
1

Interaction Hofstra University 1

Graphics Programming

Input and Interaction

Interaction Hofstra University 2

Interaction

n Early 60’s, Ivan Sutherland’s Project
Sketchpad

n Basic Paradigm: User see an image,
reacts with an interactive device, image
changes in response to input, . . .

Interaction Hofstra University 3

Interaction

n OpenGL does not support interaction
directly

n Increase portability – work in a variety
of environments

n Windowing and input functions left out
of API – emphasis on rendering

n Use toolkits, GLUT

Interaction Hofstra University 4

Physical Input Devices

n Pointing Device – indicates position on
screen

n Keyboard Device – return character
codes to a program

Interaction Hofstra University 5

Logical Input Devices

Major Characteristics:

n What measurements the device returns
to the program

n When the device returns those
measurements

Interaction Hofstra University 6

Application Input

n Measure - what the device returns to
the user program

n Trigger – signal send to the computer
n Three distinct modes defined by the

relationship between the measure
process and the trigger.

n Request Mode, Sample Mode, Event
Mode

2

Interaction Hofstra University 7

Request Mode

n The measure of the device is not returned
to the program until the device is triggered

Interaction Hofstra University 8

Sample Mode

n Measure is returned immediately after the function
is called in the user program.

n No trigger needed
n Need to identify which device provides input
n Useful in apps where the program guides the user

(e.g., simulators)

Interaction Hofstra University 9

Event Mode

n Can handle multiple inputs
n When device triggered an event is generated
n Identifier for device placed in the event queue
n Event queue process is independent of the

application, asynchronous
n A callback function with a specific type of event

Interaction Hofstra University 10

Clients and Servers

n The building blocks of a distributed world are
entities called servers that can perform tasks
for clients.

n Graphics server provides input and output of
graphical services

n OpenGL programs are clients of the graphics
server

n X-Window system was one of the most
successful

Interaction Hofstra University 11

Event-Driven Programming

n Callback functions determine how the
application program responds to events

n Examples, each of the events below needs a
callback function to handle it.
Pointing Device
Window Events
Keyboard Events
Display & Idle Callbacks
Window Management

Interaction Hofstra University 12

Pointing Device

n Almost always a mouse
n Move event – when mouse is moved with

button depressed;
n Passive Move Event – move without pressing

button
n Mouse Event – mouse button is depressed or

released

glutMouseFunc (mouse);

3

Interaction Hofstra University 13

Pointing Device – Mouse
Callback

void mouse(int btn, int state, int x, int y)

{

if(btn==GLUT_RIGHT_BUTTON && state==GLUT_DOWN)
exit(0);

}
Depressing the right
Button terminates the
program

Interaction Hofstra University 14

Pointing Device – Reshape Event
int main(int argc, char** argv)
{

glutInit(&argc,argv);
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutCreateWindow("square");
myinit ();
glutReshapeFunc (myReshape);
glutMouseFunc (mouse);
glutMotionFunc(drawSquare);
glutDisplayFunc(display);

glutMainLoop();

}

Called whenever the
window is resized

Interaction Hofstra University 15

Window Events
(Resizing – Dragging)

n Redraw all the objects?
n How do we handle aspect ratio?
n Change size of attributes and

primitives?

Interaction Hofstra University 16

Square Program
n This program illustrates the use of the glut library

for interfacing with a Window System

n The program opens a window, clears it to black,then
draws a box at the location of the mouse each time
the left button is clicked. The right button exits the
program

n The program also reacts correctly when the window
is moved or resized by clearing the new window to
black

Interaction Hofstra University 17

Global Variables

n Size of window
n Viewport position and size
n Size of clipping window

/* globals */

GLsizei wh = 500, ww = 500; /* initial window size */

GLfloat size = 3.0; /* half side length of square */

Interaction Hofstra University 18

Window Event - Reshape
void void myReshapemyReshape((GLsizeiGLsizei w,w, GLsizeiGLsizei h)h)

{{

/* adjust clipping box *//* adjust clipping box */

glMatrixModeglMatrixMode(GL_PROJECTION);(GL_PROJECTION);

glLoadIdentityglLoadIdentity();();

glOrthoglOrtho(0.0, (GLdouble)w, 0.0, (GLdouble)h, (0.0, (GLdouble)w, 0.0, (GLdouble)h, --1.0, 1.0);1.0, 1.0);

glMatrixModeglMatrixMode(GL_MODELVIEW);(GL_MODELVIEW);

glLoadIdentityglLoadIdentity(); ();

/* adjust/* adjust viewportviewport and clear */and clear */

glViewportglViewport(0,0,w,h);(0,0,w,h);

glClearColorglClearColor (0.0, 0.0, 0.0, 1.0);(0.0, 0.0, 0.0, 1.0);

glClear(GL_COLOR_BUFFER_BIT);glClear(GL_COLOR_BUFFER_BIT);

glFlush();glFlush();

/* set global size for use by drawing routine *//* set global size for use by drawing routine */

wwww = w;= w;

whwh = h; = h;

}}

reshaping routine called whenever
window is resized or moved

4

Interaction Hofstra University 19

Pointing Device – Motion Callback
void drawSquare(int x, int y)

{

y=wh-y;

glColor3ub((char) rand()%256, (char) rand()%256,

(char) rand()%256);

glBegin(GL_POLYGON);

glVertex2f(x+size, y+size);

glVertex2f(x-size, y+size);

glVertex2f(x-size, y-size);

glVertex2f(x+size, y-size);

glEnd();

glFlush();

}

Called by
glutMotionFunc(drawSquare);
if button held down

Origin is top left
of window system

Interaction Hofstra University 20

Keyboard Events

void keyboard(unsigned char key, int x, int y)
{

if (key=='q' || key=='Q') exit(0);
}

glutKeyboardFunc(keyboard);

Interaction Hofstra University 21

Window Management

id=glutCreateWindow(“second window”);

glutSetWindow(id);

Interaction Hofstra University 22

Menus

n Pop-up menus

n Common Steps:
n Define the entries
n Link the menu to a mouse button
n Define callback function

Interaction Hofstra University 23

Menus

glutCreateMenu(demo_menu);
glutAddMenuEntry(“quit”, 1);
glutAddMenuEntry(“increase square size”, 2);
glutAddMenuEntry(“decrease square size”, 3);
glutAttachMenu(GLUT_RIGHT_BUTTON);

identifier passed
to callback

Interaction Hofstra University 24

Menus

void demo_menu(int id)
{

if (id==1) exit (0);
else if (id==2) size = 2* size;
else if (size > 1) size = size/2;
glutPostRedisplay();

}
requests redraw through the
glutDisplayFunc (redrawn
w/o menu)

5

Interaction Hofstra University 25

Hierarchical Menus

Interaction Hofstra University 26

Hierarchical Menus

sub_menu = glutCreateMenu(size_menu);
glutAddMenuEntry(“increase square size”, 2);
glutAddMenuEntry(“decrease square size”, 3);
glutCreateMenu(top_menu);
glutAddMenuENtry(“quit”, 1);
glutAddSubMenu(“Resize”, sub_menu);
glutAttachMenu(GLUT_RIGHT_BUTTON);

Interaction Hofstra University 27

Picking
n Picking – identify an object on the

display
n Don’t return an x,y position
n NOT an easy process
n Two methods: selection and bounding

rectangles.

Interaction Hofstra University 28

Selection

Adjusting the clipping region and
viewport to keep track of which
primitives in a small clipping region are
rendered into a region near the cursor.
Primitives are entered into a hit list to
be examined by the user program later
on.

Interaction Hofstra University 29

Rotating Cube Program

n We want to create animation
n We continuously keep changing the

value of
θ

Interaction Hofstra University 30

Idle Function

void spinCube()
{
/* Idle cal lback, spin cube 2 degrees about selected axis */

theta[axis] += 2.0;
if(theta[axis] > 360.0) theta[axis] -= 360.0;
/* display(); */
glutPostRedisplay();

}

glutIdleFunc(spinCube);

The idle function works while we do nothing

We reexecute the display
through this function

6

Interaction Hofstra University 31

Double Buffering

n A complex display may not be drawn in
a single refresh cycle

n Double Buffering solves the problem

n Assume two frame buffers: front buffer
and back buffer

n Swap these from the appl icat ion
program invoking a display cal lback

Interaction Hofstra University 32

Double Buffering

void display(void)
{
/* display cal lback, clear frame buffer and z buffer, rotate cube
and draw, swap buffers */

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) ;
. . .

glRotatef(theta[2], 0.0, 0.0, 1.0);
colorcube();
glFlush();
glutSwapBuffers();

}

glut InitDisplayMode(GLUT_DOUBLE | GLUT_RGB |GLUT_DEPTH) ;

Updating back buffer and swapping

Interaction Hofstra University 33

Good Interact ive Programs

n Smooth display

n Interactive devices on display

n Variety of methods to input data

n Easy-to-use interface

n Feedback to user

n Tolerance

n Human considerat ion (HCI)

