Modeling Objects by Polygonal Approximations

- Define volumetric objects in terms of surfaces patches that surround the volume
- Each surface patch is approximated by a set of polygons
- Each polygon is specified by a set of vertices
- To pass the object through the graphics pipeline, pass the vertices of all polygons through a number of transformations using homogeneous coordinates
- All transformation are linear in homogeneous coordinates, thus a implemented as matrix multiplications

Math 2
Hofstra University

Linear and Affine Transformations (Maps)

- A map $f()$ is linear if it preserves linear combinations, i.e., that is, for any scalars α and β, and any vectors p and q, $f(\alpha p+\beta q)=\alpha f(p)+\beta f(q)$
- Affine map $f()$ preserve affine combinations of points, that is, for any scalars α and β, where $\alpha+\beta$ $=1$, and any points P and Q ,

$$
f(\alpha \mathrm{P}+\beta Q)=\alpha f(\mathrm{P})+\beta f(\mathrm{Q}) .
$$

Bilinear Interpolation

- Given the color at polygon vertices, assign color to the polygon points via bilinear interpolation:
- An edge $Q R$ is convex combination of the two vertices Q and $\mathrm{R}, 0 \leq \alpha \leq 1$,

$$
P(\alpha)=(1-\alpha) Q+\alpha R
$$

- The color $C_{P(\alpha)}$ at an edge point $P(\alpha)$ is a linear interpolation of the color at the vertices C_{Q}, C_{R} $C_{P(\alpha)}=(1-\alpha) C_{Q}+\alpha C_{R}$

Affine Transformations

- Every affine transformation can be represented as a composition of translations, rotation, and scales (in some order)

2D Rotations

Every 2D rotation has a fixed point

Rotations are represented by orthogonal matrices: The rows (columns) are orthonormal.

Math 2
Hofstra University

Translation

- Translation displaces points by a fixed distance in a given direction
- Only need to specify a displacement vector d
- Transformed points are given by $P^{\prime}=P+d$

Matrix Representation of 2D Rotation around the origin

We want to find the representation of the transformation that rotates at angle θ about the origin.

Since we talk about origin, we have fixed a frame.
Given a point with coordinates (x, y), what are Coordinates (x^{\prime}, y^{\prime}) of the transformed point?

Hofstra University

2D Rotation around the origin

- The origin is unchanged, called the fixed point of the transformation
- Extend 2D rotation to 3D. Use the right-handed system. Positive rotation is counter clockwise when looking down the axis of rotation toward the origin
- 2 D rotation in the plane is equivalent to 3D rotation about the z axis: each point rotates in a plane perpendicular to z axis (i.e. z stays the same)

Math 2
Hofstra University

3D rotation on angle θ around the z axis

- The z axis is fixed by the rotation, the matrix representing the rotation is
$\mathbf{R}=\left[\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$
$\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime}\end{array}\right]=\left[\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \quad P^{\prime}=\mathbf{R} P$
Math 2
Hofstra University
13

Rotation in 3D around arbitrary axis

Must specify:

- rotation angle θ
- rotation axis, specified by a point $P_{f,}$, and a vector v

Note: openGL rotation is always around an axis through the origin

\qquad
Math 2
Hofstra University
14

Transformations in Homogeneous Coordinates

- Graphics systems work with the homogeneouscoordinate representation of points and vectors
- This is what OpenGL does too
- In homogeneous coordinates, an affine transformation becomes a linear transformations and as such is represented by 4×4 matrix, \boldsymbol{M}.
- In homogeneous coordinates, the image of a point P, is the point $\boldsymbol{M P}$, the image of a vector \boldsymbol{u}, is the vector Mu.

Math 2
Hofstra University

Transformations in Homogeneous Coordinates

- In homogeneous coordinates, each affine transformation is represented by a 4×4 matrix \mathbf{M}
- To find the image \mathbf{v} of a point/vector under the transformation, multiply \mathbf{M} by the homogeneous coord. representation \mathbf{u} of the point/vector
$\mathbf{v}=\mathbf{M u}$,

$$
\mathbf{M}=\left[\begin{array}{cccc}
\alpha_{11} & \alpha_{12} & \alpha_{13} & \alpha_{14} \\
\alpha_{21} & \alpha_{22} & \alpha_{23} & \alpha_{24} \\
\alpha_{31} & \alpha_{32} & \alpha_{33} & \alpha_{34} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\mathbf{M}=\left[\begin{array}{cc}
\mathbf{A} & \mathbf{d} \\
\mathbf{0} & 1
\end{array}\right], \quad \mathbf{A}_{3 \times 3}, \mathbf{d}_{3 \times 1}, \mathbf{0}_{1 \times 3},
$$

A, rotations and scalings
d, translations

- In affine coordinates, not every affine transformation can be represented by a matrix but it could be expressed in the form

$$
\mathbf{v}=\mathbf{A} \mathbf{u}+\mathbf{d}
$$

Math 2
Hofstra University 20

$$
\begin{gathered}
\text { Translation } \\
\text { Matrix form in the homogeneous coordinates } \\
\mathbf{p}^{\prime}=\mathbf{T p}, \quad \text { where } \\
\mathbf{p}=\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right], \quad \mathbf{p}^{\prime}=\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right], \quad \mathbf{d}=\left[\begin{array}{c}
\alpha_{x} \\
\alpha_{y} \\
\alpha_{z} \\
0
\end{array}\right], \quad \mathbf{T}=\left[\begin{array}{llll}
1 & 0 & 0 & \alpha_{x} \\
0 & 1 & 0 & \alpha_{y} \\
0 & 0 & 1 & \alpha_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

T is called the translation matrix.
The translation transformation is denoted by

$$
T\left(\alpha_{x}, \alpha_{y}, \alpha_{z}\right) \quad \text { or } T(d)
$$

2D Rotation around a fixed point different than the origin

- 2D Rotation has a fixed point. We know the matrix representation for a rotation with fixed point the origin.
- Concatenate transformations to obtain the rotation with an arbitrary fixed point P
- translate by $\mathrm{d}=0-\mathrm{P}$
- rotate around the origin, 0
- translate back by -d

$$
R_{P}, \theta=T(P-O) R_{\theta} T(O-P)
$$

Math 2
Hofstra University

Scaling with fixed point the origin

- Scaling has a fixed point
- Let the fixed point be the origin
- Independent scaling along the coordinate axes

$$
\begin{aligned}
& x^{\prime}=\beta_{x} x \\
& y^{\prime}=\beta_{y} y \\
& z^{\prime}=\beta_{z} z
\end{aligned}
$$

3D Rotation around the x-axis

We derived the representation of the 3D rotation on angle Theta around the z axis, we use concatenation of transformations to derive the rotation around x-axis

$$
R_{x}(\theta)=R_{z \rightarrow x} R_{z}(\theta) R_{x \rightarrow>z}
$$

where $R_{X \rightarrow z}$ is a rotation aligning x-axis with the z-axis

3D Rotations around the x-axis (cont)

- Find the rotation that aligns x-axis with the z-axis(cont):
- This rotation is represented by an orthogonal matrix M
- If we choose M in such a way that the third row is ($1,0,0$), it will send the x-axis into the z-axis
- If we build an orthonormal basis with a third vector $(1,0,0)$ and stack up the three vectors of the frame, we obtain that M
- We choose that basis to contain the three coordinate vectors $(0,1,0),(0,0,1)$, and ($1,0,0$), in this order. Then M sends (y, z, x) coordinate axis into (x, y, z)

$$
M=\underset{\text { Math 2 }}{\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]} \text { And in homogeneous coordinates: }{ }_{R_{X \rightarrow z}}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Scaling with fixed point the origin

The homogeneous-coordinate equations in matrix form

$$
\mathbf{p}^{\prime}=\mathbf{S p}
$$

$$
\begin{aligned}
& \text { where } \\
& \mathbf{S}^{-1}\left(\beta_{x}, \beta_{y}, \beta_{x}, \beta_{y}, \beta_{z}\right)=\mathbf{S}\left(\frac{1}{\beta_{x}}, \frac{1}{\beta_{y}}, \frac{1}{\beta_{z}}\right)=\left[\begin{array}{cccc}
\beta_{x} & 0 & 0 & 0 \\
0 & \beta_{y} & 0 & 0 \\
0 & 0 & \beta_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Two scale transformations with the same fixed point commute.

3D Rotations around the x-axis (cont)

- First: find the rotation that aligns x-axis with the z-axis:
- Rotations are represented by orthogonal matrices
- For every orthogonal matrix, M:
- M has orthonormal rows, i.e the dot product of a row with itself is 1 , and the dot product of a row with a different row is 0
- M sends its rows into the corresponding basis vectors
$M\left[\begin{array}{l}m_{11} \\ m_{12} \\ m_{13}\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], M\left[\begin{array}{l}m_{21} \\ m_{22} \\ m_{23}\end{array}\right]=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right], M\left[\begin{array}{l}m_{31} \\ m_{32} \\ m_{33}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$
- Its transpose is its inverse

3D Rotations around the x-axis

- Since $\quad R_{z \rightarrow x}=R_{X \rightarrow z}^{-1}=R_{X \rightarrow z}^{\prime}$
- We obtain $\quad \mathbf{R}_{X}(\theta)=R_{z \rightarrow X} R_{Z}(\theta) R_{X \rightarrow z}$
- Thus
$\mathbf{R}_{x}(\theta)=\left[\begin{array}{llll}0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{cccc}\cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
$\mathbf{R}_{x}(\theta)=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
Math 2
Hofstra University

3D rotations around an arbitrary axis

- If the axis is in direction of a vector u, and is passing through an arbitrary point P

$$
\mathbf{R}_{P ; u}(\theta)=T(P-O) R_{u}(\theta) T(O-P)
$$

- In OpenGL, if P(px,py,px), and u(ux,uy,uz), and we want to rotate on angle theta:

$$
\begin{aligned}
& \text { g1Trans1atef(px,py,pz); } \\
& \text { g1Rotatef(theta, ux, uy,uz); } \\
& \text { g1Trans1atef(-px, -py,-pz); } \\
& \text { g1Begin(GL_POINTS); } \\
& \text { … } \\
& \text { g1End(); Hofstra University }
\end{aligned}
$$

Math 2

Concatenation of Transformations

- We can multiply together sequences of transformations - concatenating
- Works well with pipeline architecture
- e.g., three successive transformations on a point \mathbf{p} creates a new point \mathbf{q} $\mathbf{q}=\mathbf{C B A p}$

Math 2
Hofstra University

3D Rotations around and arbitrary axis through the origin, colinear with vector u

- Find the rotation that aligns u with the z ax
- Let u be unit vector (if not, normalize it).
- Next choose an orthonormal basis (u1, u2, u3), u3=u

$$
R_{u \rightarrow z}=\left[\begin{array}{ll}
\mathbf{u}_{1} & 0 \\
\mathbf{u}_{2} & 0 \\
\mathbf{u}_{3} & 0 \\
\mathbf{0} & 1
\end{array}\right], \quad \mathbf{u}_{3}=\mathbf{u}, \quad R_{z \rightarrow u}=R_{u \rightarrow z}^{\prime}
$$

- Thus $\quad \mathbf{R}_{u}(\theta)=R_{Z \rightarrow u} R_{Z}(\theta) R_{u \rightarrow z}$
- OpenGL, has a function for rotations around an axis through the origin

G1Rotatef(theta, ux, uy, yz) ;
Math 2 Hofstra University

Scaling with an arbitrary fixed point; Composing Transformations

- We know how to scale with a fixed point origin. How do we scale fixing an arbitrary point P?
- Be careful when composing (concatenating) transformations: matrix multiplication is not commutative, and transformations composition is not commutative

Concatenation of Transformations.

- If we have a lot of points to transform, then we can calculate

M = CBA
and then we use this matrix on each point $\mathbf{q}=\mathbf{M p}$

Current Transformation Matrix Let \mathbf{C} denote the CTM.	
CTM $=1, \quad$ glLoadl dentit	
CTM $=\mathrm{M}$ (resets it), glLoadMatrix	
CTM $=$ CTM $*$, glMultMatrix	
Application of the gl functions, post-multiplies CTM	
g1LoadIdentity(); // CTM=I	
g1Mu7tMatrixf(pL) ; // CTM=I*L	
glMu7tMatrixf(pM) ; // CTM=I*L*M	
g1Begin(GL_POINTS) ;g7Vertex3fv (V)	
g1End();	
The point will be transformed according to CTM=I*L*M	

Current Transformation Matrix

- Current Transformation Matrix (CTM) - defines the state of the graphics system. All drawings, (vertices) defined subsequently undergo that transformation.
- Changing the CTM, alters the state of the system.
- 4×4 matrix that can be altered by a set of functions provided by the graphics package
- Common to most systems. Part of the pipeline
- If \mathbf{p} is a vertex, the pipeline produces $\mathbf{C p}$

Current Transformation Matrix

In OpenGL the CTM is the product of model-view matrix (GL_MODELVIEW) and projection matrix (GL_PROJECTION).

The model-view matrix is product of viewing transformations and modeling transformations

The projection matrix maps 3 D to 2 D .

Current Transformation Matrix

We select the matrix mode properly in order to set/change the model-view or the projection matrices.
glMatrixMode, set the desired matrix mode glMatrixMode(GL_MODELVIEW); glLoadIdentity();
glRotatef(angle, vx, vy, vz);
gITranslatef(dx, dy, dz);
glScalef(sx, sy, sz);
glMultMatrixf(pointer);
glLoadMatrixf(pointer);

World and Local Coordinate Systems

- An object moving relative to another moving object has a complicated motion:
- A waving hand on a moving arm on a moving body
- A rotating moon orbiting a planet orbiting a star
- Directly expressing such motions with transformations is difficult
- More indirect approach works better
- Notes: WUSTL

Order of Transformations

- We select the matrix mode properly in order to set/change the model-view or the projection matrices.
- Transformation specified most recently is the one applied first to the primitive
glMatrixModel(GL_MODELVIEW)
glLoadidentity();
glTranslatef(4.0, 5.0, 6.0);
glRotatef(45.0, 1.0, 2.0, 3.0);
gITranslatef(-4.0, -5.0, -6.0);
glBegin(GL_POLYGON);
glEnd();

Math
Hofstra University
44

Example: planetary system
// uses double buffering,
// glutInitDisplayMode(GLUT_DOUBLE|GLUT_RGB);
void display() \{
gIClearColor(GL_COLOR_BUFFER_BIT);
glColor(1.0, 1.0, 1.0);
glPushMatrix();
glutWireSphere(1.0,20,16); // draw sun
glRotatef(year, 0.0, 1.0, 0.0);
gITranslatef(2.0, 0.0,0.0);
glRotatef(day, 0.0, 1.0, 0.0);
glutWireSphere(0.2, 10, 8); // draw moon gIPopMatrix();
glutSwapBuffers();
\}
Math 2

