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Outline
Abstract spaces: objects and operations

Field of real numbers R
Vector space over R
Euclidean spaces
Affine spaces

Affine combinations
Convex combinations
Frames
Affine maps
Euclidean spaces

Read: angel, Appendices B and C, Ch 4.1- 4.3
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Geometric ADTs

Scalars, Points and Vectors are members of 
mathematical abstract sets
Abstract spaces for representing and 
manipulating these sets of objects
Field - - scalars
Linear Vector Space – vectors
Euclidean Space – add concept of distance
Affine Space – adds the point
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Linear Vector Spaces (defined over scalars)
S is a set of scalars (like the real numbers)
The set V of objects called vectors , 
is a (linear) vector space defined over S if there are 
two operations

Vector-vector addition,  
Scalar-vector multiplication, 

satisfying the following
Axioms

Unique additive unit, the zero vector,

Every vector      has additive inverse
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Vector Spaces (cont.)
Axioms (cont.)

Vector-vector addition is commutative and associative
Scalar-vector multiplication is distributive

Examples 
Geometric vectors over R , i.e., directed line segments in 
3D
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Vector Spaces (cont.)
Examples 

n-tuples of  real numbers (we will use triples usually)
A vector is identified with an n-tuple
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Vector Spaces (cont.)
is a linear vector space over a field 

is a linear combination of                   ,, if

The non-zero vectors                    are linearly 
independent, if

,,,...,1 Vuuu k ∈
V S

kuu ,...,1

0......
..,,...,,

212211

21
====⇒=+++ 

∈∀

kkk

k
uuu

tsS
αααααα

ααα
0

kuu ,...,1

kk

k
uuuu

tsS
ααα

ααα
+++= 

∈∃
...

..,,...,,

2211

21

Math 1 Hofstra University 8

Vector Spaces (cont.)
is a linear vector space over a field 

The vectors                    are linearly dependent, if one of 
them can be expressed as a non-trivial linear combination 
of the rest. (non-trivial means that not all coefficients are 
0)
Any set of vectors that includes the zero vector is linearly 
dependent.
Basis : a maximal linear independent set of vectors, i.e., if 
one more vector is added to the set it becomes linearly 
dependent.
Dimension: number of vectors in the basis

V S
kuu ,...,1
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Vector Spaces (cont.)
is a n- dimensional vector space over a field      , 

and                          is a basis:
Every vector      is represented uniquely as a linear 
combination of the basis, i.e., there exist unique scalars  

representation (coordinates) of        in the basis
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We are concerned with 3D vector space
Represent w as linear 
combination of three linearly

independent vectors, v1, v2, v3

w = α1v1 + α2v2 + α3v3

components
basis
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Vector Spaces: Changes of Basis

How do we represent a vector if we change 
the basis?
Suppose the {v1,v2,v3} and {u1,u2,u3} are 
two bases. 
Basis vector in second set can be represented 
in terms of the first basis
Given the representation of a vector in one 
basis, we can change to a representation of 
the same vector in the other basis by a linear 
transformation (i.e., matrix multiplication)
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Vector Spaces: Change of Basis
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Vector Spaces: Change of Basis

Let in basis v the vector w is represented by a component
column matrix a, and in u , by a component matrix b
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Math 1 Hofstra University 14

Vector Spaces: Change of Basis Example
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Vector Spaces

It is common in CG to use vectors to represent
Locations (points)
Displacements
Directions (orientation)

Keep in mind that points and vectors are different, I.e. 
have different behavior (methods)

Displacement of a point is another point (new location)
Displacement  of a vector it is the same vector (vectors do 
not have fixed locations)

Thus it is not theoretically correct to use vectors to 
represent both points and displacements although in 
3D we do. 
If you use OOP: ADT vector implementation,  class 
vector , another class for point

Internally work with 3,4-tuples of real numbers
Use matrix algebra in the implementation of methods
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Euclidean Space

We add the notion of a distance and angle to a 
vector space by means of inner (dot) product.

is an Euclidean space, if it is  vector space with 
dot (scalar,inner) product , 
i.e., for vectors u and u⋅ v  is a real number, such 
that

Axioms
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Euclidean Space (cont.)
The length of a vector 

The norm of a vector 

Two non- zero vectors u and v are orthogonal if 
u⋅ v = 0
The angle between two vectors is given by

Unit vector: a vector of length 1
Normalizing a vector:  
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Euclidean Space (cont.)

Orthonormal basis: a basis consisting of unit 
vectors which are mutually orthogonal 
Projections:

If v is unit vector, the length of the projection of 
u on v is u.v

|u|cosθ = u⋅ v/|v| is the length of  
orthogonal projection of u onto v

u

|u| cosθ
v

θ
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3D Euclidean Space  

Cross Product of two vectors u and v is a 
vector n = u× v, 

n is orthogonal to v and u,
the triple (u,v,n) is right-handed,
The length )sin(|||||| θvuvu =×

VVV →×× :
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Euclidean Spaces (cont)
Example:

orthonormal basis, and
Dot product:

Cross product:
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Euclidean Space (cont.)

We can construct orthonormal basis in 3D by 
using the dot and cross products 

Given vector u, 

Set 

Calculate              s.t. 

Calculate               

The basis                         is orthonormal
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Affine Spaces

Given a vector space A, an affine space A
over the vector space has two types of 
objects:

points, P,Q,…
and vectors,  u,v,…

and is defined by the following axioms
All axioms of the vector space 
Operations relating points and vectors

Point-point subtraction gives unique vector,
Point-vector addition gives unique point, PvQ =+

vQP =−
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Affine Spaces (cont)

Operations relating points and vectors
Subtraction of two points yields a vector:

v = P – Q
Point-vector addition yields a point:

P =  Q + v 
All the operations:

point-point subtraction,
point-vector addition,
vector-vector addition,
scalar-vector multiplication
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Affine Spaces (cont)

Axioms:  
1. Two points define unique vector,
2. Point and vector define unique point,
3.

4. head-to-tail axiom: given points P,R,  for any 
other point Q,

5. If O  is an arbitrary point, 

PvQ =+
vQP =−

)( QPPQ −−=−

)()( QPRQRP −+−=−

uOPAPAu =−∈∃∈∀ :!,
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Line: parametric equation

A line, defied by a point  P0 and a vector d
consists of all points P  obtained by 

P (α) = P0 + αd
where  α varies over all scalars.

P (α) is a point for any value of α
For non- negative values, we get 
a ray emanating from P0 in the 
direction of d

d

P0

P(a)
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Plane: parametric equation

A plane defined by a point P0 and two non 
collinear  vectors (non- parallel, i.e.,linearly 
independent) u and v, consists of all points 
T(α,β):

T(α,β) = P0 + α u + β v

P0

α u
β v T(α,β)

v

u
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Affine Spaces (cont)

All the operations:
point-point subtraction,
point-vector addition,
vector-vector addition,
scalar-vector multiplication

Point-point addition is not defined, but addition-like 
combinations of points are well-defined.
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Affine Combinations of Two Points
Given two points Q and R, and two scalars          
where  
the affine combination of  Q and R with coefficients

is a point P denoted by

and defined as follows

All affine combinations of two points generate the line
through that points.

v

Q
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R

α = 0
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Affine Combinations of Three Points
Given three points P, Q, and R, and three scalars       

where
the affine combination of the three points with
coefficients is a point T, denoted   

The point T is defined by

All affine combinations of three non collinear points 
generate the plane through that points.
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Affine Combinations of n Points

Given an affine space A, a point P  is an affine 
combination of                    ,  iff, there exist 
scalars

The affine combination is denoted by

If the vectors                       are coplanar, 
what is the set of all affine combinations of the 
n points? 

nPPP ,,, 21 …

1,
1

21 = ,,  , ∃ ∑
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n

i
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P = α1P1 + α2P2 + … + αnPn
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Convexity

Convex set– a set in which a line segment connecting any 
two pints of the set is entirely in the set.
For 0 ≤ α ≤ 1 the affine combinations of points Q and R is 
the line segment connecting Q and R

This line segment is convex
The midpoint, α=0.5
Give the affine combination

representing a point dividing the line
Segment in ratio m:n, starting from Q Q

P(α)

R
RQP ααα +−= )1()(
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( ) (1)

( ) (2)

now substitute (2) in (1):
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m n m n
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m n m n
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Convex (affine) combinations

Convex combinations: affine combinations with 
positive coefficients,

P = α1P1 + α2P2 + … + αnPn
α1 + α2 +…+ αn = 1
αi ≥ 0, i = 1,2,…,n

Convex hull of a set of points is the set of all convex 
combination of this points.

In particular, for any two points of the set the line 
segment connecting the points is in the convex hull, thus 
the convex hull is a convex set.
In fact, the convex hull it is the smallest convex set that 
contains the original points.
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Geometric ADTs: Convexity

The convex hull could be thought of as the set of 
points that we form by stretching a tight- fitting 
surface over the given set of points – shrink 
wrapping the points (all points inside and on the 
surface)
It is the smallest convex object that includes the 
set of points

Math 1 Hofstra University 35

Convex Polygons

A convex polygon is completely specified by 
the set of its vertices

A convex polygon: the convex hull of the 
vertices
Given equilateral triangle give the 
representation of the center of the mass
Generate random point inside a triangle
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A normal to a plane
Normal n to a plane : unit vector orthogonal to the plane 
If we are given the parametric equation of the plane

T(α,β) = P0 + α u + β v,
n = u × v /| u × v|

Given a polygon, write the outward/front normal
Given a point P0 and a vector n , there is unique plane that 
goes through P0 and has normal n: it consists of all points P 
satisfying the normal equation of the plane

Given a plane, defined by point P0 and a normal n: the plane 
divides the space into two subspaces (one on the side pointed by
the normal, (P-P0)n>0, and the other in the side pointed by –n, (P-
P0)n<0.

0=⋅− nPP )( 0



7

Math 1 Hofstra University 37

3D Primitives

Curves Surfaces Volume Objects
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3D Primitives

Objects With Good Characteristics
Described by their surfaces; thought to be hollow
Specified through a set of vertices in 3D
Composed of, or approximated by, flat convex 
polygons
For a polygon, when you walk along the edges in 
order in which the vertices are specified, the right 
hand rule gives to outward normal.
Be careful about the order of the vertices when you Be careful about the order of the vertices when you 
specify polygons. (in order, counter clockwise when specify polygons. (in order, counter clockwise when 
looking from the outside towards the object).looking from the outside towards the object).
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Viewing

Viewing volume – the volume that is seen by the 
synthetic camera. Only object inside that volume could 
possibly be seen in the image.
glOrtho() specifies rectangular volume aligned with the 
axes of the camera. The volume is enclosed  by  
front,back, and side clipping planes.
OpenGL uses a default viewing vollume 2x2x2 cube 
(otherwise, viewing volume can be set by glOrtho())
Viewing rectangle/window – the area of the image 
plane that is seen. 
For gluOrtho2D(), the viewing rectangle is at z=0
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Displaying 3D Objects 

Hidden surface removal
Painter’s algorithm
Z-buffer algorithm

Z- buffer (depth buffer), to use in OpenGL
must add to display mode
must enable
must clear before drawing
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Displaying 3D Objects In OpenGL
•In main():

glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH); 

•In init():
glEnable(GL_DEPTH_TEST);

•In display():
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

•Projection: only objects inside the viewing volume will be projected
glOrtho(GLfloat xmin, GLfloat xmax,

GLfloat ymin, GLfloat ymax,

Glfloat zmin, Glfloat zmax);

Vertices of object  are in viewing coordinates, (x,y,z), s.t.

xmin<=x<= xmax,  ymin<=y<=ymax,  minz<=z<=zmax

will be projected, the rest are clipped out
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Initial Camera Position

• Objects are modeled 
independently from the 
location of the camera

• OpenGL places a camera at 
the origin of the world frame 
pointing in the negative z 
direction

• If model view matrix is an 
identity matrix, then the 
camera frame and world 
frame are identical
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Default Position

Object and Viewpoint at the Origin
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Movement of the Frames

pp =′

pp C=′

glMatrixMode(GL_MODELVIEW);

glLoadIdentity( );

glTranslatef( 0.0, 0.0,-d);
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Two Points of View

Hold camera frame fixed, move objects in 
front of the camera: glTranslate, glRotate
Model objects stationary and move the camera 
away from the objects, gluLookAt
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Affine Spaces (cont): Frames

Frame: a basis at fixed origin
Select a point  O (origin) and a basis (coordianate
vectors) 

Any vector u can be represented as uniquely as a linear 
combination of the basis vectors

Any point P can be represented uniquely as

Thus, we have affine coordinates for points and for 
vectors
Given a frame, points and vectors can be represented 
uniquely by their affine coordinates

},...,{ 1 nuuB =

nnuuuu ααα +++= ...2211

nnuuuOP βββ ++++= ...2211
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Affine Spaces: Frames (cont)

If we change frames the coordinates change.
The change of basis in a vector space is a linear 
transformation (represented as matrix multiplication) 
The change of frame in an affine space is NOT linear
transformation
We extend the affine coordinates, by adding one more 
dimension. The new coordinates are called 
homogeneous coordinates. 
The change of frame in homogeneous coordinates is a 
linear transformation (i.e represented as matrix 
multiplication)
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Affine coordinates in 3D

Given a frame (P0, v1, v2, v3),  
a vector w and a point P can be represented uniquely by:

The affine coordinate (representations)
of the vector and point are
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Homogeneous Coordinates

Use four dimensional column matrices to 
represent both points and vectors in 
homogeneous coordinates
The first three components are the affine 
coordinates
To maintain a distinction between points and 
vectors we use the fourth component: for a 
vector it is 0 and for a point it is 1 
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From affine to Homogeneous Coordinates
Affine coordinate equations and representations:

We  agree that 

The homogeneous- coordinate equations and 
representations:

homogeneous-coordinate representation of the point and the vector
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Homogeneous Coordinates

We carry out operations on points and vectors using 
their homogeneous-coordinate representation and 
ordinary matrix algebra
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We can write the coordinate equations in matrix form.
For example,

→+++= 0332211 .1 PvvvP ααα
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Homogeneous Coordinates Change of Frame
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Change of frames is a linear transformation in homogeneous
coordinates. All affine transformations can be represented as
matrix multiplications in homogeneous coordinates.

two frames change of frames
matrix representation

aMb T 1)( −=
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Frames In OpenGL
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Initial Camera Position

• Objects are modeled 
independently from the 
location of the camera

• OpenGL places a camera at 
the origin of the world frame 
pointing in the negative z 
direction

• If model view matrix is an 
identity matrix, then the 
camera frame and world 
frame are identical
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Movement of the Frames

pp =′

pp C=′

glMatrixMode(GL_MODELVIEW);

glLoadIdentity( );

glTranslatef( 0.0, 0.0,-d);
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Frames In OpenGL
We use two frames: the camera frame and the 
world frame
We regard the camera frame as fixed
The model- view matrix positions the world 
frame relative  to the camera frame
Model- view matrix that translates along z, to 
separate the two frames, so object could be in 
camera’s field of view:
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⎥
⎥
⎥
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⎡
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Frames In OpenGL


