
n Lighting and shading 1 n

n CS 453A n COMPUTER GRAPHICS n SPRING 1999 n
1

Introduction

This lecture and the next we discuss illumination and
shading models.

Illumination models express how light affects a surface’s
color at a given point.
Shading models use illumination models to determine the
color across a surface.

• Apply the illumination model at some points.
• Interpolate the illumination at other points.

This process is sometimes called “lighting the object”.
The models are only loosely physical, and emphasize:

• empirical success
• efficiency

For example, these models focus on direct illumination.
Later lectures will cover:

• indirect illumination
• shadows

n Lighting and shading 1 n

n CS 453A n COMPUTER GRAPHICS n SPRING 1999 n
2

Outline

1. Light sources
2. Basic Illumination Models account for
• The light source

- ambient light
- point light source
- distributed light source
- spot lights

• The surface properties
- diffuse/rough/dull (difuse reflection)
- specular/smooth/shiny (specular reflection, Phong)

• The geometry of souce/surface/viewer, distances.
• For more realistic appearence, the reflection from a

surface is attenuated sum of ambient, diffuse and
specular component s (in all primaries, and also over
all ligh sources)

3. Lighting and shading in OpenGL .
Light sources can be turned on/off:

 glEnable(GL_LIGHTING);
 glEnable(GL_LIGHT0);

 OpenGL supports multiple lights, but performance suf-
fers. Lighting model adds independent components
(emmisive, ambient, diffuse, specular color “light” , also
similar component description of “materials reflectance”).

4. Read: HB 14.1-14.2, WND Ch 5

n Lighting and shading 1 n

n CS 453A n COMPUTER GRAPHICS n SPRING 1999 n
3

Illumination models

Illumination, I, at a point is modeled as the sum of several
terms.

• More terms give more plausible results.
• Fewer terms give more efficient computations.

Each aditive term of I is expressed in primary colors, ,
 and , with each such computed independently.
• Components used to express how much light a source

emits and a surface reflects.

Each is the sum of a terms, one fore each light source,
computed independently.

• Overflow is possible
• There are various solutions for dealing with it.

- One solution is to clamp to max allowable
- Normalize individulal terms

IR

IG IB Iλ

Iλ

Iλ

n Lighting and shading 1 n

n CS 453A n COMPUTER GRAPHICS n SPRING 1999 n
4

Ambient light

An ambient term approximates uniform, indirect illumina-
tion present everywhere.

The ambient light intensity is for primary color .

How an object reflects ambient light depends on its mate-
rial properties.

• The overall fraction reflected is .

• The fraction of primary reflected is .
• The overall fraction of primary reflected is thus

.
• This specification allows independent control of the

overall intensity of reflection and of its color.
The illumination model at an object point is thus so far:

A resulting image:

Iaλ λ

ka

λ Odλ

λ
kaOdλ

Iλ IaλkaOdλ=

n Lighting and shading 1 n

n CS 453A n COMPUTER GRAPHICS n SPRING 1999 n
5

Ambient light in OpenGL

Enable a global ambient light:
 float globalAmbient[] = {r,g,b,1};
 glLightModelfv(GL_LIGHT_MODEL_AMBIENT,

 globalAmbient);

OpenGL allows an ambient term in individual lights (e.g.,
GL_LIGHT0).

•What does this mean?
Specify ambient material property:
 float ambient[] = {r,g,b,1};
 glMaterialfv(GL_FRONT_AND_BACK,

 GL_AMBIENT, ambient);

•Note that and are combined.
•Note different meaning of {r,g,b,1}

Nonambient light

Most light sources do not illuminate all surfaces uni-
formly.
Point light sources:

•radiate evenly in all directions from a position
•provide different illumination on surfaces with differ-

ent orientations.
•when point light source is far, the light rays are well

approximated by parallel rays

ka Odλ

n Lighting and shading 1 n

n CS 453A n COMPUTER GRAPHICS n SPRING 1999 n
6

Diffuse reflection

Consider a dull, matte surface (e.g., chalk), it scaters light.
•When its orientation is fixed relative to a light, its illu-

mination looks the same from all viewing angles.
•When its orientation changes relative to a light, its

illumination changes.
- It is brightest when the light shines directly on it.
- It is dimmer when it makes an angle to the light.

This reflection isdiffuse (Lambertian) reflection: what we
see is accordinc to Lembert’s law is the vertical compo-
nent of the incoming light:

This vertical component at p is or ,

where:
•The unit surface normal at a point, p, is N.
•L is a unit vector pointing to the light source
• is the angle between N and L.

The reflected light is 0 for .
Intuition: consider a far point source shining on a plane.
As the source is lowered the same amount of light is
spread over larger area (vertical component decreases,
surface appears dimmer)

Ipλ θ()cos Ipλ N L•()

θ

θ 90°>

n Lighting and shading 1 n

n CS 453A n COMPUTER GRAPHICS n SPRING 1999 n
7

The diffusely reflected light depends on the surface’s
material properties.

•The overall fraction reflected is .

•The fraction of primary reflected is .

Given point light source, the diffuse intensity at it is:

The illumination model at a point is thus so far:

The dot product calculated at every point. Evaluation is
more efficient assumingdirectional point light sources.

•The light’s position is infinitely far away.
•All rays are parallel by the time they reach the scene.
•L is a constant throughout the scene.

A resulting image:

kd

λ Odλ

IpλkdOdλ N L•()

Iλ IaλkaOdλ IpλkdOdλ N L•()+=

n Lighting and shading 1 n

n CS 453A n COMPUTER GRAPHICS n SPRING 1999 n
8

Diffuse reflection in OpenGL

Specify the light that can be diffusely reflected (properties
and their values), defines the “color of the light”:
 float diffuse0[] = {r,g,b,1};
 glLightfv(GL_LIGHT0, GL_DIFFUSE,

 diffuse0);

Specify the light’s direction (from the origin to infinity):
 float direction0[] = {dx,dy,dz,0};
 glLightfv(GL_LIGHT0, GL_POSITION,

 direction0);
•The parameter being set is GL_POSITION
•The 0 in the last element of direction0 indicates

that this light is a directional light.
Specify diffuse material property:
 float diffuse[] = {r,g,b,1};
 glMaterialfv(GL_FRONT_AND_BACK,

 GL_DIFFUSE, diffuse);
• Must do at every frame, not just once in init. To

have lights stay fixed w.r.t. scene, do after camera
transformations, before object transformations.

•Note that and are combined. If , use
 float ambDiff[] = {r,g,b,1};
 glMaterialfv(GL_FRONT_AND_BACK,

 GL_AMBIENT_AND_DIFFUSE, ambDiff);

kd Odλ ka kd=

n Lighting and shading 1 n

n CS 453A n COMPUTER GRAPHICS n SPRING 1999 n
9

Specular reflection

Consider a glossy, shiny surface (e.g., plastic, metal).
•The surface reflects a bright highlight.
•The highlight changes with viewing angle.

This reflection isspecular reflection.
More precisely:

•N is the unit normal at point p.
•L is the unit vector pointing to the light source.
• is the angle between N and L.
•R is the vector of mirror reflection.

- R also makes angle with N.
- R is on the “other side” ofL.

•V is a unit vector pointing to the camera.
• is the angle between R and V.

•The highlight’s visible intensity depends on .
- The highlight is most intense when .
- The highlight becomes dimmer as grows.

θ

θ

α

α
α 0=

α

n Lighting and shading 1 n

n CS 453A n COMPUTER GRAPHICS n SPRING 1999 n
10

Specular reflection

1. Perfect specular reflection (mirror):
2. In 1975, Phong developed and approximation to the

dependency of specular reflection on .
•A light of intensity produces a highlight intensity

proportional to .

•The exponent, n is a material property.
Other material properties affect the intensity specularly
reflected.

•The overall fraction reflected is , often taken to
be the constant .

•The fraction of primary reflected is .

The specular intensity is thus:

α
Ipλ

Ipλ α()cos() n

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4
angle between R and V (radians)

cos(a)**2
cos(a)**4
cos(a)**8

W θ()
ks

λ Osλ

IpλksOsλ α()cos() n

n Lighting and shading 1 n

n CS 453A n COMPUTER GRAPHICS n SPRING 1999 n
11

Specular reflection

An equivalent expression for specular reflection is:

Deriving R:

•Use the halfway vector, H =(L+V)/|L+V|, to approxi-
mate R.V by N.H.

IpλksOsλ R V•() n

n Lighting and shading 1 n

n CS 453A n COMPUTER GRAPHICS n SPRING 1999 n
12

Specular reflection

The illumination model at a point is thus so far:

Some resulting images:

Iλ IaλkaOdλ IpλkdOdλ N L•() IpλksOsλ R V•() n+ +=

n 0= n 10= n 100=

n Lighting and shading 1 n

n CS 453A n COMPUTER GRAPHICS n SPRING 1999 n
13

Specular reflection in OpenGL

Specify the light that can be specularly reflected:
 float specular0[] = {r,g,b,1};
 glLightfv(GL_LIGHT0, GL_SPECULAR,

 specular0);

Specify specular material properties:
 glMaterialf(GL_FRONT_AND_BACK,

 GL_SHININESS, n);
 float specular[] = {r,g,b,1};
 glMaterialfv(GL_FRONT_AND_BACK,

 GL_SPECULAR, specular);

•Note that and are combined.

Other terms in illumination models

Light can attenuate with distance from the source.
Fog can affect the reflection visible at the camera.
Spotlights can produce light limited to a cone around L.

ks Osλ

n Lighting and shading 1 n

n CS 453A n COMPUTER GRAPHICS n SPRING 1999 n
14

Shading models

Ideally, the renderer should apply the illumination model
at every visible point on each surface.
This approach requires too much computation.
As an alternative, use sampling.

•Apply the illumination model at a subset of points.
•Interpolate the intensity of the other points.

n Lighting and shading 1 n

n CS 453A n COMPUTER GRAPHICS n SPRING 1999 n
15

Flat (constant) shading

Sample illumination at one point per polygon.
Use constant interpolation: all other points on the polygon
get that point’s intensity.
This approach would be valid if:

•The true surface really is faceted, so N is constant.
•The light source is at infinity, so L is constant.
•The viewer is at infinity, so V is constant.

A resulting image:

Flat shading in OpenGL

Just enable it:
 glShadeModel(GL_FLAT);

n Lighting and shading 1 n

n CS 453A n COMPUTER GRAPHICS n SPRING 1999 n
16

Mach banding

Flat shading of more facets does not necessarily look
smoother.
Imaginary dark and light lines appear at facet boundaries.

These lines appear at any discontinuity or drastic change
in the rate of shading.
These lines are perceptual artifacts called Mach bands.
Mach bands are caused by the eye’s lateral inhibition.

•When one receptor responds to a high intensity, it
inhibits its neighboring receptors’ responses.

•Receptors on the bright side of a discontinuity receive
less inhibition from the dark side.

•Receptors on the dark side of a discontinuity receive
more inhibition from the light side.

n Lighting and shading 1 n

n CS 453A n COMPUTER GRAPHICS n SPRING 1999 n
17

Gouraud shading

Apply the illumination model at each polygonal vertex.
•N is the vertex normal.
•The calculation must use N in world coordinates.

Interpolate intensities as part of scan conversion.
•Interpolate span endpoints from edge vertices.
•Interpolate points within a span from span endpoints.
•Perform interpolation through incremental updates.

Gouraud shading reduces Mach bands (but not entirely).
•Vertices shared between polygons will have the same

vertex normal, and hence the same intensity.
Some resulting images:

Gouraud shading in OpenGL

Just enable it:
 glShadeModel(GL_SMOOTH);

Ia
I1

I2 I3

Ib

Ip

flat Gouraud

n Lighting and shading 1 n

n CS 453A n COMPUTER GRAPHICS n SPRING 1999 n
18

Phong shading

Apply the illumination model at each pixel.
Interpolate a pixel’s normal, N, as part of scan conversion.

•To get N at span endpoints, interpolate from edge ver-
tices’ normals.

•To get N within a span, interpolate from span end-
points.

•Perform interpolation through incremental updates.
•The vertex Ns must be in world coordinates so the

interpolated Ns will be, too, for the illumination cal-
culations.

This approach avoid some errors in specular illumination
that appear with Gouraud shading.

•Gouraud misses specular highlights within polygons.
•Gouraud spreads specular highlights along edges.

OpenGL does not support Phong shading.

[FvDFH Fig. 16.21, p. 739]

n Lighting and shading 1 n

n CS 453A n COMPUTER GRAPHICS n SPRING 1999 n
19

Problems common to Gouraud and Phong shading

Silhouette edges are not smoothed.

Interpolation ignores perspective distortion.
•Due to foreshortening, a change in scanlines does not

correspond to a constant change in z in OpenGL eye
coordinates.

•So the scanline halfway between two vertices does
not correspond to z halfway between the vertices’ zs.

•But pixels on that scanline get an interpolated quan-
tity (intensity or N) that does correspond to the half-
way z.

