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Modeling Objects by Polygonal 
Approximations

Define volumetric objects in terms of surfaces 
patches that surround the volume
Each surface patch is approximated by a set of 
polygons
Each polygon is specified by a set of vertices
To pass the object through the graphics pipeline, 
pass the vertices of all polygons through a number 
of transformations using homogeneous coordinates
All transformation are linear in homogeneous 
coordinates, thus a implemented as matrix 
multiplications
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Linear and Affine Transformations (Maps)

A map f () is linear if it preserves linear 
combinations, i.e., that is , for any scalars α and 
β, and any vectors p and q,

f(αp+ βq) = αf(p)+ β f(q)

Affine map f ()  preserve affine combinations of 
points, that is, for any scalars α and β, where α+β
=1, and any points P and Q,

f(αP+ βQ) = α f(P)+ β f(Q).
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Linear and Affine Maps

Recall that a line is an affine combination of two pints 
(thus an image of a line is a line under affine map).
A polygon is a convex combination of its vertices, thus 
under an affine map, the image of the polygon is a 
convex combination of the transformed vertices, a 
polygon
The vertices (in homogeneous coordinates) go 
through the graphics pipeline
At the rasterization stage, the interior points are 
generated when needed
Affine transformations include rotation, translation & 
scaling
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Bilinear Interpolation

Given the color at polygon vertices, assign 
color to the polygon points via bilinear 
interpolation:

An edge QR  is convex combination of the two 
vertices Q and R, 0 ≤ α ≤ 1,

The color            at an edge point          is a linear 
interpolation of the color at the vertices 

RQP ααα +−= )1()(

RQP CCC ααα +−= )1()(
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Bilinear Interpolation (cont)

The color at an interior point is bilinear interpolation of 
the color at two edge points. 

The polygon color is filled only when    
the polygon is displayed, during the      
the rasterization stage. The projection
of the polygon is filled scan line by scan

line. Each scan line intersects exactly 2 edges,
thus color of an interior point is well-defined as bilinear 
interpolation of scan line intersections with the edges.        
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Modeling 
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Affine Transformations
Every affine transformation can be represented as a 
composition of translations, rotation, and scales (in 
some order)
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Translation

Translation displaces points by a fixed distance 
in a given direction
Only need to specify a displacement vector d
Transformed points are given by

P′ = P + d
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2D Rotations

Every 2D rotation has a fixed point

Rotations are represented by orthogonal matrices:
The rows (columns) are orthonormal. 
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Matrix Representation of 2D Rotation 
around the origin

We want to find the representation of the transformation
that rotates at angle     about  the origin.

Since we talk about origin, we have fixed a frame.  

Given a point with coordinates (x,y), what are 
Coordinates (x’,y’) of the transformed point?     

θ
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2D Rotation  on      with fixed point the 
origin
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2D Rotation around the origin

The origin is unchanged, called the fixed point of the 
transformation

Extend 2D rotation to 3D. Use the right-handed 
system. Positive rotation is counter clockwise when 
looking down the axis of rotation toward the origin

2D rotation in the plane is equivalent to 3D rotation 
about the z axis: each point rotates in a plane 
perpendicular to z axis (i.e. z stays the same)
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3D rotation on angle      around the z axis

The z axis is fixed by the rotation, the matrix
representing the rotation is
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Rotation in 3D around arbitrary axis

Must specify: 
- rotation angle θ
- rotation axis, specified by    
a point Pf,, and a vector v

Note: openGL rotation is 
always around an axis 
through the origin
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Rigid Body Transformation
•Rotation and translation are  rigid-body transformations
•No combination of these transformations can alter the 
shape of an object

Non-rigid-body transformations
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Scaling

non-uniform

uniform
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Scaling

Must specify: 
- fixed point Pf
- direction to scale
- scale factor α
α > 1 larger
0 ≤ α < 1  smaller
- α reflection
Note: openGL scale more 
limited
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Reflections
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Transformations in Homogeneous 
Coordinates

Graphics systems work with the homogeneous-
coordinate representation of points and vectors
This is what OpenGL does too
In homogeneous coordinates, an affine 
transformation becomes a linear transformations and 
as such is represented by 4x4 matrix, M.
In homogeneous coordinates, the image of a point P, 
is the point MP,  the image of a vector u , is the 
vector Mu. 
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Transformations in Homogeneous Coordinates
In homogeneous coordinates, each affine transformation is 
represented by a 4 x 4 matrix M
To find the image v of a point/vector under the transformation, 
multiply M by the homogeneous coord. representation u of the 
point/vector

In affine coordinates, not every affine transformation can be 
represented by a matrix but it could be expressed in the form
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Translation

Translation is an operation that displaces 
points by a fixed distance and direction given 
by a vector d
In affine coord. transformed points are given 
by

P′ = P + d,        

'p p= +A d

The affine coordinate equations are 
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Translation

,Tpp =′ where

Matrix form in the homogeneous coordinates

T is called the translation matrix .
The translation transformation is denoted by 
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Translation: the inverse transformation

We can return to the original position by a
displacement of –d, giving us the inverse:
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Translations commute, I.e. order does not matter

glTranslatef(dx,dy,dz);

If d1 and d2 are vectors, T(d1+d2)=T(d1)T(d2)
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2D Rotation around a fixed point different 
than the origin

2D Rotation has a  fixed point. We know the 
matrix representation for a rotation with fixed 
point the origin.
Concatenate transformations to obtain the 
rotation with an arbitrary fixed point P

translate by d=O-P
rotate around the origin, O
translate back by -d

)()(, POTROPTRP −−= θθ
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Scaling with fixed point the origin

Scaling has a  fixed point
Let the fixed point be the origin
Independent scaling along the coordinate axes

x′ = βx x
y′ = βy y
z′ = βz z
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Scaling with fixed point the origin

,Spp =′
where

The homogeneous-coordinate equations in matrix form
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Two scale transformations with the same fixed point 
commute.
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3D Rotation around the x-axis
We derived the representation of the 3D rotation on angle
Theta around the z axis, we use concatenation 
of transformations to derive the rotation around x-axis

zxzxzx RRRR >−→= )()( θθ
where zxR → is a rotation aligning x-axis with the z-axis  
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3D Rotations around the x-axis (cont)
First: find the rotation that aligns x-axis with the z-axis:

Rotations are represented by orthogonal matrices
For every orthogonal matrix, M:

M has orthonormal rows, i.e the dot product of a row with itself is 
1, and the dot product of a row with a different row is 0 
M sends its rows into the corresponding basis vectors

Its transpose is its inverse
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3D Rotations around the x-axis (cont)
Find the rotation that aligns x-axis with the z-axis(cont): 

This rotation is represented by an orthogonal matrix M

If we choose M in such a way that the third row is (1,0,0), it will 
send the x-axis into the z-axis

If we build an orthonormal basis with a third  vector (1,0,0) and  
stack up the three  vectors of the frame, we obtain that M

We choose that basis to contain the three coordinate vectors 
(0,1,0), (0,0,1), and (1,0,0), in this order. Then M sends (y,z,x) 
coordinate axis into (x,y,z)
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3D Rotations around the x-axis
'1
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Rotation about axis not passing through origin,
example: the axis is parallel to z-axis

Move the cube to the origin
Apply Rz(θ)
Move back to original position

)()()( fzf pTRpTM −= θ
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3D Rotations around and arbitrary axis 
through the origin, colinear with vector u

Find the rotation that aligns u with the z- axis
Let u be unit vector (if not, normalize it).
Next choose an orthonormal basis (u1,u2,u3), u3=u

Thus 
OpenGL, has a function for rotations around an axis through 
the origin

GlRotatef(theta,ux,uy,yz);
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3D rotations around an arbitrary axis

If the axis is in direction of a vector u, and is 
passing through an arbitrary point P

In OpenGL, if P(px,py,px), and u(ux,uy,uz), 
and we want to rotate on angle theta:

( ) ( ) )()(; POTROPT uuP −−= θθR

glTranslatef(px,py,pz);
glRotatef(theta, ux,uy,uz);
glTranslatef(-px,-py,-pz);
glBegin(GL_POINTS);
…

glEnd();
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Scaling with an arbitrary fixed point;
Composing Transformations

We know how to scale with a fixed point origin. How do we scale 
fixing an arbitrary point P?
Be careful when composing (concatenating) transformations: 
matrix multiplication is not commutative, and transformations 
composition is not commutative
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Concatenation of Transformations

We can multiply together sequences of 
transformations – concatenating
Works well with pipeline architecture
e.g., three successive transformations on a 
point p creates a new point q

q = CBAp
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Concatenation of Transformations.

If we have a lot of points to transform, then 
we can calculate

M = CBA
and then we use this matrix on each point

q = Mp
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Instance Transformation

object
prototype

instance
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Instance Transformation
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Instance Transformations

Specify the affine transformation that will move the square so 
that its lower left corner will be at P,  the vertical side will be 
parallel to u, and the size will be half the original size

u

P
.
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Current Transformation Matrix

Current Transformation Matrix (CTM) – defines the state of 
the graphics system. All drawings, (vertices) defined 
subsequently undergo that transformation.

Changing the CTM, alters the state of the system.
4x4 matrix that can be altered by a set of functions 
provided by the graphics package
Common to most systems. Part of the pipeline
If p is a vertex, the pipeline produces Cp
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Current Transformation Matrix
Let C denote the CTM. 

CTM=I,                                                 glLoadIdentity()
CTM=M (resets it),                                 glLoadMatrixf(pM)
CTM=CTM*M ,                                       glMultMatrixf(pM)

Application of the gl functions, post-multiplies CTM

glLoadIdentity();   // CTM=I
glMultMatrixf(pL);  // CTM=I*L
glMultMatrixf(pM);  // CTM=I*L*M
glBegin(GL_POINTS);

glVertex3fv(v);
glEnd(); 

The point will be transformed according to CTM=I*L*M
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Current Transformation Matrix

In OpenGL the CTM is the product of 
model-view matrix (GL_MODELVIEW) and        
projection matrix (GL_PROJECTION).

The model-view matrix is product of
viewing transformations  and
modeling transformations

The projection matrix maps 3D to 2D. 
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Current Transformation Matrix
We select the matrix mode properly in order to 
set/change the model-view or the projection matrices.

glMatrixMode, set the desired matrix mode 
glMatrixMode(GL_MODELVIEW);

glLoadIdentity( );
glRotatef(angle, vx, vy, vz);
glTranslatef(dx, dy, dz);
glScalef(sx, sy, sz);
glMultMatrixf(pointer);
glLoadMatrixf(pointer);
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Order of Transformations
• We select the matrix mode properly in order to 

set/change the model-view or the projection matrices.

Transformation specified most recently is 
the one applied first to the primitive

glMatrixModel(GL_MODELVIEW)
glLoadIdentity( );
glTranslatef(4.0, 5.0, 6.0);
glRotatef(45.0, 1.0, 2.0, 3.0);
glTranslatef(-4.0, -5.0, -6.0); 
glBegin(GL_POLYGON);
…
glEnd();
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World and Local Coordinate Systems

An object moving relative to another moving 
object has a complicated motion:

A waving hand on a moving arm on a moving body
A rotating moon orbiting a planet orbiting a star

Directly expressing such motions with 
transformations is difficult
More indirect approach works better
Notes: WUSTL
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Example: planetary system

draw sun
rotate around Y by year
translate origin to orbit position
rotate around Y by day
draw moon at origin
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Example: planetary system
// uses double buffering, 
// glutInitDisplayMode(GLUT_DOUBLE|GLUT_RGB);

void display() {
glClearColor(GL_COLOR_BUFFER_BIT);
glColor(1.0, 1.0, 1.0);

glPushMatrix();
glutWireSphere(1.0,20,16);   // draw sun
glRotatef( year, 0.0, 1.0, 0.0);
glTranslatef(2.0, 0.0,0.0);
glRotatef( day, 0.0, 1.0, 0.0);
glutWireSphere(0.2, 10, 8);   // draw moon
glPopMatrix();

glutSwapBuffers();
}


