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ABSTRACT

A new technique for computing the differential invariants of a surface from 3D sample points and normals.
It is based on a new conformal geometric approach to computing shape invariants directly from the Gauss
map. In the current implementation we compute the mean curvature, the Gauss curvature, and the principal
curvature axes at 3D points reconstructed by area-based stereo. The differential invariants are computed
directly from the points and the normals without prior recovery of a 3D surface model and an approximate
surface parameterization. The technique is stable computationally.
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1 Introduction

The differential invariants of a surface provide a com-
plete description of its shape. They are used in sur-
face matching, in localizing important regions in sur-
faces, providing descriptors and measurements in var-
ious applications.

One set of approaches in computer vision to the
estimation of the differential invariants is to recon-
struct an approximation of the surface and its pa-
rameterization, and then derive the differential invari-
ants using classical differential geometry. In these
approaches, first, range sensors, stereo, MRI, or CT
techniques are used to collect a sufficiently dense
set of sampled surface points; second, an approxi-
mate parametrization is derived from an estimated 3D
surface model; and third, the differential invariants
are computed from the approximated surface. The
3D model is obtained by applying a marching cubes
method, a Delaunay triangulation, or some model
fitting or smoothing technique (some perennial fa-
vorites include Gaussian convolution, or wavelets ex-
pansions). See [4, 5, 8, 10, 13]. An important caveat
concerning the derivation of invariants from 3D mod-
els is that the models do not come with robust and

general error estimates, in particular, for the curva-
ture estimates obtained from them. Yet, another set
of approaches forgo the 3D model, and attempt to
extract the curvature invariants directly from range,
stereo, or photometric data [4]. Both approaches use
classical differential geometry in the recovery of the
differential invariants (including taking second order
derivatives, and solving general characteristic polyno-
mials). An additional source of errors is the compu-
tational instability of the methods. For example, to
compute the principal curvature vectors and the prin-
cipal curvatures, the methods rely on diagonalizing
general symmetric matrices (in fact the operators are
often only close to symmetric due to noise and round
off errors). The standard diagonalization routines in-
troduce additional errors.

The classical shape invariants, principal curvatures,
mean curvature, and Gauss curvature, belong to the
realm of metric geometry.

We present new theoretical results that utilize the
conformal structure in the derivation of the differen-
tial invariants. In the implementation we, first, use
stereo to reconstruct 3D points; second, recover the
Gauss map; and third, apply the new theory to recover
the differential invariants. Our approach is based on



the realization that: (i) Unless the surface is minimal,
the Gauss map completely determines it up to scale
and translation. (ii) Furthermore, in all cases (includ-
ing minimal surfaces) the differential invariants of the
surface can be extracted by, first, estimating the mean
curvature, and second, computing the Gauss curvature
and principal axes by diagonalizing a special trace-
free, symmetric matrix. The theory we present for the
extraction of the mean curvature does not require a
diagonalization, also, for the recovery of the rest of
the invariants, the special type of the matrix allows us
to diagonalize it to find the principal curvature vec-
tors and Gauss curvature without resorting to solv-
ing general characteristic polynomials. This results
in improved stability of our approach because we can
reduce the number of nonstable nonlinear operations,
including taking of square roots, for example.

The new methods require tools for extracting the
Gauss map and the conformal structure (the notion of
angles) on a surface in R3. Fortunately such tools
exist. Our current implementation uses the fish-scales
method developed in [8].

The rest of the paper is organized as follows: basic
definitions and preliminaries are reviewed in Section
2; the new theoretical results are discussed in Section
3; implementation, results, and evaluation are given
in Section 4.

2 Theoretical Background

In this section we give some basic definitions from
differential geometry and introduce the notation. The
reader is referred to [3] for in depth introduction to
the subject.

Surface parameterizations are a convenient tool for
analyzing surface properties.

A parameterized surface: We think of a surface,
S, in space as a vector-valued map, f , from some two-
dimensional domain M into Euclidean three space:

f : M ! R
3; S = f(M):

The domain M is often chosen to be a planar region
endowed with some coordinates (u; v) but one can
use any smooth 2D manifold.

The differential and the tangent plane: The dif-
ferential, df p, of f at a point p 2 M is a linear map
that maps tangent vectors to tangent vectors, i.e., if
u is the velocity (tangent) vector to a curve in M ,
dfp(u) is the velocity (tangent) vector to the image of
that curve in S = f(M),

dfp : Tp(M)! Tf(p)(S)

where Tp(M) and Tf(p)(S) denote the tangent planes
to the abstract surface M and to the image surface
S, respectively. The plane Tp(M) to a surface M at
a point p is the linear space, that best approximates
the surface at p. A choice of local coordinates in M

defines a basis in the tangent plane Tp(M). It is cus-
tomary to omit the subscript p when discussing the
differential or the tangent plane, and so we do, but
this should not cause any confusion. It should be un-
derstood that all statements are local, i.e. apply to a
neighborhood of a point.

The map f is an immersion if its differential df is
an isomorphism. In particular, if f is an immersion,
S has a well-defined tangent plane at each point, and
a normal at each point if M is oriented.

Oriented surfaces: In this paper, we consider only
oriented surfaces, i.e. there is a consistent way of
identifying positively oriented frames in the tangent
plane.

The Gauss map N (the surface normal), the Gauss
curvature, the mean curvature, and all other differen-
tial invariants are expressed in terms of the map f and
its derivatives.

The Gauss map: If M is an abstract oriented two
dimensional manifold then the value of the Gauss map
at a point p 2M is defied by

N =
1

kdf(v1)� df (v2)k
df (v1)� df (v2)

where (v1;v2) is a positively oriented frame of the
tangent plane Tp(M). Here� is the usual cross prod-
uct inR3.

In particular, if M is a planar domain with a fixed
coordinate system (u; v), then

df =
@f

@u
du+

@f

@v
dv;

and the Gauss map is the vector-valued function

N =
1

k @f
@u

� @f
@v
k

@f

@u
�
@f

@v
: (1)

In general, it is convenient to think of the Gauss
map as a map from M to the unit sphere, S3, N :
M ! S

3 � R3:
The fish-scales method designed by Šára and Ba-

jcsy in [8] gives estimates of the Gauss map and the
conformal structure.

A conformal structure and a complex structure
induced by a parameterization:

A conformal structure on a surface is a choice of
angles between tangent vectors. On an oriented sur-
face, a conformal structure is equivalent to defining
the operation, J , of rotating tangent vectors by ninety
degrees counterclockwise in the tangent plane. This
operation is also called a complex structure. A sur-
face parameterization, f : M ! R

3, defines a com-
plex structure Jf on the domainM . Indeed, let v be a
vector tangent toM at some point p 2M , then Jf (v)
is the unique vector tangent to the domain satisfying

df (Jf (v)) = N� df (v) :

Thus the defining relation for the complex structure
Jf is

df Æ Jf = N� df : (2)



The differential invariants mean curvature,
Gauss curvature, principal axes and principal cur-
vatures: Recall that the second fundamental form of
f is a symmetric quadratic form defined by II(u;v) =
� < dN(u)jdf(v) > where < �j� > is the Eu-
clidean scalar product in R3. At every point p 2 M
there exists a positively oriented orthonormal frame
fe1; e2 = Jf (e1)g ; kdf(ei)k = 1; of Tp(M) in
which the symmetric quadratic form II(�; �) is repre-
sented by a diagonal matrix�

II(e1; e1) II(e1; e2)
II(e2; e1) II(e2; e2)

�

where II(e1; e2) = II(e2; e1) = 0, and II(ej; ej) =
�j , j = 1; 2. The vectors e1 and e2 are called princi-
pal curvature vectors, they define the principal axes,
and the numbers �1, �2 are the principal curvatures.
The mean curvature,H is the average of the principal
curvature, and the Gauss curvature is the product of
the principal curvatures. The curvatures are classical
geometrical invariants [7].

3. Conformal Method for Comput-
ing the Differential Invariants:
Theory

We now present the theoretical results for computing
the mean curvature, Gauss curvature, and the princi-
pal axes from the Gauss map and the conformal struc-
ture. The key theoretical result is the following theo-
rem. All proofs are in the Appendix.

Theorem 1 Let N be the Gauss map of a parameter-
ized surface f : M ! R

3 and let Jf be the induced
complex structure. If f is twice continuously differ-
entiable then the differential dN of the Gauss map
satisfies

dN = �Hdf + !; (3)

where H is the mean curvature, and ! is aR3-valued
one form from the tangent plane to the Euclidean
three space,

! : T (M)! R
3; (4)

such that, for every vector v tangent to the domainM
the image !(v) satisfies

!(v) ? N (5)

! (Jf (v)) = �N� !(v): (6)

Therefore we have the following corollaries express-
ing the differential invariants in terms of the Gauss
map and the complex structure.

Corollary 3.1 (Mean curvature) Let N be the Gauss
map of a parameterized surface f : M ! R

3 and
let Jf be the induced complex structure. If f is twice
continuously differentiable, then

�Hdf =
1

2
(dN�N� dN Æ Jf ) (7)

Thus if we have estimates for df , the Gauss map and
the complex structure we can estimate the mean cur-
vature directly from (7).

Corollary 3.2 (Principal axes) Let N be the Gauss
map of a parameterized surface f : M ! R

3, and
let Jf be the induced complex structure. If f is twice
continuously differentiable, then

! =
1

2
(dN+N� dN Æ Jf ) (8)

Furthermore, !(u) is collinear to df(u) if and only
if the vector u is collinear to a principal curvature
vector. Thus the quadratic form < !(�)jdf(�) > is
symmetric and trace-free (i.e., has zero trace), and

its eigenvalues are precisely �
1

2
(�1 � �2), where �1

and �2 are the principal curvatures.

We can estimate the principal curvature vectors by
solving

1

2
(dN(u) +N� dN(Jf (u))) = � df(u) (9)

for the scalar � and the vector u. This amounts to di-
agonalizing a symmetric trace free matrix represent-
ing the quadratic form < !(�)jdf(�) >. The diagonal-
ization of such matrices is more stable than the diag-
onalization of general matrices.

Corollary 3.3 (Gauss curvature:) Let N be the
Gauss map of a parameterized surface f : M ! R

3

and let Jf be the induced complex structure. Let H
be the mean curvature. Let f be twice continuously
differentiable, ! be the one form defined in (4), and
�2 be the sum of the squares of the eigen values of
the quadratic form, < !(�)jdf(�) >. Then, the Gauss
curvature, K, satisfies

K = H2 � �2: (10)

Equation (10) gives a stable method for computing
the Gauss curvature K. We do not need to diagonal-
ize the quadratic form matrix. To compute �2, we
can chose any orthonormal basis of the tangent plane
to the surface in R3, then we represent the quadratic
form < !(�)jdf(�) > as matrix A, and set �2 as fol-
lows

A =

�
a b
b �a

�
; �2 = a2 + b2: (11)

4 Implementation and Results

Our goal in this paper is to illustrate that the new
methods are well suited to handle dense 3D point data
generated from stereo. Thus, in this first implementa-
tion, we do not care about the real-time issue. In the
future we plan to exploit the spatial continuity and re-
duce the number of redundant calculations.



The inputs to our system are pairs of stereo im-
ages, and the outputs are the 3D points and the dif-
ferential invariants of the surface at these points. For
the recovery of the differential invariants we use the
conformal method based on the theory presented in
the paper. The images are processed by area-based
stereo to produce a cloud of 3D samples from a sur-
face. These points are processed by a simplified ver-
sion of the fish-scales technique introduced in [8] to
compute the surface normals and the neighborhood
stratification which are then processed by a third mod-
ule implementing a discretized version of the confor-
mal method. All computations in the third module
are local, but to account for the noise in the data, we
have taken multiple measurements, i.e. measure dif-
ferential invariants not in a single direction, but in all
available directions (from a point to all its neighbors).

We have tested the system on various surfaces with
known differential invariants (including catenoids,
spheres, cylinders), and on stereo data.

Figure 1 represents a diagram of the complete sys-
tem. The particular implementation of the stereo

left image
right image
control parameters

control parameters
dense 3D point set

Invariants

Differential

Fish-scales

Stereo

control parameters

neighborhood stratification

  3D normals

refined 3D point set
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the mean curvatures
the Gauss curvatures
the principal axis

IN:

OUT:

Figure 1: Reconstruction of 3D points and their dif-
ferential invariants based on stereo.

module is discussed in [1].
We use a fish-scales method for recovery of the

Gauss map and the neighborhood stratification from
the 3D noisy unorganized set of points. The fish-
scales method is introduced in [8], and is used there
as a step in the recovery of 3D surface model .

In an implementation we have to deal with discrete
versions of the objects defined in the theory section.
For each neighborhood, a scale unit is selected adap-
tivly based on the geometry of the discrete neighbor-
hood. Also, in an ideal continuous world, directional

derivatives could be calculated exactly in any direc-
tion. Since we are dealing with noisy, discrete data
from stereo, calculating differential invariants based
on one direction may be catastrophic. Thus we choose
to calculate the differential invariants at a point based
on as many directions that the neighborhood allows
(i.e. from the center point to its neighbors, depending
on the size of the neighborhood). In theory the dif-
ferential invariants should be independent of the di-
rection chosen for the computation. In the real world,
because of the discretization and the noise, we obtain
different sample values of mean and Gauss curvatures
for different directions. We use the multiple sample
to our advantage: statistically estimate the differen-
tial invariants based on the multiple measurements.
The outer for loop of DifferentialInvari-
ants includes a step that calculates the sample vari-
ance of the mean curvature at a point

S(H) =
1

m� 1

X
u

(Hu �H)2; (12)

where H is the estimated mean curvature, u ranges
over all directions we selected based on the neighbor-
hood U , and m is the number of directions selected.
The sample variance, S(H) is an unbiased estimate of
the variance of a sample from a normal distribution,
a model that we chose here for the matter of conve-
nience. We use the sample variance to derive con-
fidence intervals for H . In a final step, we reject the
differential invariants of those points for which the the
confidence intervals for H are not tight enough at the
selected confidence level.

Adaptively, for each neighborhood, we set the lo-
cal scale unit to be the minimum of two values: the
radius, r, of the sphere inscribed inside the convex
hull of the neighborhood, and an input control scale
parameter.

The input to the procedure is the Gauss map N, the
neighborhood stratification U, and an input scale con-
trolling the maximum step size in discrete approxi-
mations. We use the conformal method to recover the
mean and Gauss curvatures, and the principal axes.

In the current implementation, since the neighbor-
hood is not very densely populated, we use all avail-
able directions. In applications with densely popu-
lated neighborhoods, a random sample of an appro-
priate size would suffice. We use the mean square
error criterion, and a location data model with Nor-
mal sampling distribution. While this model appears
to give satisfactory results, its choice is a matter of
mathematical convenience at this point.

First, we show results which illustrate the appli-
cation of the conformal method to data from stereo.
Next, for the purpose of evaluation, we show how the
method works on randomly selected points from syn-
thetic surfaces.

Recall Figure 1, the system starts with 2D images
of a surface, and produces 3D sample points from the
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Figure 2: Stereo data, ”face”. (1) The face(one im-
age from the stereo pair). (2) The reconstructed 3D
points, from stereo. Two views of the recovered mean
curvature surface (x; y;H), images (3) and (5), and
two views of the recovered Gauss curvature surface
(x; y;K), images (4) and (6).

surface and the differential invariants at these points.
Figure 2 shows the mean and the Gauss curvature sur-
faces as triangulated meshes. For example, the point
(x; y;H), or (x; y;K), on the curvature surface cor-
responds to a recovered 3D point (x; y; z) from the
real face, and the mean curvature at that point is H ,
or K. The surface height, i.e. H , or K, values, are
used to color the point (x; y;H), or (x; y;K).

Figure 3 shows the principal axes at each of the re-
constructed points. A trained eye, can spot easily the
lines of curvature that are formed by properly aligned
principal axes. See the area of the chin, the boundary
line going from the chin towards the right ear, and the
areas of the eyebrows, for example.

Figure 3: Stereo data ”face”: the principal axes at-
tached at the 3D points. The 3D data set is shown
from different view points. We can identify well-
formed curvature lines in nonplanar regions (on the
chin, the eyebrow areas, the cheeks)

We present results illustrating the performance of
the conformal method on inputs from simulated sur-
faces for which the precise values of the invariants are
known.

In addition, for a comparison, we calculated the
mean curvatures on the same data sets using the clas-
sical definitions [3], i.e. using the eigenvalues of the
second fundamental form (Section 2). Methods for
calculating differential invariants in computer vision
applications rely mostly on these definitions. They do
not use the closed expressions provided by our con-
formal method.

The mean curvature is selected for the comparison
since in our method the Gauss curvature is derived
using the mean curvature (i.e. the mean curvature is
calculated first).

We show results for three different surfaces here: a
sphere (constant mean and Gauss curvatures, all vec-
tors are principal axes), a catenoid (0 mean curva-
ture, negative Gauss curvature, and well defined prin-
cipal axes), and a cylinder (constant mean curvature,
0 Gauss curvature, and well defined principal axes).

In each of the three cases, we sample uniformly, at
random the 3D surface (using the analytic surface rep-
resentation). We use the exact normals (for the sphere
and the cylinder), and normals recovered by the fish-
scales method (for the catenoid). The neighborhood
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Figure 4: Sphere: (1) and (2) are the calculated
points of the mean curvature surface, (x; y;H), and
the Gauss curvature surface, (x; y;K), respectively.

stratification is obtained by a Delaunay triangulation.
The simulated input data to the conformal method

could be separated in two groups: (i) input data that
represent exact points and normals from a synthetic
surface (a sphere and a cylinder); (ii) input data that
represent approximated points and normals from the
synthetic surface (catenoid).

Sphere. We sample randomly points from the unit
sphere, (x; y; z), y > 0

x2 + y2 + z2 = 1:

The surface is oriented by the outward normal. The
counterclockwise direction in the tangent plane is se-
lected to be the positive orientation (this is a standard
choice in computer vision and computer graphics).
Under this choice of orientation, the unit sphere has
a constant mean curvature �1 and a constant Gauss
curvature 1. We remind the reader that in standard
differential geometry texts, [3], the orientation is se-
lected in such a way that the mean curvature of the
sphere is positive, i.e. 1; for that orientation the in-
ward normals to the surface are selected. The princi-
pal curvatures of the sphere are both equal to one, so
the sphere does not have well-defined principal cur-
vature vector fields.

Figure 4 shows the recovered mean and Gauss cur-
vatures.

In this experiment 97:75% of the mean curvature
values are within 0:0022 from the true mean curva-
ture value �1; 97:7% of the Gauss curvature values
are within 0:0044 from the true value of the Gauss
curvature 1. Note also that since the points on the sur-
face are elliptic, by using linear interpolation in inter-
mediate steps we always approximate surface points
by points inside the sphere, which explains the under-
estimation for the mean curvature (i.e. the values are
within 0:0022 of the true values and less than it), and
overestimating the Gauss curvature.

Table 5, part A, contains statistics of the absolute
mean curvature errors for the conformal and the stan-
dard methods.

Cylinder. We sample the half cylinder, (x; y; z),

x2 + z2 = 1; 0 � y � 1:

The surface oriented the by the outward normals. Un-
der this choice of orientation, the cylinder has a con-

Test MIN MAX MEAN STD

A.1 0 0.094175 0.001761 0.009923
A.2 0.000134 0.006289 0.001470 0.000448
A.3 0.883836 0.995832 0.937364 0.019062
A.4 0.000268 0.012616 0.002944 0.000899

B.1 0 0.00019 0.00000 0.00001
B.2 0.00000 0.00202 0.00032 0.00026
B.3 0.43624 0.49910 0.47750 0.013258
B.4 0.0000 0.00002 0.000000 0.000002

C.1 0 0.000763 0.000142 0.000138
C.2 0.000025 0.126203 0.010550 0.018231
C.3 0.000001 0.002044 0.000297 0.000335

Figure 5: Statistics related to the simulated exam-
ples. A: for the sphere. B: for the cylinder. C:
for the catenoid. The statistics in each case are for:
(1), the sample variance, S(H) used for rejection of
outliers; (2), the absolute mean curvature error for
the conformal method; (3), the absolute mean curva-
ture error for the standard method; (4), the absolute
Gauss curvature error for the conformal method. For
the sphere and the cylinder (A and B), we use exact
points and normals. For the catenoid (C) , the sampled
points are piped through the fish-scales first, and thus
the differential invariants are recovered from approx-
imated points and normals. See discussion regarding
the catenoid in the text.

stant mean curvature�0:5, and a constant Gauss cur-
vature 0. The principal curvatures of the cylinder are
equal to �1 and 0, respectively; the principal axes are
such that one of the axes is always collinear with the
generating straight line, in this case collinear with the
y axes.

Figure 6 shows mean and Gauss curvatures, and the
principal axes recovered.

In this experiment 93:5% of the mean curvature
values are within 0:0005 from the true mean curva-
ture value �0; 5; more than 99% of the Gauss cur-
vature values are within 0:00001 from the true value
of the Gauss curvature value statistics of the abso-
lute mean curvarure errors, and the sample variances,
S(H), used for rejection of outlayers the table, Fig-
ure 5. In this case the mean curvature computed by
the standard method has large residual error.

In this experiment the orientation of the principal
axes was recovered correctly.

Catenoid. In this example we want to illustrate the
sensitivity of the conformal method to noise in esti-
mates of the Gauss map. We sample the catenoid

x = � cosh(t) cos(�)

y = t

z = � cosh(t) sin(�)

in the interval �1 � t � 1, �=3 � � � 2�=3. The
surface orientation is by the outward normals. Under
this choice of orientation, the catenoid has a constant
mean curvature 0, and negative Gauss curvature.
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Figure 6: Cylinder. (1) and (2) the calculated points of
the mean curvature surface, (x; y;H), and the Gauss
curvature surface, (x; y;K). (3) the principal axes su-
perimposed on the cylindrical surface which is shaded
according to depth values (i.e. z). (4) the principal
axes at the sampled points, shown from a different
viewpoint.

In this experiment we use the refined 3D point set
and the Gauss map output by the fish-scales method,
not exact points and normals from the synthetic sur-
face.

Figure 7 shows mean and Gauss curvatures, and
principal axes recovered.

In this experiment 99% of the mean curvature val-
ues are within 0:032 from 0. See statistics given in
the table, Figure 5. For this one particular exam-
ple the standard method produces results closer to
zero. Although we include the error statistics for com-
pleteness, note that we do not know the mean curva-
ture of the model surface presented by the approxi-
mated points and normals. In this sense one can use
these statistics to gauge the performance of the com-
plete systems, but can not use the statistics to com-
pare the performance of the conformal v.s. the stan-
dard method for estimating mean curvature. Note
that the estimated Gauss normal still exhibits the ro-
tational symmetry of the catenoid. The conformal
method produced correct curvature lines indicated be
the proper alignment of the recovered principal axes
Figure 7, subfigure 5.

Conclusions

We present a new conformal method for calculating
the differential invaraints of a surface from 3D points
and normals. We derive the theory, and implement
the algorithms. We compute a measure of the preci-
sion/reliability of the recovered invariants in terms of
the variance of the mean curvature (propagated from
the variability of the local neighborhood). We show
the results produced by the conformal method for sur-
faces with known differential invariants (a sphere and
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Figure 7: Catenoid: (1)Gauss map; (2) The Gauss
map and the part of recovered surface after the rejec-
tion of outliers based on the sample variance; (3) and
(4) the recovered mean curvature surface, (x; y;H),
and the Gauss curvature surface, (x; y;K); (5) the
principal axes superimposed on the catenoid surface.

a cylinder), for surfaces with approximately known
differential invariants (catenoid), and for surfaces
with unknown invariants.

In the first group, sphere and cylinder, we evalu-
ate the results of the conformal method in terms of
the absolute mean curvature and Gauss curvature er-
rors, and in terms of the angle between the principal
axes and the known constant axes direction (i.e. the
’y’ axes). We also compared the results obtained by
the conformal method with results obtained using the
classical definitions directly. The conformal method
is more stable.

The second group of results (that includes the
catenoid) illustrates the effect of the Gauss map errors
on the differential invariant. More careful study in
this direction is needed (including noise model propa-
ration from normals to differential invariants), and is
subject of our future research.

The third group of results (that includes the face) il-
lustrates the performance of the conformal method on
3D points recovered from stereo, and normals recov-
ered by the fish-scales method. Results here are eval-
uated only qualitatively and support the usefulness of
the conformal approach in deriving differential invari-
ants from real stereo data.



Appendix

The fastest method to prove Theorem 1 and its corol-
laries is to use quaternionic calculus but here we pro-
vide proofs along the lines of classical differential ge-
ometry.

Recall the definitions of the differential invariants
from Section 2. Note that e1 and e2 are principal cur-
vature directions iff

df (e1) ? df (e2) (13)

dN (e1) = ��1 df (e1) (14)

dN (e2) = ��2 df (e2) (15)

Proof of Theorem 1 The form of equations (14)
and (15) suggests that the one form dN can be repre-
sented as

dN = Adf + ! (16)

for some coefficientA and someR3-valued one-from
!. We decide to look for a form ! satisfying the con-
dition

!(Jf (u)) = �N� !(u): (17)

This choice for ! can be motivated by the decompo-
sition of symmetric tensors into diagonal and trace-
free components. A direct way to motivate our choice
is to notice that the form df satisfies df (Jf (u)) =
N�df (u). That is, df relates a counter-clockwise ro-
tation by ninety degrees in Tp(M) to a counterclock-
wise rotation by ninety degrees around the axes N
in R3. On the other hand, the condition (17) guar-
antees that the form ! relates a counter-clockwise
rotation by ninety degrees in Tp(M) to a clockwise
rotation by ninety degrees around the axes N in
R

3. The representation (16) accounts for the possi-
bility that the one-form dN may be a combination
of forms which rotate in different directions around
the N axes. From (16), (14), and (15) we obtain
! (ei) = (�i +A) df (ei) ; i = 1; 2: These iden-
tities show that (5) holds. Furthermore combining the
identities with (17) and e2 = Jf (e1) we obtain

! (e2) = (�2 +A) df (e2)

�N� ! (e1) = N� (�2 +A) df (e1)

�N� (�1 +A) df (e1) = N� (�2 +A) df (e1)

The last identity implies that the tangential vector
(�1 + �2 + 2A) df (e1) is colinear to the normal N.
This can only happen if it is the zero vector in R3,
that is,

A = �
1

2
(�1 + �2) = �H:

Proof of Corollaries 3.1,3.2,3.3. From (3), (2),
and (17) we get

N� dN Æ Jf = �HN� (N� df) �N� (N� !)

= H df + !:

The identities (7) and (8) follow directly from (3) and
the identityN� dN Æ Jf = H df +!. Rewriting (3)

in the form ! = dN+H df we conclude that !(u) is
colinear to df(u) if and only if the later is colinear to
dN(u), that is, if and only if u is parallel to a principal
curvature vector. Furthermore, from equations (14)
and (15) we obtain

! (e1) =
k2 � k1

2
df (e1) ; ! (e2) =

k1 � k2
2

df (e2)
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