

- Define volumetric objects in terms of surfaces patches that surround the volume
- Each surface patch is approximated by a set of polygons
- Each polygon is specified by a set of vertices
- To pass the object through the graphics pipeline, pass the vertices of all polygons through a number of transformations using homogeneous coordinates

Hofstra University

 All transformation are linear in homogeneous coordinates, thus a implemented as matrix multiplications

Math 2

Hofstra University

 $f(\alpha P + \beta Q) = \alpha f(P) + \beta f(Q).$

Math 2

 3D Rotations around the x-axis (cont) Find the rotation that aligns x-axis with the z-axis(cont): This rotation is represented by an orthogonal matrix M 					
 If we choose M in such a way that the third row is (1,0,0), it will send the x-axis into the z-axis 					
• If we build an orthonormal basis with a third vector (1,0,0) and stack up the three vectors of the frame, we obtain that M					
 We choose that basis to contain the three coordinate vectors (0,1,0), (0,0,1), and (1,0,0), in this order. Then M sends (y,z,x) coordinate axis into (x y z) 					
		[0 1	0	0
[0 1 0] And	in homogeneous coordinates:		0 0	1	0
$M = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$		$R_{x \rightarrow z} =$	1 0	0	ő
			1 0	0	
Math 2	Hofstra University	l	0 0	0	1 29

