
CSC 120 Algorithms and Data Structures Spring Semester, 2002

Review Final Exam

Exam Thursday, 5/16, 1:30-3:30pm.

The exam is NOT open book exam, but you can bring one page (8 by 11in) with relevant
math formulas, including the master method. DO NOT WRITE solutions to specific
recurrences, or running times of specific algorithms, or complexities of specific func-
tions. do NOT write solutions of problems, just formulas you think you might need
and can’t memorize. No outlines of algorithms! No calculators!

Review Tuesday, 5/14, 4-6pm, Adams 201C.

What the exam covers

Material we have covered in lectures, assigned textbook readings, homeworks, labs,
quizzes, midterm exam.

Complexity:

Evaluating complexity of non-recursive and recursive algorithms.

Evaluating asymptotic complexity of functions in terms of Big-Oh, Big-Theta and
Big-Omega

Ordering functions according to their asymptotic growth rate.

Using the master method.

Algorithms and data structures:

Algorithm design. Divide and conquer algorithms. Analyzing complexity of divide and
conquer algorithms. Design an algorithm that solves a problem using a data structure
that we studied.

Sorting algorithms and their complexities.

ADTs: list, stacks, queues, priority queue, dictionary, dynamic set. Operations, their
complexities in various implementations (using arrays, linked lists, hash tables, heaps,
BST). Best-case, worst-case, average-case complexities for the algorithms on various
data structures.

Applications of ADTs.

Data Structures: linked lists, hash tables (and hash functions), heaps, trees, BST trees.
Tracing various operations (like search, delete, insert, etc., on that data structures),
including the tree traversal algorithms. Writing algorithms using that data structures,
evaluating the complexity of your algorithms.

Graphs: definitions, representations. BFS searches on a graph (no tracing). You should
know the main steps on which the algorithm is based, reason about the complexity.

1

This review set is not exhaustive.

Review homework problems, exam1 and quizzes for additional problems.

I will NOT ask you to trace merge sort or quick sort. I will NOT ask you to solve a
recurrence using the recurrence tree method. I will NOT ask you to do a proof by
induction.

All procedures describing algorithms should be given in pseudo-code, but they should be
algorithms (i.e. be clear about the steps, and also make sure they terminate.)

1. True or False

20n3 + 10n log n + 5 is O(n log n)
2100 is Θ(1)
log (nx) is O(log n) where x is constant
500 log5 n + n + 10 is O(n)
0.5 log n is Θ(n)

2. Order the following list of functions by the big-Oh asymptotic growth rate

6 log n, log log n, 2log n, n
√

n, n2

3. Express as a function of the input size n the worst-case running time T (n) of the
following algorithm

int Me(int n, int A[], int k)
{

int tot = 0;

for (int i=n; i>=0; i--) {
if (i==k) {

cout << i << endl;
tot++;

}
}
return tot;

}

What is the asymptotic time complexity?

4. Give the worst-case and the best-case recurrences expressing the running time of the
following algorithm manipulating a BST rooted at p.

2

int You(int &p, int a, int b)
{

int tot = 0;
if (p==0) return 0;
if (p > a && p < b) {

cout << p << endl;
tot++;

}
tot += You(Left(p), a, b);
tot += You(Right(p), a, b);
return tot;

}

What are the best- and the worst- case time complexities of this algorithm?

5. Using the master method estimate the complexity of the recursive algorithms which
run times are expressed by the recurrences:

(a) T (n) = 21T (2n
3) + Θ(n2 log3 n)

(b) T (n) = 9T (n
3) + Θ(n2)

(c) T (n) = 10T (n
2) + Θ(n4 log n)

6. Fill in the following table with the asymptotic time complexities (use expected time
complexities when appropriate). Be sure to indicate which time complexities are worst-
case and which are expected-case. Let n be the number of elements in the ADT. Let
m be the number of slots in the hash table.

BST heap hashing doubly linked
with chaining sorted list

search
(for key k)

delete(k)
(when given the
location of k)

maximum

7. In a directed graph, the in-degree of a vertex is the number of edges entering it. Let n
be the number of vertices, and m the number of edges in the graph, and let dI(v) be
the in-degree of vertex v.

Given an adjacency matrix representation of a directed graph, and a specified vertex
v, how would you best compute the in-degree of v? Write your algorithm in pseudo
code, analyze the time complexity of your algorithm.

3

8. An undirected graph is bipartite if its vertex set V can be partitioned into two sunsets
S and T (i.e. V = S ∪ T, S ∩ T = ∅) so that every edge in E connects a vertex in S to
a vertex in T .

Describe a brute force algorithm for checking if an undirected graph is bipartite. What’s
the time complexity of your algorithm.

9. Show the hash table obtained when inserting the keys 26, 18, 19, 32, 4, and 65 into
a hash table (in the given order) with collisions resolved by chaining. Let the table
have 7 slots and let the hash function h be such that h(26) = 3, h(18) = 6, h(19) = 0,
h(32) = 0, h(4) = 3, h(65) = 3.)

You need just show the final result. Be careful to correctly show the order that would
result within the chains/lists.

10. Give pseudo-code for a procedure Decrease-Key(i, k) that modifies the given binary
heap A by decreasing the value of A[i] to k. (If A[i] ≤ k then no change should be
made.) You can use (without describing) any of the standard binary heap procedures
that we’ve studied. You should give the most efficient implementation you can.

Now analyze the asymptotic time complexity of your algorithm. Be sure to explain!

11. You are to implement a caller-id system which supports the operations given in b)-d)
below. Pick a data structure that is best suited for the problem (i.e. the required
operation will run as efficiently as possible). You should very clearly describe how the
data structure is to be applied (e.g. what is used as the key, what the associated data
is,...). Also be sure to give the complexity for each of the operations.

(a) Describe your data structure choice first.

(b) Give the time complexity analysis for inserting into the system of new item that
consists of a phone number, address, and name.

(c) Give the time complexity analysis for searching: given a phone number, return
the address and name.

(d) Give the time complexity analysis for deletion: given a phone number, remove
the corresponding item from the system.

12. Write an algorithm to print all keys in BST between two given keys, k1 and k2.

4

