Math Foundations of CG
Man1 1

Linear Vector Spaces (defined over scalars)

- S is a set of scalars (like the real numbers)
- The set V of objects called vectors,$\{u, v, w, \ldots\}$ is a (linear) vector space defined over S if there are two operations
- Vector-vector addition, $u+v, \quad+: V \times V \rightarrow V$
- Scalar-vector multiplication, $\alpha u, \quad f: S \times V \rightarrow V$ satisfying the following
- Axioms
- Unique additive unit, the zero vector, $\mathbf{0}$

$$
u+\mathbf{0}=\mathbf{0}+u=u
$$

- Every vector u has additive inverse $-u$

$$
u+(-u)=(-u)+u=\mathbf{0}
$$

Vector Spaces (cont.)

- Axioms (cont.)
- Vector-vector addition is commutative and associative
- Scalar-vector multiplication is distributive
$\alpha(u+v)=\alpha u+\alpha v$
$(\alpha+\beta) u=\alpha u+\beta u$
- Examples
- Geometric vectors over \mathbf{R}, i.e., directed line segments in 3D

Math 1
Hofstra University
Math 1

Vector Spaces (cont.)

- Examples
- n-tuples of real numbers (we will use triples usually)
- A vector is identified with an n-tuple
$\vec{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$
$\vec{u}+\vec{v}=\left(u_{1}+v_{1}, u_{2}+v_{2}, \ldots, u_{n}+v_{n}\right)$
$\alpha \vec{u}=\left(\alpha u_{1}, \alpha u_{2}, \ldots, \alpha u_{n}\right)$

Vector Spaces (cont.)

- V is a linear vector space over a field S
- $u_{1}, \ldots, u_{k}, u \in V$,
wis a linear combination of u_{1}, \ldots, u_{k}, if
$\exists \alpha_{1}, \alpha_{2}, \ldots, \alpha_{k} \in S$, s.t.
$u=\alpha_{1} u_{1}+\alpha_{2} u_{2}+\ldots+\alpha_{k} u_{k}$
- The non-zero vectors u_{1}, \ldots, u_{k} are linearly independent, if
$\forall \alpha_{1}, \alpha_{2}, \ldots, \alpha_{k} \in S$, s.t.
$\alpha_{1} u_{1}+\alpha_{2} u_{2}+\ldots+\alpha_{k} u_{k}=\mathbf{0} \Rightarrow \alpha_{1}=\alpha_{2}=\ldots=\alpha_{k}=0$

Math 1
Hofstra University

Vector Spaces (cont.)

- V is a n dmensional vector space over a field S, and $B=\left\{u_{1}, \ldots, u_{n}\right\}$ is a basis:
- Every vector u is represented uniquely as a linear combination of the basis, i.e., there exist unique scalars $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in S$, s.t.
$u=\alpha_{1} u_{1}+\alpha_{2} u_{2}+\ldots+\alpha_{n} u_{n}$
- $\left\{\alpha_{i}\right\}_{i=1}^{n}$ representation (coordinates) of u in the basis

Vector Spaces: Changes of Basis

- How do we represent a vector if we change the basis?
- Suppose the $\{v 1, \mathrm{v} 2, \mathrm{v} 3\}$ and $\{\mathrm{u} 1, \mathrm{u} 2, \mathrm{u} 3\}$ are two bases.
- Basis vector in second set can be represented in terms of the first basis
- Given the representation of a vector in one basis, we can change to a representation of the same vector in the other basis by a linear transformation (i.e., matrix multiplication)

Vector Spaces (cont.)

- V is a linear vector space over a field S
- The vectors u_{1}, \ldots, u_{k} are linearly dependent, if one of them can be expressed as a non-trivial linear combination of the rest. (non-trivial means that not all coefficients are 0)
- Any set of vectors that includes the zero vector is linearly dependent.
- Basis: a maximal linear independent set of vectors, i.e., if one more vector is added to the set it becomes linearly dependent.
- Dimension: number of vectors in the basis

We are concerned with 3D vector space
Represent w as linear
combination of three linearly
independent vectors, v_{1}, v_{2}, v_{3}

components

Math

Vector Spaces: Change of Basis

- Two basises: \mathbf{u} and \mathbf{v}

$$
\begin{aligned}
& {\left[\mathbf{v}_{1}\right] \quad\left[\mathbf{u}_{1}\right] \quad \mathbf{u}_{1}=\gamma_{11} \mathbf{v}_{1}+\gamma_{12} \mathbf{v}_{2}+\gamma_{13} \mathbf{v}_{3}} \\
& \mathbf{v}=\left[\begin{array}{c}
\mathbf{v}_{1} \\
\mathbf{v}_{2} \\
\mathbf{v}_{3}
\end{array}\right] \quad \mathbf{u}=\left[\begin{array}{l}
\mathbf{u}_{1} \\
\mathbf{u}_{2} \\
\mathbf{u}_{3}
\end{array}\right] \quad \begin{array}{l}
\mathbf{u}_{2}=\gamma_{21} \mathbf{v}_{1}+\gamma_{22} \mathbf{v}_{2}+\gamma_{23} \mathbf{v}_{3}
\end{array} \\
& \mathbf{u}_{3}=\gamma_{31} \mathbf{v}_{1}+\gamma_{32} \mathbf{v}_{2}+\gamma_{33} \mathbf{v}_{3} \\
& M=\left[\begin{array}{lll}
\gamma_{11} & \gamma_{12} & \gamma_{13} \\
\gamma_{21} & \gamma_{22} & \gamma_{23} \\
\gamma_{31} & \gamma_{32} & \gamma_{33}
\end{array}\right] \quad \begin{array}{l}
\mathbf{u}=\mathbf{M} \\
\end{array}
\end{aligned}
$$

Change of basis is a linear operation.

Math 1
Hofstra University 11

Math 1
Hofstra University

Vector Spaces: Change of Basis

Notation: for a matrix, $a^{\prime \prime}$ denotes the transpose.
Let in basis \mathbf{v} the vector \mathbf{w} is represented by a component column matrix \mathbf{a}, and in \mathbf{u}, by a component matrix \mathbf{b}

$$
\begin{array}{rlr}
\mathbf{a}=\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3}
\end{array}\right] \quad \mathbf{v}=\left[\begin{array}{l}
\mathbf{v}_{1} \\
\mathbf{v}_{2} \\
\mathbf{v}_{3}
\end{array}\right] & \mathbf{b}=\left[\begin{array}{l}
\beta_{1} \\
\beta_{2} \\
\beta_{3}
\end{array}\right] \quad \mathbf{u}=\left[\begin{array}{l}
\mathbf{u}_{1} \\
\mathbf{u}_{2} \\
\mathbf{u}_{3}
\end{array}\right] \quad \begin{array}{l}
\mathbf{w}=\mathbf{a}^{\prime} \mathbf{v} \\
\mathbf{w}=\mathbf{b}^{\prime} \mathbf{u}
\end{array} \\
& \mathbf{u}=\mathbf{M v} & \mathbf{v}=\mathbf{M}^{-1} \mathbf{u}
\end{array}
$$

What is the relation between the two representations \mathbf{a} and \mathbf{b} ?

$$
\mathbf{b}=\mathbf{M}^{\prime-1} \mathbf{a}
$$

Math 1
Hofstra University

Vector Spaces: Change of Basis Example
Given a basis \mathbf{v}, we want to change to a new basis \mathbf{u}

Let \mathbf{w} has representation \mathbf{a} in the old basis, \mathbf{v},
in old $\mathbf{a}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$
Then the representation \mathbf{b} of \mathbf{w} in the new basis \mathbf{u} is $\mathbf{b}=\mathbf{M}^{\prime-1} \mathbf{a}$
in new $\mathbf{b}\left(\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right]\right)^{\prime}\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]=\left[\begin{array}{ccc}1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]=\left[\begin{array}{c}-1 \\ -1 \\ 3\end{array}\right]$

Euclidean Space

- We add the notion of a distance and angle to a vector space by means of inner (dot) product.
- E is an Euclidean space, if it is vector space with dot (scalar,inner) product, $u \cdot v, \quad: E \times E \rightarrow \mathbf{R}$ i.e., for vectors u and $u \cdot v$ is a real number, such that
- Axioms
$u \cdot v=v \cdot u$
$(\alpha u+\beta v) \cdot w=\alpha(u \cdot w)+\beta(v \cdot w)$
$u \cdot u>0, \quad u \neq 0$

$$
\mathbf{0} \cdot \mathbf{0}=0
$$

Math 1
Hofstra University

Euclidean Space (cont.)

- The length of a vector

$$
|u|=\sqrt{u \cdot u}
$$

- The norm of a vector

$$
\|u\|=|u|^{2}=u \cdot u
$$

- Two non zero vectors u and v are orthogonal if $u \cdot v=0$
- The angle between two vectors is given by

$$
\cos \theta=\frac{u \cdot v}{\mu|V|}
$$

- Unit vector: a vector of length 1
- Normalizing a vector: $\frac{u}{|u|}$

Math 1
Hofstra University

Euclidean Space (cont.)

- Orthonormal basis: a basis consisting of unit vectors which are mutually orthogonal
- Projections:

$$
|u| \cos \theta=u \cdot v /|v| \text { is the length of }
$$ orthogonal projection of u onto v

- If v is unit vector, the length of the projection of u on v is $u . v$

Math 1
Hofstra University

3D Euclidean Space

- Cross Product of two vectors u and v is a vector $n=u \times v, \times: V \times V \rightarrow V$
- n is orthogonal to v and u,
- the triple (u, v, n) is right-handed,
- The length $|u \times v|=|u \| v| \sin (\theta)$

Math 1

Hofstra University

Euclidean Spaces (cont)

- Example: $\mathbf{R}^{3} \quad \mathbf{a , b} \in \mathbf{R}^{\mathbf{3}}$
$\quad\{i, j, k\}$ orthonormal basis, and $\quad \mathbf{a}=\left[\begin{array}{l}\alpha_{1} \\ \alpha_{2} \\ \alpha_{3}\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{l}\beta_{1} \\ \beta_{2} \\ \beta_{3}\end{array}\right]$ $\mathbf{a} \cdot \mathbf{b}=\mathbf{a}^{\prime} \mathbf{b}=\left[\begin{array}{lll}\alpha_{1} & \alpha_{2} & \alpha_{3}\end{array}\right]\left[\begin{array}{l}\beta_{1} \\ \beta_{2} \\ \beta_{3}\end{array}\right]=\alpha_{1} \beta_{1}+\alpha_{2} \beta_{2}+\alpha_{3} \beta_{3}$
- Cross product:
$\mathbf{a} \times \mathbf{b}=\left[\begin{array}{c}\alpha_{2} \beta_{3}-\alpha_{3} \beta_{2} \\ \alpha_{3} \beta_{1}-\alpha_{1} \beta_{3} \\ \alpha_{1} \beta_{2}-\alpha_{2} \beta_{1}\end{array}\right]=\left|\begin{array}{ccc}i & j & k \\ \alpha_{1} & \alpha_{2} & \alpha_{3} \\ \beta_{1} & \beta_{2} & \beta_{3}\end{array}\right|$
Math 1
Hofstra University
20

Euclidean Space (cont.)

- We can construct orthonormal basis in 3D by using the dot and cross products
- Given vector u,
- Set $\quad e_{1}=\frac{u}{|u|}$
- Calculate $\quad e_{2} \quad$ s.t. $\quad e_{1} \cdot e_{2}=0,\left|e_{2}\right|=1$
- Calculate $e_{3}=e_{1} \times e_{2}$
- The basis $\left(e_{1}, e_{2}, e_{3}\right)$ is orthonormal

Affine Spaces (cont)

- Operations relating points and vectors
- Subtraction of two points yields a vector: $v=P-Q$
- Point-vector addition yields a point: $P=Q+v$
- All the operations:
- point-point subtraction,
- point-vector addition,
- vector-vector addition,

- scalar-vector multiplication

Affine Spaces (cont)

- Axioms:

1. Two points define unique vector, $P-Q=v$
2. Point and vector define unique point, $Q+v=P$
3. $\quad Q-P=-(P-Q)$
4. head-to-tail axiom: given points P, R, for any other point Q,

$$
P-R=(Q-R)+(P-Q)
$$

5. If O is an arbitrary point,

$$
\forall u \in A, \quad \exists!P \in A: \quad P-O=u
$$

Line: parametric equation

- A line, defied by a point P_{0} and a vector d consists of all points P obtained by

$$
P(\alpha)=P_{0}+\alpha d
$$

where α varies over all scalars.

- $P(\alpha)$ is a point for any value of α
- For non regative values, we get a ray emanating from P_{0} in the direction of d

Math 1

Plane: parametric equation

- A plane defined by a point P_{0} and two non collinear vectors (non parallel, i.e.,linearly independent) u and v, consists of all points $T(\alpha, \beta)$:

$$
T(\alpha, \beta)=P_{0}+\alpha u+\beta v
$$

Affine Combinations of Two Points

- Given two points Q and R , and two scalars α_{1}, α_{2} where $\quad \alpha_{1}+\alpha_{2}=1$
the affine combination of Q and R with coefficients α_{1}, α_{2} is a point P denoted by

$$
P=\alpha_{1} Q+\alpha_{2} R
$$

and defined as follows
$\alpha_{1}+\alpha_{2}=1 \Rightarrow \alpha_{1}=1-\alpha_{2}$
$P=\alpha_{1} Q+\alpha_{2} R=Q+\alpha_{2}(R-Q)$

- All affine combinations of two points generate the line through that points.

Math 1
Hofstra University

Affine Combinations of n Points

- Given an affine space A, a point P is an affine combination of $P_{1}, P_{2}, \ldots, P_{n}$, iff, there exist scalars

$$
\begin{aligned}
& \exists \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}, \sum_{i=1}^{n} \alpha_{i}=1 \quad \text { such that } \\
& P=P_{1}+\alpha_{2}\left(P_{2}-P_{1}\right)+\cdots+\alpha_{n}\left(P_{n}-P_{1}\right)
\end{aligned}
$$

- The affine combination is denoted by

$$
P=\alpha_{1} P_{1}+\alpha_{2} P_{2}+\ldots+\alpha_{n} P_{n}
$$

- If the vectors $P_{i}-P_{1}, i=1, \ldots, n$, are coplanar, what is the set of all affine combinations of the n points?

All affine combinations of three non collinear points generate the plane through that points.

Math 1
Hofstra University

Hofstra University

Convexity

- Convex set- a set in which a line segment connecting any two pints of the set is entirely in the set.
- For $0 \leq \alpha \leq 1$ the affine combinations of points Q and R is the line segment connecting Q and R

$$
P(\alpha)=(1-\alpha) Q+\alpha R
$$

- This line segment is convex
- The midpoint, $\alpha=0.5$
- Give the affine combination representing a point dividing the line Segment in ratio m:n, starting from Q

Math 1
Hofstra University
$M=Q+(M-Q)$
$M-Q=\frac{m}{m+n}(R-Q)$
now substitute (2) in (1):
$M=Q+\frac{m}{m+n}(R-Q)$
$M=\left(1-\frac{m}{m+n}\right) Q+\frac{m}{m+n} R$

$M=\frac{n}{m+n} Q+\frac{m}{m+n} R$
Math 1
Hofstra University

Convex (affine) combinations

- Convex combinations: affine combinations with positive coefficients,
$P=\alpha_{1} P_{1}+\alpha_{2} P_{2}+\ldots+\alpha_{n} P_{n}$
- $\alpha_{1}+\alpha_{2}+\ldots+\alpha_{n}=1$
- $\alpha_{i} \geq 0, i=1,2, \ldots, n$
- Convex hull of a set of points is the set of all convex combination of this points.
- In particular, for any two points of the set the line segment connecting the points is in the convex hull, thus the convex hull is a convex set.
- In fact, the convex hull it is the smallest convex set that contains the original points.

Math 1
Hofstra University
33

Geometric ADTs: Convexity

- The convex hull could be thought of as the set of points that we form by stretching a tight fitting surface over the given set of points - shrink wrapping the points (all points inside and on the surface)
- It is the smallest convex object that includes the set of points

Math 1

A normal to a plane

- Normal n to a plane : unit vector orthogonal to the plane
- If we are given the parametric equation of the plane

$$
\begin{aligned}
& T(\alpha, \beta)=P_{0}+\alpha u+\beta v, \\
& n=u \times v /|u \times v|
\end{aligned}
$$

- Given a polygon, write the outward/front normal
- Given a point P_{0} and a vector n, there is unique plane that goes through P_{0} and has normal n : it consists of all points P satisfying the normal equation of the plane

$$
\left(P-P_{0}\right) \cdot n=\mathbf{0}
$$

- Given a plane, defined by point P_{0} and a normal n : the plane divides the space into two subspaces (one on the side pointed by the normal, (P-P0) $\mathrm{n}>0$, and the other in the side pointed by -n , $(\mathrm{P}-$ P0) $\mathrm{n}<0$.

Math 1
Hofstra University

3D Primitives

Objects With Good Characteristics

- Described by their surfaces; thought to be hollow
- Specified through a set of vertices in 3D
- Composed of, or approximated by, flat convex polygons
- For a polygon, when you walk along the edges in order in which the vertices are specified, the right hand rule gives to outward normal.
- Be careful about the order of the vertices when you specify polygons. (in order, counter clockwise when looking from the outside towards the object).

Viewing

- Viewing volume - the volume that is seen by the synthetic camera. Only object inside that volume could possibly be seen in the image.
glOrtho() specifies rectangular volume aligned with the axes of the camera. The volume is enclosed by front,back, and side clipping planes.
- OpenGL uses a default viewing vollume $2 \times 2 \times 2$ cube (otherwise, viewing volume can be set by glOrtho())
- Viewing rectangle/window - the area of the image plane that is seen.
- For gluOrtho2D(), the viewing rectangle is at $z=0$

Math 1
Hofstra University

Displaying 3D Objects In OpenGL

-In main():
glut|nitdisplay Mode (GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH); In init():
glenable(GL_DEPTH_TEST);
-In display():
glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
-Projection: only objects inside the viewing volume will be projected glortholglfloat xmin, GLfloat x max

GLfloat ymin, GLfloat ymax,
Glfloat z min, Glfloat $z \max$);
Vertices of object are in viewing coordinates, (x, y, z), s.t.
x mi $\mathrm{n}<=\mathrm{x}<=\mathrm{x}$ max, y min $\mathrm{n}<=\mathrm{y}<=\mathrm{y}$ max, $\min \mathrm{n}<=z<=z \max$
will be projected, the rest are clipped out

Math 1
Hofstra University 41

Displaying 3D Objects

- Hidden surface removal
- Painter's algorithm
- Z-buffer algorithm
- Z buffer (depth buffer), to use in OpenGL
- must add to display mode
- must enable
- must clear before drawing

Math 1
Hofstra University

Two Points of View

- Hold camera frame fixed, move objects in front of the camera: glTranslate, glRotate
- Model objects stationary and move the camera away from the objects, gluLookAt

Affine Spaces (cont): Frames

- Frame: a basis at fixed origin
- Select a point O (origin) and a basis (coordianate vectors) $B=\left\{u_{1}, \ldots, u_{n}\right\}$
- Any vector u can be represented as uniquely as a linear combination of the basis vectors

$$
u=\alpha_{1} u_{1}+\alpha_{2} u_{2}+\ldots+\alpha_{n} u_{n}
$$

- Any point P can be represented uniquely as $P=O+\beta_{1} u_{1}+\beta_{2} u_{2}+\ldots+\beta_{n} u_{n}$
- Thus, we have affine coordinates for points and for vectors
- Given a frame, points and vectors can be represented uniquely by their affine coordinates

Math 1
Hofstra University

Affine coordinates in 3D

Given a frame $\left(P_{0}, v_{1}, v_{2}, v_{3}\right)$,
a vector w and a point P can be represented uniquely by:

$$
\begin{aligned}
& P=P_{0}+\alpha_{1} v_{1}+\alpha_{2} v_{2}+\alpha_{3} v_{3} \\
& w=\eta_{1} v_{1}+\eta_{2} v_{2}+\eta_{3} v_{3}
\end{aligned}
$$

The affine coordinate (representations)
of the vector and point are

$$
P_{0} \rightarrow\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3}
\end{array}\right] w \rightarrow\left[\begin{array}{l}
\eta_{1} \\
\eta_{2} \\
\eta_{3}
\end{array}\right]
$$

Math 1
Hofstra University

Homogeneous Coordinates

- Use four dimensional column matrices to represent both points and vectors in homogeneous coordinates
- The first three components are the affine coordinates
- To maintain a distinction between points and vectors we use the fourth component: for a vector it is 0 and for a point it is 1
- Affine coordinate equations and representations: $w=\eta_{1} v_{1}+\eta_{2} v_{2}+\eta_{3} v_{3}$
$P=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\alpha_{3} v_{3}+P_{0}$
- We agree that

$$
\text { 1. } P_{0}=P_{0} \quad \text { affine-coordinate representations }
$$

$$
0 . P_{0}=\mathbf{0} \text {, zero vector }
$$

- The homogeneous cordinate equations and representations:
$w=\eta_{1} v_{1}+\eta_{2} v_{2}+\eta_{3} v_{3}+0 . P_{0}$
$P=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\alpha_{3} v_{3}+1 . P_{0}$
$P \rightarrow\left[\begin{array}{c}\alpha_{1} \\ \alpha_{2} \\ \alpha_{3} \\ 1\end{array}\right] w \rightarrow\left[\begin{array}{c}\eta_{1} \\ \eta_{2} \\ \eta_{3} \\ 0\end{array}\right]$

Frames In OpenGL

- We use two frames: the camera frame and the world frame
- We regard the camera frame as fixed
- The modet vew matrix positions the world frame relative to the camera frame
- Modeł view matrix that translates along z, to separate the two frames, so object could be in camera's field of view:

