
1

Math 2 Hofstra University 1

Modeling Objects by Polygonal
Approximations

Define volumetric objects in terms of surfaces
patches that surround the volume
Each surface patch is approximated by a set of
polygons
Each polygon is specified by a set of vertices
To pass the object through the graphics pipeline,
pass the vertices of all polygons through a number
of transformations using homogeneous coordinates
All transformation are linear in homogeneous
coordinates, thus a implemented as matrix
multiplications

Math 2 Hofstra University 2

Linear and Affine Transformations (Maps)

A map f () is linear if it preserves linear
combinations, i.e., that is , for any scalars α and
β, and any vectors p and q,

f(αp+ βq) = αf(p)+ β f(q)

Affine map f () preserve affine combinations of
points, that is, for any scalars α and β, where α+β
=1, and any points P and Q,

f(αP+ βQ) = α f(P)+ β f(Q).

Math 2 Hofstra University 3

Linear and Affine Maps

Recall that a line is an affine combination of two pints
(thus an image of a line is a line under affine map).
A polygon is a convex combination of its vertices, thus
under an affine map, the image of the polygon is a
convex combination of the transformed vertices, a
polygon
The vertices (in homogeneous coordinates) go
through the graphics pipeline
At the rasterization stage, the interior points are
generated when needed
Affine transformations include rotation, translation &
scaling

Math 2 Hofstra University 4

Bilinear Interpolation

Given the color at polygon vertices, assign
color to the polygon points via bilinear
interpolation:

An edge QR is convex combination of the two
vertices Q and R, 0 ≤ α ≤ 1,

The color at an edge point is a linear
interpolation of the color at the vertices

RQP ααα +−=)1()(

RQP CCC ααα +−=)1()(

)(αPC)(αP
RQ CC ,

Math 2 Hofstra University 5

Bilinear Interpolation (cont)

The color at an interior point is bilinear interpolation of
the color at two edge points.

The polygon color is filled only when
the polygon is displayed, during the
the rasterization stage. The projection
of the polygon is filled scan line by scan

line. Each scan line intersects exactly 2 edges,
thus color of an interior point is well-defined as bilinear
interpolation of scan line intersections with the edges.

Math 2 Hofstra University 6

Modeling

2

Math 2 Hofstra University 7

Affine Transformations
Every affine transformation can be represented as a
composition of translations, rotation, and scales (in
some order)

Math 2 Hofstra University 8

Translation

Translation displaces points by a fixed distance
in a given direction
Only need to specify a displacement vector d
Transformed points are given by

P′ = P + d

Math 2 Hofstra University 9

2D Rotations

Every 2D rotation has a fixed point

Rotations are represented by orthogonal matrices:
The rows (columns) are orthonormal.

Math 2 Hofstra University 10

Matrix Representation of 2D Rotation
around the origin

We want to find the representation of the transformation
that rotates at angle about the origin.

Since we talk about origin, we have fixed a frame.

Given a point with coordinates (x,y), what are
Coordinates (x’,y’) of the transformed point?

θ

Math 2 Hofstra University 11

2D Rotation on with fixed point the
origin

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

′
′

y
x

y
x

θθ
θθ

cossin
sincos

),(yx

),(yx ′′

θ)sin(
)cos(

sin
cos

ϕθ
ϕθ

ϕ
ϕ

+=′
+=′

=
=

ry
rx
ry
rx

θ

ϕ

matrix representing the rotation
Math 2 Hofstra University 12

2D Rotation around the origin

The origin is unchanged, called the fixed point of the
transformation

Extend 2D rotation to 3D. Use the right-handed
system. Positive rotation is counter clockwise when
looking down the axis of rotation toward the origin

2D rotation in the plane is equivalent to 3D rotation
about the z axis: each point rotates in a plane
perpendicular to z axis (i.e. z stays the same)

3

Math 2 Hofstra University 13

3D rotation on angle around the z axis

The z axis is fixed by the rotation, the matrix
representing the rotation is

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
=

100
0cossin
0sincos

θθ
θθ

R

PP
z
y
x

z
y
x

R=′
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

′
′
′

100
0cossin
0sincos

θθ
θθ

θ

Math 2 Hofstra University 14

Rotation in 3D around arbitrary axis

Must specify:
- rotation angle θ
- rotation axis, specified by
a point Pf,, and a vector v

Note: openGL rotation is
always around an axis
through the origin

Math 2 Hofstra University 15

Rigid Body Transformation
•Rotation and translation are rigid-body transformations
•No combination of these transformations can alter the
shape of an object

Non-rigid-body transformations

Math 2 Hofstra University 16

Scaling

non-uniform

uniform

Math 2 Hofstra University 17

Scaling

Must specify:
- fixed point Pf
- direction to scale
- scale factor α
α > 1 larger
0 ≤ α < 1 smaller
- α reflection
Note: openGL scale more
limited

Math 2 Hofstra University 18

Reflections

4

Math 2 Hofstra University 19

Transformations in Homogeneous
Coordinates

Graphics systems work with the homogeneous-
coordinate representation of points and vectors
This is what OpenGL does too
In homogeneous coordinates, an affine
transformation becomes a linear transformations and
as such is represented by 4x4 matrix, M.
In homogeneous coordinates, the image of a point P,
is the point MP, the image of a vector u , is the
vector Mu.

Math 2 Hofstra University 20

Transformations in Homogeneous Coordinates
In homogeneous coordinates, each affine transformation is
represented by a 4 x 4 matrix M
To find the image v of a point/vector under the transformation,
multiply M by the homogeneous coord. representation u of the
point/vector

In affine coordinates, not every affine transformation can be
represented by a matrix but it could be expressed in the form

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1000
34333231

24232221

14131211

αααα
αααα
αααα

M

ions translat,
scalings and rotations ,

,,,,
1 311333

d
A

0dA
0

dA
M ×××⎥

⎦

⎤
⎢
⎣

⎡
=,Muv =

dAuv +=

Math 2 Hofstra University 21

Translation

Translation is an operation that displaces
points by a fixed distance and direction given
by a vector d
In affine coord. transformed points are given
by

P′ = P + d,

'p p= +A d

The affine coordinate equations are

,

,

,

z

y

x

zz

yy

xx

α

α

α

+=′

+=′

+=′

General affine in affine coord

Math 2 Hofstra University 22

Translation

,Tpp =′ where

Matrix form in the homogeneous coordinates

T is called the translation matrix .
The translation transformation is denoted by

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1000
100
010
001

z

y

x

α
α
α

T

)(or),,(dTT zyx ααα

,

0

,

1

,

1 ⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

′
′
′

=′

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
z
y

x

z
y
x

z
y
x

α
α
α

dpp

Math 2 Hofstra University 23

Translation: the inverse transformation

We can return to the original position by a
displacement of –d, giving us the inverse:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−
−

=−−=

1000
100
010
001

),,),,
z
y

x

zyxzyx α
α
α

αααααα T(-(T 1-

Translations commute, I.e. order does not matter

glTranslatef(dx,dy,dz);

If d1 and d2 are vectors, T(d1+d2)=T(d1)T(d2)

Math 2 Hofstra University 24

2D Rotation around a fixed point different
than the origin

2D Rotation has a fixed point. We know the
matrix representation for a rotation with fixed
point the origin.
Concatenate transformations to obtain the
rotation with an arbitrary fixed point P

translate by d=O-P
rotate around the origin, O
translate back by -d

)()(, POTROPTRP −−= θθ

5

Math 2 Hofstra University 25

Scaling with fixed point the origin

Scaling has a fixed point
Let the fixed point be the origin
Independent scaling along the coordinate axes

x′ = βx x
y′ = βy y
z′ = βz z

Math 2 Hofstra University 26

Scaling with fixed point the origin

,Spp =′
where

The homogeneous-coordinate equations in matrix form

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

==

1000
000
000
000

),,
z

y

x

zyx β
β

β

βββS(S

)1,1,1),,
zyx

zyx βββ
βββ S((S =1-

Two scale transformations with the same fixed point
commute.

Math 2 Hofstra University 27

3D Rotation around the x-axis
We derived the representation of the 3D rotation on angle
Theta around the z axis, we use concatenation
of transformations to derive the rotation around x-axis

zxzxzx RRRR >−→=)()(θθ
where zxR → is a rotation aligning x-axis with the z-axis

Math 2 Hofstra University 28

3D Rotations around the x-axis (cont)
First: find the rotation that aligns x-axis with the z-axis:

Rotations are represented by orthogonal matrices
For every orthogonal matrix, M:

M has orthonormal rows, i.e the dot product of a row with itself is
1, and the dot product of a row with a different row is 0
M sends its rows into the corresponding basis vectors

Its transpose is its inverse

11 21 31

12 22 32

13 23 33

1 0 0
0 , 1 , 0
0 0 1

m m m
M m M m M m

m m m

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Math 2 Hofstra University 29

3D Rotations around the x-axis (cont)
Find the rotation that aligns x-axis with the z-axis(cont):

This rotation is represented by an orthogonal matrix M

If we choose M in such a way that the third row is (1,0,0), it will
send the x-axis into the z-axis

If we build an orthonormal basis with a third vector (1,0,0) and
stack up the three vectors of the frame, we obtain that M

We choose that basis to contain the three coordinate vectors
(0,1,0), (0,0,1), and (1,0,0), in this order. Then M sends (y,z,x)
coordinate axis into (x,y,z)

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

001
100
010

M
And in homogeneous coordinates:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=→

1000
0001
0100
0010

zxR

Math 2 Hofstra University 30

3D Rotations around the x-axis
'1

zxzxxz RRR →
−
→→ ==Since

We obtain
Thus

() () zxzxzx RRR →→= θθR

()

()
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1000
0cossin0
0sincos0
0001

1000
0001
0100
0010

1000
0100
00cossin
00sincos

1000
0010
0001
0100

θθ
θθ

θ

θθ
θθ

θ

x

x

R

R

6

Math 2 Hofstra University 31

Rotation about axis not passing through origin,
example: the axis is parallel to z-axis

Move the cube to the origin
Apply Rz(θ)
Move back to original position

)()()(fzf pTRpTM −= θ

Math 2 Hofstra University 32

3D Rotations around and arbitrary axis
through the origin, colinear with vector u

Find the rotation that aligns u with the z- axis
Let u be unit vector (if not, normalize it).
Next choose an orthonormal basis (u1,u2,u3), u3=u

Thus
OpenGL, has a function for rotations around an axis through
the origin

GlRotatef(theta,ux,uy,yz);

',,

1
0
0
0

zuuzzu RRR →→→ ==

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

= uu

0
u
u
u

3
3
2
1

() () zuzuzu RRR →→= θθR

Math 2 Hofstra University 33

3D rotations around an arbitrary axis

If the axis is in direction of a vector u, and is
passing through an arbitrary point P

In OpenGL, if P(px,py,px), and u(ux,uy,uz),
and we want to rotate on angle theta:

() ())()(; POTROPT uuP −−= θθR

glTranslatef(px,py,pz);
glRotatef(theta, ux,uy,uz);
glTranslatef(-px,-py,-pz);
glBegin(GL_POINTS);
…

glEnd();
Math 2 Hofstra University 34

Scaling with an arbitrary fixed point;
Composing Transformations

We know how to scale with a fixed point origin. How do we scale
fixing an arbitrary point P?
Be careful when composing (concatenating) transformations:
matrix multiplication is not commutative, and transformations
composition is not commutative

Math 2 Hofstra University 35

Concatenation of Transformations

We can multiply together sequences of
transformations – concatenating
Works well with pipeline architecture
e.g., three successive transformations on a
point p creates a new point q

q = CBAp

Math 2 Hofstra University 36

Concatenation of Transformations.

If we have a lot of points to transform, then
we can calculate

M = CBA
and then we use this matrix on each point

q = Mp

7

Math 2 Hofstra University 37

Instance Transformation

object
prototype

instance

Math 2 Hofstra University 38

Instance Transformation

Math 2 Hofstra University 39

Instance Transformations

Specify the affine transformation that will move the square so
that its lower left corner will be at P, the vertical side will be
parallel to u, and the size will be half the original size

u

P
.

Math 2 Hofstra University 40

Current Transformation Matrix

Current Transformation Matrix (CTM) – defines the state of
the graphics system. All drawings, (vertices) defined
subsequently undergo that transformation.

Changing the CTM, alters the state of the system.
4x4 matrix that can be altered by a set of functions
provided by the graphics package
Common to most systems. Part of the pipeline
If p is a vertex, the pipeline produces Cp

Math 2 Hofstra University 41

Current Transformation Matrix
Let C denote the CTM.

CTM=I, glLoadIdentity()
CTM=M (resets it), glLoadMatrixf(pM)
CTM=CTM*M , glMultMatrixf(pM)

Application of the gl functions, post-multiplies CTM

glLoadIdentity(); // CTM=I
glMultMatrixf(pL); // CTM=I*L
glMultMatrixf(pM); // CTM=I*L*M
glBegin(GL_POINTS);

glVertex3fv(v);
glEnd();

The point will be transformed according to CTM=I*L*M
Math 2 Hofstra University 42

Current Transformation Matrix

In OpenGL the CTM is the product of
model-view matrix (GL_MODELVIEW) and
projection matrix (GL_PROJECTION).

The model-view matrix is product of
viewing transformations and
modeling transformations

The projection matrix maps 3D to 2D.

8

Math 2 Hofstra University 43

Current Transformation Matrix
We select the matrix mode properly in order to
set/change the model-view or the projection matrices.

glMatrixMode, set the desired matrix mode
glMatrixMode(GL_MODELVIEW);

glLoadIdentity();
glRotatef(angle, vx, vy, vz);
glTranslatef(dx, dy, dz);
glScalef(sx, sy, sz);
glMultMatrixf(pointer);
glLoadMatrixf(pointer);

Math 2 Hofstra University 44

Order of Transformations
• We select the matrix mode properly in order to

set/change the model-view or the projection matrices.

Transformation specified most recently is
the one applied first to the primitive

glMatrixModel(GL_MODELVIEW)
glLoadIdentity();
glTranslatef(4.0, 5.0, 6.0);
glRotatef(45.0, 1.0, 2.0, 3.0);
glTranslatef(-4.0, -5.0, -6.0);
glBegin(GL_POLYGON);
…
glEnd();

Math 2 Hofstra University 45

World and Local Coordinate Systems

An object moving relative to another moving
object has a complicated motion:

A waving hand on a moving arm on a moving body
A rotating moon orbiting a planet orbiting a star

Directly expressing such motions with
transformations is difficult
More indirect approach works better
Notes: WUSTL

Math 2 Hofstra University 46

Example: planetary system

draw sun
rotate around Y by year
translate origin to orbit position
rotate around Y by day
draw moon at origin

Math 2 Hofstra University 47

Example: planetary system
// uses double buffering,
// glutInitDisplayMode(GLUT_DOUBLE|GLUT_RGB);

void display() {
glClearColor(GL_COLOR_BUFFER_BIT);
glColor(1.0, 1.0, 1.0);

glPushMatrix();
glutWireSphere(1.0,20,16); // draw sun
glRotatef(year, 0.0, 1.0, 0.0);
glTranslatef(2.0, 0.0,0.0);
glRotatef(day, 0.0, 1.0, 0.0);
glutWireSphere(0.2, 10, 8); // draw moon
glPopMatrix();

glutSwapBuffers();
}

