prime} \vdash A ;\left[\Delta^{\prime}\right]}{q t: \Gamma_{1} \Gamma^{\prime} \vdash B ;\left[\Delta_{1} \Delta^{\prime}\right]} \text { cut } \\
& \frac{\frac{[d](q t): \Gamma_{1} \Gamma^{\prime} \vdash \perp ;\left[B^{d}, \Delta_{1} \Delta^{\prime}\right]}{} \text { Esc }}{\frac{\vdots}{r: \Gamma_{2} \Gamma^{\prime} \vdash A \supset B ;\left[B^{d}, \Delta_{2} \Delta^{\prime}\right]} \quad t: \Gamma^{\prime} \vdash A ;\left[\Delta^{\prime}\right]} \text { cut } \\
& \quad \frac{r t: \Gamma_{2} \Gamma^{\prime} \vdash B ;\left[B^{d}, \Delta_{2} \Delta^{\prime}\right]}{\frac{[d](r t): \Gamma_{2} \Gamma^{\prime} \vdash \perp ;\left[B^{d}, \Delta_{2} \Delta^{\prime}\right]}{}} \text { Esc } \\
& \quad \frac{\vdots}{\frac{s\{[d](w t) /[d] w\}: \Gamma \Gamma^{\prime} \vdash A \supset B ;\left[B^{d}, \Delta \Delta^{\prime}\right]}{(s\{[d](w t) /[d] w\} t): \Gamma \Gamma^{\prime} \vdash B ;\left[B^{d}, \Delta \Delta^{\prime}\right]}} \text { Con } t: \Gamma^{\prime} \vdash A ;\left[\Delta^{\prime}\right] \\
& \\
& \quad \text { cut }
\end{aligned}
$$

$$
(\gamma d . s) t \longrightarrow \gamma d .(s\{[d](w t) /[d] w\} t)
$$

$\lambda \gamma$ calculus

1. $(\lambda x . s) t \longrightarrow s[t / x]$. $\quad(\beta$-reduction)
2. $(\gamma d . s) t \longrightarrow \gamma d .(s\{[d](w t) /[d] w\} t)$. ($\mu \gamma$-reduction)
3. abort(s) $t \longrightarrow \operatorname{abort}(s)$. (aborted reduction)
4. γ a.s $\longrightarrow s$ when a does not appear free in s. (vacuous γ)
5. γ a. γ b.s $\longrightarrow \gamma$ a.s[a/b]. (γ-renaming)
6. $[d] \gamma$ a.s $\longrightarrow[d] s[d / a] . \quad$ (μ-renaming)

Confluent and Strongly Normalizing

Renaming rules eliminate redundant contractions (Cons)

$$
[d] \gamma \text { a.s } \longrightarrow[d] s[d / a] \quad \text { (also found in } \lambda \mu):
$$

$\frac{\frac{s: \Gamma \vdash A ;\left[A^{b}, \Delta\right]}{\gamma b . s: \Gamma \vdash A ;[\Delta]} \text { Con }}{[d] \gamma b . s: \Gamma \vdash \perp ;\left[A^{d}, \Delta\right]}$ Esc $\longrightarrow \frac{s[d / b]: \Gamma \vdash A ;\left[A^{d}, \Delta\right]}{[d] s[d / b]: \Gamma \vdash \perp ;\left[A^{d}, \Delta\right]}$ Esc

Because $A^{d} \in \Delta$ is possible (contraction inside $[\Delta]$ is always available).
γ a. γ b.s $\longrightarrow \gamma a . s[a / b]:$ eliminates consecutive contractions. γ a.s $\longrightarrow s$ when a is not free in $s:$ all intuitionistic proof terms reduce to λ-terms

The Computational Content of Contraction: call/cc and \mathcal{C} operators

Our version of Peirce's Law: $(\neg P \supset P) \supset P=((P \supset \perp) \supset P) \supset P$:

- $\mathcal{K}=\lambda x \cdot \gamma(\lambda d .(x \lambda y \cdot d y))={ }_{\eta} \gamma$
- $\left(\mathcal{K} M k_{1} k_{2}\right) \longrightarrow \gamma d .\left(M \lambda y .[d]\left(y k_{1} k_{2}\right)\right) k_{1} k_{2}$
- Given $E[z]=\left(\begin{array}{ll}z & k_{1}\end{array} k_{2}\right), E[\mathcal{K M}] \longrightarrow \gamma d . E[M(\lambda y .[d] E[y])]$

For the \mathcal{C} operator, $\neg \neg A \supset A$ and $\sim \sim A \supset A$ are both unprovable. But we have $\sim \neg A \supset A=((A \supset \perp) \supset 0) \supset A$:

- $\left(\mathcal{C M} k_{1} k_{2}\right)=\gamma d \cdot a b o r t\left(M \lambda y .[d]\left(y k_{1} k_{2}\right)\right)$
- $\mathcal{C M}=\mathcal{K}(\lambda k$.abort(Mk))
- $\mathcal{C}(\lambda z . M)=\operatorname{abort}(M)$ for z not free in M
- abort replaces free variable φ in $\lambda x . \mu \alpha .[\varphi](x \lambda y . \mu \delta .[\alpha] y)$ (original $\lambda \mu$ term).

NJC with Non-Additive Disjunction (partial future work)

$$
\begin{aligned}
& \frac{s: \Gamma \vdash A ;[\Delta] t: \Gamma^{\prime} \vdash B ;\left[\Delta^{\prime}\right]}{(s, t): \Gamma \Gamma^{\prime} \vdash A \wedge B ;\left[\Delta \Delta^{\prime}\right]} \wedge \prime \frac{s: \Gamma \vdash A \wedge B ;[\Delta]}{(s)_{\ell}: \Gamma \vdash A ;[\Delta]} \wedge E_{1} \frac{s: \Gamma \vdash A \wedge B ;[\Delta]}{(s)_{r}: \Gamma \vdash B ;[\Delta]} \wedge E_{2} \\
& \frac{s: \Gamma \vdash A ;\left[B^{d}, \Delta\right]}{\omega^{\ell} d . s: \Gamma \vdash A \vee B ;[\Delta]} \vee I_{1} \quad \frac{s: \Gamma \vdash B ;\left[A^{d}, \Delta\right]}{\omega^{r} d . s: \Gamma \vdash A \vee B ;[\Delta]} \vee I_{2} \\
& \frac{v: \Gamma_{1} \vdash A \vee B ;\left[\Delta_{1}\right] \quad s: A^{x}, \Gamma_{2} \vdash C ;\left[\Delta_{2}\right] \quad t: B^{y}, \Gamma_{3} \vdash C ;\left[\Delta_{3}\right]}{(\lambda x . s, \lambda y . t) v: \Gamma_{1} \Gamma_{2} \Gamma_{3} \vdash C ;\left[\Delta_{1} \Delta_{2} \Delta_{3}\right]} \vee E \\
& \text { - }(u, v)\left(\omega^{\ell} d . t\right) \longrightarrow \gamma d .(u t\{[d](v w) /[d] w\}) ; \\
& (u, v)\left(\omega^{r} d . t\right) \longrightarrow \gamma d .(v t\{[d](u w) /[d] w\}) \quad(\omega \text {-reduction) } \\
& \text { - }(u, v) \gamma d . t \longrightarrow \gamma d .(u, v) t\{[d](u, v) w /[d] w\} \quad(\omega \gamma \text {-reduction) } \\
& \text { - }(u, v)_{\ell} \longrightarrow u ;(u, v)_{r} \longrightarrow v . \quad \text { (projections) } \\
& \text { - }(\gamma d . s)_{\ell} \longrightarrow \gamma d . s_{\ell}\left\{[d] w_{\ell} /[d] w\right\} ; \\
& (\gamma d . s)_{r} \longrightarrow \gamma d . s_{r}\left\{[d] w_{r} /[d] w\right\} . \quad(\gamma \text {-projections })
\end{aligned}
$$

$$
\frac{\frac{u: \Gamma \vdash A ;\left[B^{d}, \Delta\right]}{\omega^{\ell} d . u: \Gamma \vdash A \vee B ;[\Delta]} \vee I_{1} s: A^{x}, \Gamma \vdash C ;[\Delta] \quad t: B^{y}, \Gamma \vdash C ;[\Delta]}{(\lambda x . s, \lambda y . t) \omega^{\ell} d . u: \Gamma \vdash C ;[\Delta]} \vee E \text { (cut) }
$$

Reduces to:

$$
\begin{gathered}
\frac{u: \Gamma \vdash A ;\left[B^{d}, \Delta\right] \quad t: B^{y}, \Gamma \vdash C ;[\Delta]}{u\{[d](\lambda y \cdot t) w /[d] w\}: \Gamma \vdash A ;\left[C^{d}, \Delta\right]} \text { cut }_{2} \quad s: A^{x}, \Gamma \vdash C ; \\
\frac{(\lambda x . s) u\{[d](\lambda y \cdot t) w /[d] w\}: \Gamma \vdash C ;\left[C^{d}, \Delta\right]}{\gamma d .(\lambda x . s) u\{[d](\lambda y \cdot t) w /[d] w\}: \Gamma \vdash C ;[\Delta]} C o n \\
(u, v)\left(w^{\ell} d . t\right) \longrightarrow \gamma d .(u t\{[d](v w) /[d] w\})
\end{gathered}
$$

The Computational Content of Disjunction

public int f(String s) throws IOEXCEPTION $\operatorname{try}(\lambda z . t) s$ catch exception e with $\lambda y . u$.

$$
(\lambda x .(x s), \lambda y . u)\left(\omega^{\ell} d . \lambda z . t\right) .
$$

- x is not free in s : reverses application: $(\lambda x . x$ s) $t=(t s)$
- ω^{ℓ} d. $\lambda z . t:(\mathbf{A} \supset \mathbf{C}) \vee \mathbf{B}$
- Exception handler $\lambda y . u: B \supset \mathbf{C}$
- Term reduces to $\gamma d . t\{[d] \lambda(y . u) e /[d] e\}[s / z]: C$
- [d]e throws exception
- Reduces to $t[s / z]$ if no exceptions thrown (vacuous γ).
- \vee-elimination replaces \supset-elimination for such procedures.

Comparisons: Ong and Stewart's $\lambda \mu$

$$
\frac{\Gamma ; \Delta \vdash s: A}{\Gamma ; \Delta, A^{\alpha} \vdash\left[\alpha^{A}\right] s: \perp} \perp-\text { intro } \quad \frac{\Gamma ; \Delta, B^{\beta} \vdash s: \perp}{\Gamma ; \Delta \vdash \mu \beta^{B} . s: B} \perp-\text { elim }
$$

- \perp-intro is very similar to Esc, but what is \perp-elim?
- " \perp " appears to be playing two different roles: enables contraction and 0-elimination $(0 \supset A)$.
- The $\neg \neg A \Rightarrow A$ has fine proof (no free variables)
- But why should Peirce's law require \perp-elim?
- The computational content of Peirce's law is not attributed to contraction. $(\neg P \supset P) \supset P$ is contraction.

Comparisons: Girard's LC

Similarities:

- Formula must stay in the stoup until something significant happens.
- \perp is "negative"; the other constants and atoms are "positive" $A \wedge B$ is negative if both A and B are negative, else positive. $A \vee B$ is negative if either A or B is negative, else positive.
- negative means Esc rule is possible; positive means purely intuitionistic.

Differences:

- LC does not contain intuitionistic implication: In ICL, $A \supset B$ is negative if B is negative, else positive.
- Polarization not needed in ICL. No built-in "dual" atoms A^{\perp}.
- Relationship to focusing (focalisation) also lost with \supset.

Can ICL be translated into linear logic?

- Just translate IL into LL around the formula $!A \multimap B$, then "throw in" \perp. Not even close!
- $A \vee \neg A \stackrel{?}{=} A \oplus(!A \multimap \perp)$: linear formula not provable.
- Better attempt: use a polarized translation (like LC's): Recognize $A \vee \neg A$ as negative, then use $A \gtrdot(!A \multimap \perp)$.
- Still doesn't work for Peirce's formula: $(\neg P \supset P) \supset P$: need contraction on P
Not as long as \supset is translated using $!A \multimap B$.
- Only apparent solution: use classical implication: $(\neg P \Rightarrow P) \Rightarrow P$ where $A \Rightarrow B=!A \multimap ? B$. But when to use \Rightarrow instead of \supset ?
- What can we conclude, if no reasonable translation exists? Linear logic is not subtle enough to go in between intuitionistic and classical logic.

Soundness and Completeness

Sequent Calculus LJC

Where did ICL came from:

Attempt to find a unified logic

- Starting point: Girard's system LU.
- Our early attempt at an unified logic, LUF:

- Second attempt at a unified logic: PIL:

- The proof theory of PIL contained both LJ and LC.
- Breakthrough: found Kripke Semantics for PIL
- Possible to unify classical and intuitionistic logics inside an intuitionistic semantics.
- The identification of \perp as a constant, which makes $A \vee \neg A$ possible, replaced the need for polarized connectives.

