
1

GK, OpenGL, lect 3 Computer Graphics 1

Computer Graphics

Gerda Kamberova

GK, OpenGL, lect 3 Computer Graphics 2

Outline
OpenGL

Overview
main loop, program structure
Interaction supported through GLUT
Setting up display window
2D viewing, setting up viewport

Program structure
Sierpinski algorithm for generating the gasket
Recursive algorithm for generating the gasket

OpenGL
Geometric primitives and attributes
Text

GLUT and GLU shapes

GK, OpenGL, lect 3 Computer Graphics 3

OpenGL

High performance, window independent graphics API
to graphics hardware
Designed by SGI, 1982
No commands for windowing tasks and user
interaction
Only low-level commands
A shape/object is modeled from geometric primitives
Objects are arranged in a 3D world
Objects are assigned various attributes
Renderer

GK, OpenGL, lect 3 Computer Graphics 4

OpenGL

Portable, device independent
Uses 2D and 3D coordinates (internally all 4D)
Graphics functions for specifying

Primitives and their attributes
Geometric/Modeling transformations
Viewing transformations
Input functions (usually developed in a separate
library) to support and process input to interactive
graphics
System, control functions

GK, OpenGL, lect 3 Computer Graphics 5

OpenGL Overview
C library of about 350 functions
All function names begin with gl
All constant names begin with GL_
World coordinate system: (x,y,z) is right-handed,
x-to-y (counter clockwise), z-towards viewer (direction
of thumb)
Graphics objects are sent to display in two modes

Immediate mode: send object for display as soon as : send object for display as soon as
the command defining it is executed. The object is the command defining it is executed. The object is
not retained in the memory, just the image of the not retained in the memory, just the image of the
object is in the FB.object is in the FB.
Retained mode:Retained mode: object description is defined once, object description is defined once,
the description is put in a the description is put in a display list.display list. Display lists Display lists
are good when objects are not changing too rapidly. are good when objects are not changing too rapidly.

GK, OpenGL, lect 3 Computer Graphics 6

OpenGL: Matrix Modes

Two states of the system characterized by matrix modes :
model-view and projection

glMatrixMode(GL_PROJECTION)
glLoadIdentity();
gluOrtho2D(0.0, 500.0, 0.0, 500.0)
glMatrixMode(GL_MODELVIEW)

Viewing rectangle with lower-left corner at
the origin, size 500x500. Defined in viewing
coordinates.
OpenGL is a state machine. Various states
remain in effect until you change them

2

GK, OpenGL, lect 3 Computer Graphics 7

Control Functions, GLUT

Heavy use of OpenGL Utility Toolkit (GLUT) to
Interface with window system
Window management (create,destroy,
position,resize)
Interaction

menu management
register callback functions
Color model management

Simple shapes (cube, sphere, cone, torus)
(Display) window is the rectangle area on our
display
Screen coordinates are measured in pixels
Our window exists within a window system
Reference is to top left corner of the screen

GK, OpenGL, lect 3 Computer Graphics 8

Display Window Management

Five routines necessary for initializing a display
window
Viewport is mapped into the whole display window,
by default.

glutInit(&argc,argv);

glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB); /* default */

glutInitWindowSize(500,500); /* 500 x 500 pixel window */

glutInitWindowPosition(0,0); /* place window top left on
display */

glutCreateWindow("Sierpinski Gasket"); /* window title */

GK, OpenGL, lect 3 Computer Graphics 9

Viewports

GK, OpenGL, lect 3 Computer Graphics 10

Viewports

Viewport is a rectangular area of the display window.
Default is the entire window

Can set to a smaller size to avoid distortion
void glViewport(GLint x, GLint y, GLsizei w, GLsizei h)
where (x,y) is the position of lower left corner of
viewport in the display window.
The arguments w an h are width and height of the
viewport in pixels.

GK, OpenGL, lect 3 Computer Graphics 11

Aspect Ratio

Clipping window (left) aspect ratio (set by glOrtho()
or gluOrtho2D())

gluOrtho2D(0.0, 600.0, 0.0, 400);
If you want to avoid distortion:

glutInitWinowSize(300, 200); //same AR
keep same AR of display window and clipping
window, or
if those are different set a viewport with AR as
clipping window

glViewport(0,0,300,200);
GK, OpenGL, lect 3 Computer Graphics 12

Viewing

Viewing volume – the volume in 3D world that is
being viewed.
By default, an orthographic projection is assumed
with a viewing volume a cube size 2x2x2 centered at
the origin of the camera (I.e. the camera is at the
center of the viewing volume)
For 2D viewing, by default the viewing (clipping)
window is 2x2 square in the plane z=0
For 2D viewing, gluOrtho2D(), sets the coordinates of
the vertices of the viewing window.
For 3D othrographic projection, the viewing volume is
a parallelepiped, glOtrho() is used to specify it.

3

GK, OpenGL, lect 3 Computer Graphics 13

2D Viewing

(x,y,z) is the camera
coordinate system

By default, world and
camera coordinate
systems are aligned,
but their z axes are in
opposite directions

How thus this effect the way
you model 2 objects and
select a viewing rectangle?

GK, OpenGL, lect 3 Computer Graphics 14

Example

The model we have in mind are the
three points P1(-5,-4), P2(0, 7),
P3(6,-4)

Default view in 2x2 shaded rectangle
centered at (0,0)

P1 , P2, P3 are outside of the
viewing rectangle, nothing can be
imaged

Need to adjust the projection
parameters, set new viewing
rectangle such that the points are
in view

gluOrto2D(-10,10, -5, 10)

But in order for gluOrtho to work
you need to be in Projection mode:

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

gluOrto2D(-10,10, -5, 10);

glMatrixMode(GL_MODELVIEW);

0

5

1

2

3
4

p2

p3p1

GK, OpenGL, lect 3 Computer Graphics 15

Getting Things On the Screen
Immediate Mode Graphics – primitives are displayed
as soon as they are defined

Interactive Graphics respond to events

glutMainLoop() processes events as they occur.
Currently, the only event we have seen is the need to
redraw the display. That event is processed be a
display callback function.

No events, then wait forever. Kill with “Cntrl C”

GK, OpenGL, lect 3 Computer Graphics 16

Display Callback Function

Graphics are sent to the screen through this
function:
void glutDisplayFunc(void (*func)(void))

Called whenever GLUT determines that the
contents of the window needs to be
redisplayed
All routines that need to redraw must go or
be called directly or indirectly from the
display callback function

GK, OpenGL, lect 3 Computer Graphics 17

Program Structure

main function consists of calls to initialize
GLUT functions. Names required callbacks
Display callback function every program must
have this. Contains primitives to be redrawn.
So far you have seen only name display , but
you may give it any name, just keep it
informative, and register it with
gutDisplayFunc()

myinit put here user initializer options. This is
housekeeping.

GK, OpenGL, lect 3 Computer Graphics 18

/* hello.c * This is a simple, introductory OpenGL program. */

#include <GL/glut.h>

void display(void);

void init(void);

void display(void)

{

glClear (GL_COLOR_BUFFER_BIT); /* clear all pixels */

/* draw blue polygon (square) */

glColor3f (0.0, 0.0, 1.0);

glBegin(GL_POLYGON);

glVertex3f (0.25, 0.25, 0.0);

glVertex3f (0.75, 0.25, 0.0);

glVertex3f (0.75, 0.75, 0.0);

glVertex3f (0.25, 0.75, 0.0);

glEnd();

/* don't wait! start processing buffered OpenGL routines */

glFlush ();

}

4

GK, OpenGL, lect 3 Computer Graphics 19

void init (void)

{

/* select clearing color */

glClearColor (1.0, 1.0, 1.0, 1.0);

/* set type of camera projection used, orthographic in this example */

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

glOrtho(0.0, 1.0, 0.0, 1.0, -1.0, 1.0);

glMatrixMode(GL_MODELVIEW);

}

int main(int argc, char** argv)

{

/* GLUT negotiates with the window system:

glutInit(&argc, argv);

glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);

glutInitWindowSize (250, 250);

glutInitWindowPosition (100, 100);

glutCreateWindow ("hello world!");

init (); /* you write this function, set up camera and view parameters */

glutDisplayFunc(display); /* you write this, put all drawing commands here */

glutMainLoop(); /* waits for events, display redraws in this case, and process*/

return 0; /* ANSI C requires main to return int. */

}
GK, OpenGL, lect 3 Computer Graphics 20

Hello World!

GK, OpenGL, lect 3 Computer Graphics 21

Homework

Read Angel Ch 2, OpenGL primer Ch 2

GK, OpenGL, lect 3 Computer Graphics 22

Sierpinski Algorithm
Given 3 vertices of a triangle

Starting at any point P on the plane, initial point,
choose a vertex V randomly

Draw a point M half way P and V

M now becomes the current point, P

Repeat this process, each time drawing a point
halfway between the current point and a randomly
chosen vertex.

GK, OpenGL, lect 3 Computer Graphics 23

Sierpinski Algorithm

0

5

1

2

3
4

p2

p3p1

Clear window.
Set the 3 vertices.

Pick up initial point P.

Repeat:
choose at random vertex V.
P = midpoint of V..
Draw P.

Until done

GK, OpenGL, lect 3 Computer Graphics 24

Sierpinski Gasket

There are "large" areas where points will never be
drawn

5

GK, OpenGL, lect 3 Computer Graphics 25

Example: Serpinski’s algorithm implementation
#include <GL/glut.h>

void myinit(void);

void display(void);

void main(int argc, char** argv)

{

/* Standard GLUT initialization */

glutInit(&argc,argv);

glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB); /* default */

glutInitWindowSize(500,500); /* 500 x 500 pixel window */

glutInitWindowPosition(0,0); /* place window top left corner */

glutCreateWindow("Sierpinski Gasket"); /* window title */

glutDisplayFunc(display); /* display callback registered */

myinit(); /* set attributes (state variables) */

glutMainLoop(); /* enter event loop */

}
GK, OpenGL, lect 3 Computer Graphics 26

void myinit(void)

{

/* attributes */

glClearColor(1.0, 1.0, 1.0, 1.0); /* white background */

glColor3f(1.0, 0.0, 0.0); /* draw in red */

/* set up viewing, camera */

/* 500 x 500 clipping window with lower left coner at (0.0,0.0), world
coordinates */

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

gluOrtho2D(0.0, 500.0, 0.0, 500.0);

glMatrixMode(GL_MODELVIEW);

}

GK, OpenGL, lect 3 Computer Graphics 27

void display(void)

{

/* define a point data type */

typedef GLfloat point2[2]; // you could define a class point2

point2 vertices[3]={{0.0,0.0},{250.0,500.0},{500.0,0.0}}; /* A triangle */

int i, j, k;

int rand(); /* standard random number generator */

point2 p ={75.0,50.0}; /* An arbitrary initial point inside triangle */

glClear(GL_COLOR_BUFFER_BIT); /*clear the window */

/* compute and plots 5000 new points */

for(k=0; k<5000; k++)

{

j=rand()%3; /* pick a vertex at random */

/* Compute point halfway between selected vertex and old point */

p[0] = (p[0]+vertices[j][0])/2.0;

p[1] = (p[1]+vertices[j][1])/2.0;

/* plot new point */

glBegin(GL_POINTS);

glVertex2fv(p);

glEnd();

}

glFlush(); /* show buffer */

}

GK, OpenGL, lect 3 Computer Graphics 28

Sierpinski Gasket via Recursive Subdivision

Start with solid triangle S(0)
Divide this into 4 smaller equilateral triangles using
the midpoints of the three sides of the original
triangle as the new vertices
Remove the interior of the middle triangle (that is,
do not remove the boundary) to get S(1)

GK, OpenGL, lect 3 Computer Graphics 29

Sierpinski Gasket
Now repeat this procedure on each of the three
remaining solid equilateral triangles to obtain S(2).

Continue to repeat the construction to obtain
a decreasing sequence of sets

)3()2()1()0(SSSS ⊇⊇⊇

GK, OpenGL, lect 3 Computer Graphics 30

Recursive Approach

Use polygons and fill solid areas
No need for random number generating
Recursive program called from display()

divide_triangle(a,b,c,m)
//a,b,c are the vertices,m controls depth

if m==0 draw triangle(a,b,c)
else

find the midpoints of each side.
call divide_triangle for each of the 3
smaller triangles, with depth m-1

Only the smallest triangles will be drawn

6

GK, OpenGL, lect 3 Computer Graphics 31

void triangle(point2 a, point2 b, oint2 c)

/* display one triangle */

{

glBegin(GL_TRIANGLES);

glVertex2fv(a);

glVertex2fv(b);

glVertex2fv(c);

glEnd();

}

Recursive Sierpinski

GK, OpenGL, lect 3 Computer Graphics 32

void divide_triangle(point2 a, point2 b, point2 c, int m)

{

/* triangle subdivision using vertex numbers */

point2 v0, v1, v2;

int j;

if (m>0)

{ /* generate mid points of the sides */

for(j=0; j<2; j++) v0[j]=(a[j]+b[j])/2;

for(j=0; j<2; j++) v1[j]=(a[j]+c[j])/2;

for(j=0; j<2; j++) v2[j]=(b[j]+c[j])/2;

/* make recursive calls for each of the smaller triangles */

divide_triangle(a, v0, v1, m-1);

divide_triangle(c, v1, v2, m-1);

divide_triangle(b, v2, v0, m-1);

}

else triangle(a,b,c); /* draw triangle at end of recursion */

}

void display(void)

{

glClear(GL_COLOR_BUFFER_BIT);

divide_triangle(v[0], v[1], v[2], n);

glFlush();

}

GK, OpenGL, lect 3 Computer Graphics 33

After 5 Subdivisions

GK, OpenGL, lect 3 Computer Graphics 34

Randomized

GK, OpenGL, lect 3 Computer Graphics 35

Graphics Standard: primitives and attributes
Primitives may include

Point
Line/polyline
Text
Marker
Polygon
Rectangle
Circle/arc
Curve, etc.

Attribute: any property that determines how a
geometric primitive is to be rendered

GK, OpenGL, lect 3 Computer Graphics 36

Graphics Standard
Primitives and attributes, examples

X
X

Fill style
Edge style

Xsize
Xfont

XXXpen
Xline width
Xline style

XXXXcolor

polygonMarkerTextLinePrimitive:
Attribute

7

GK, OpenGL, lect 3 Computer Graphics 37

OpenGL Primitives

GLuintunsigned long32ui

GLushortunsigned
short

16us

GLubyteunsigned char8ub

Glfloat

GLdouble

float
double

32
64

f

d

GLintlong int32i

GLshortshort int16s

GLbytechar 8b

OpenGL-typeC- typeNumber bitsSuffix

Point: 2D or 3D Vertex (internally 4 coord)
Command suffixes specify data type

GK, OpenGL, lect 3 Computer Graphics 38

OpenGL primitives: Point

Points are referred as vertices
For 2D vertex, z-coord is 0

glVertex{234}{sifd}[v](coordinates)

Examples:

glVertex2s(2,3)
glVertex3i(10, -5, 100)
glVertex4f(4.0, 6.0,21.5, 2.0)

GLdouble dpt[3]={5.0, 9.0, 11.6};
glVertex3dv(dpt)

GK, OpenGL, lect 3 Computer Graphics 39

OpenGL primitives: lines and ploygons

Primitive object is defined as a sequence of
vertices between glBegin() and glEnd()

glBegin(GLenum_mode);
define primitives here

glEnd();

The mode above could be:
GL_POINTS, GL_LINES, GL_LINE_STRIP, GL_LINE_LOOP
GL_POLYGON, GL_TRIANGLES, GL_QUADS,
GL_TRIANGLE_STRIP, GL_QUAD_STRIP, GL_TRIANGLE_FAN

OpenGL permits only simple, convex polygonspolygons

GK, OpenGL, lect 3 Computer Graphics 40

Approximating curves

#define PI 3.1415926535897

GLint circle_points = 100;
glBegin(GL_LINE_LOOP);

for (i = 0; i < circle_points; i++) {
angle = 2*PI*i/circle_points;
glVertex2f(cos(angle), sin(angle));

}
glEnd();

GK, OpenGL, lect 3 Computer Graphics 41

Attributes

GK, OpenGL, lect 3 Computer Graphics 42

OpenGL: Primitives

Points (GL_POINTS)
Line Segments (GL_LINES) – successive pairs of vertices
interpreted as the endpoints of individual segments
Polylines (GL_LINE_STRIP) – successive vertices (and line
segments) are connected. Can be a closed path.

8

GK, OpenGL, lect 3 Computer Graphics 43

Polygons Basics

Polygon – area object that
has a border that can be
described by a single line
loop.
Used to approximate curved
surfaces

GK, OpenGL, lect 3 Computer Graphics 44

Polygonal approximation of a surface

GK, OpenGL, lect 3 Computer Graphics 45

“Canonical” Polygon

Simple – no pair of edges cross each other
Convex – the line segment between any two
pints on the polygon is entirely inside the
polygon
Flat – all vertices are coplanar

GK, OpenGL, lect 3 Computer Graphics 46

Polygon Examples

Simple – no pair of edges cross each other

Simple Nonsimple

GK, OpenGL, lect 3 Computer Graphics 47

Convex Shapes

Convex – all points on the line segment
between any two points inside the object , or
on its boundary, are inside the object
Here are some convex shapes

GK, OpenGL, lect 3 Computer Graphics 48

OpenGL Polygon Examples

convex Non-convex.
Left is also nonsimple

9

GK, OpenGL, lect 3 Computer Graphics 49

Polygons

GL_POLYGON - the edges are the
same as they would be if we used
line loops
Inside, Outside separated by
“widthless” edge
Have front and back side: when
walking counter clockwise along the
boundary front is towards viewer:
In OpenGL the order of the vertices
of the polygon on the right must be
given as: P0,P5,P4,P3,P2,P1

GL_POLYGON

P0

P1 P2

P3

P4P5

GK, OpenGL, lect 3 Computer Graphics 50

OpenGL Primitives

•Depending on the GL_mode selected
same vertices (V0,…,V7) can specify
different geometric primitives

GK, OpenGL, lect 3 Computer Graphics 51

Attributes of the OpenGL geometric primitives

Attributes are defined by the current state of
the system, i.e., objects are drawn with the
current attributes

Point: point size
glPointSize(GLfloat size)

GK, OpenGL, lect 3 Computer Graphics 52

Attributes of the OpenGL geometric primitives

Line
Line width

glLineWidth(Glfloat size)

Enable antialiasing
glEnable(GL_LINE_SMOOTH), not in Mesa

Enable line stipple
glEnable(GL_LINE_STIPPLE)

glLineStipple(GLint factor, Glushort ptrn)
ptrn 16-bit binary sequence of 0’a and 1’s, factor
scales the pattern.

GK, OpenGL, lect 3 Computer Graphics 53

Attributes of the OpenGL geometric primitives

Polygon
Polygon face: front/back, which face to draw

GL_FRONT, GL_BACK, GL_FRONT_AND_BACK

Polygon mode for drawing
GL_POINT, GL_LINE, GL_FILL

Enable polygon stipple
glEnable(GL_POLYGON_STIPPLE)
glPolygonStipple(Glubyte *mask)
mask is a 2D binary pattern
glEdgeFlag(Glboolen flag) applies only to
triangles, quads, and polygons.

GK, OpenGL, lect 3 Computer Graphics 54

Text

Fonts – families of type faces:

Times Roman - ABCDabcd123

Courier - ABCDabcd123

Arial - ABCDabcd123

Century - ABCDabcd123

Comic Sans MS - ABCDabcd123

10

GK, OpenGL, lect 3 Computer Graphics 55

Stroke Text

Constructed from other graphics primitives
Vertices define line segments; curves outline
each character
Can be manipulated by transformations
(translate, scale, rotate)

GK, OpenGL, lect 3 Computer Graphics 56

Stroke Text

GK, OpenGL, lect 3 Computer Graphics 57

Raster Text

Characters defined as rectangles of bits called
bit blocks
Placed in frame buffer by bitblt operation
Increase size only by replicating pixels
Cannot be scaled gracefully, look blocky
glutBitmapCharacter(GLUT_BITMAP_8_BY_13, c)

GK, OpenGL, lect 3 Computer Graphics 58

Raster Text

GK, OpenGL, lect 3 Computer Graphics 59

GLUT (GL Utility Toolkit)
Interface with window system
Window management (create,destroy, position,size)
Interaction

menu management
register callback functions
Color model management

GLUT shapes
glutSolidCube, glutWireCube
glutSolidSphere, GlutWireSphere

given radius and #slices (in z axis)
Cone: solid and wire versions
Torus: solid and wire versions
Teapot: solid and wire versions

GK, OpenGL, lect 3 Computer Graphics 60

GLU

GLU (Graphics Library Utility)
Higher level functions
High-level transformations

Projection transformations
World-to-viewing coordinates transformations

Functions for simple 3D objects
Spheres
Open cylinders
Disks
Polygon tessalation, meshing
Quardics, splines and surfaces
NURBS curves and surfaces
Manipulation of images for texture mapping

11

GK, OpenGL, lect 3 Computer Graphics 61

Open Inventor

Built on top of OpenGL
3D toolkit for interactive 3D graphics
Scene database; hierarchical representation of 3D
scenes using scene graphs
Primitive object: a node with fields for various values
(shape, camera, light source, transformation)
Manipulator , used to manipulate objectsused to manipulate objects
Scene manipulatorScene manipulator, e.g., material editor, viewer, e.g., material editor, viewer
3D interchange file format for 3D objectsfor 3D objects
Animator

GK, OpenGL, lect 3 Computer Graphics 62

IRIS Performer

Combines OpenGL and Open Inventor
Toolkit for visual simulation and virtual reality
Supports graphics and database operations

Optimized graphics primitives
Shared memory
Database hierarchy
Multiprocessing
Morphing

