
Affine Control Logic

Chuck Liang
Hofstra University
Hempstead, NY

July 4, 2016

Abstract

This paper extends our previous work in combining classical logic with intuitionistic logic [LM13a,
LM13b] to also include affine linear logic (linear logic with weakening), resulting in a unified system that
we call Affine Control Logic. Connectives from different logics can mix without collapse, and fragments
of the logic are defined not by restricting proofs but entirely by the subformula property. Linear logic
is adjusted so that contraction is not enabled by the exponential operator ? but by a restricted form
of Peirce’s formula. This formula, when admissible, enables contractions on both the left and right-
hand sides of sequents, thus also replacing !. Classical fragments of proofs are better isolated from
non-classical fragments using this technique. We define a phase semantics for this logic that finds the
Kripke semantics of intuitionistic logic as a fragment. We give a cut elimination proof that requires a
combination of methods not commonly found in other such proofs, thus affirming the proof-theoretic
novelty of this logic. Computationally, the goal of this logic is to allow affine-linear computational
interpretations of proofs to be combined with classical interpretations such as the λµ calculus. We show
how cut-elimination must respect the boundaries between classical and non-classical modes of proof which
correspond to delimited control effects. A natural deduction system with a term calculus is defined for
a fragment of this logic.

Contents

1 Introduction 3

2 Syntax and “Colors” 4

3 Semantics 5

4 A Single Conclusion Sequent Calculus 9
4.1 Fragments of ACL . 12
4.2 Note on Intuitionistic Disjunction . 12

5 Cut Elimination 12
5.1 Results Related to Cut Elimination . 17

6 Soundness and Completeness 18

7 Natural Deduction and Computation 21

8 Structural Rules and Delimited Control 24
8.1 Delimited Abort . 24
8.2 Capturing Delimited Continuations . 25

1

9 The Colors of Second Order Bound Variables 26

10 Conclusion 28

A Focused Sequent Calculus 30

2

1 Introduction

The goal of this paper is to formulate a unified logic that combines classical, intuitionistic and affine-linear
logics (restricting contraction but allowing weakening). The connectives of this logic are similar to those of
linear logic but contractions are controlled in a very different way. Instead of dual exponential operators ?
and !, a single principle, based on a specialized form of Peirce’s formula, is used to enable contractions on the
left and right-hand side of sequents when certain conditions are reached. The system Affine Control Logic
(ACL) is an extension of our PCL system presented in [LM13b].

This system also descend from previous attempts at formulating unified logics, including LU [Gir93] and
our own LKU [LM11]. These system were all based on linear logic. Linear logic embeds both classical and
intuitionistic logics, but it is limited in its ability to mix them. For example, the interpretation of intuitionistic
implication as !A−◦B is a crucial component of linear logic. However, this interpretation is not compatible
with the fragment that interprets classical logic. Consider ?((!A −◦ B) ⊕ C) (equivalently ?(!A −◦ B)O?C):
here we are attempting to write an intuitionistic implication as a subformula of a classical disjunction. The
strength of intuitionistic implication is compromised: it may be possible to use the assumption A to prove
C: the intuitionistic meaning and proof structure of !A−◦B would not survive such a mixture.

Our goal is to isolate classical reasoning to fragments of proofs, thereby allowing them to coexist with
non-classical fragments without collapsing one into the other. One component of this effort relies on the idea
of “stoup” of LC [Gir91]. When a “positive” formula occupies the stoup the proof takes on the characteristics
of an intuitionistic proof. This phenomenon can be described as a special instance of “focusing.” We shall use
focusing in a similar way. However, the focusing approach alone is not entirely satisfactory: a (multiplicative)
implication A→ B is “negative” and cannot occupy the stoup. In [LM13b] we defined Polarized Control Logic
(PCL), which unified classical and intuitionistic logics using an alternative to positive/negative polarization.
In this paper we modify PCL to obtain a new propositional logic that unifies intuitionistic logic, classical
logic, and the essential elements of affine linear logic. The unification of these logics is achieved semantically,
proof-theoretically, and in terms of the computational interpretation of proofs. We define a new phase
semantics where facts are upwardly closed sets, which forms a natural extension of the Kripke semantics
of intuitionistic logic. We define a sequent calculus with structural rules that require an essential element
of focusing and a cut-elimination procedure (the heart of the paper) that requires new techniques because
of these rules. Finally, we also define a natural deduction system with a computational interpretation that
includes λµ-style controls while also allowing non-classical constructs to retain their strengths. The unified
system is also greater than the sum of its parts, as new fragments (new logics) can be identified easily by
virtue of the subformula property. We also show that the transition between the different modes of proof,
classical, intuitionistic and affine, can be interpreted using delimited control operators.

Many uses of linear logic are also valid in affine logic, and some are enhanced by it. Semantically, the
models of affine logic are closer to those of intuitionistic logic, and this will allow us to adopt our previous
efforts in combining classical logic with intuitionistic logic [LM13a, LM13b]. Creating an alternative to
linear logic is no easy task. Linear logic generalizes the principles of Gentzen in allowing cut elimination
in a setting where some but not all formulas are subject to contraction. This is a central role of the ?/!
duality, and we will need to find a new approach. Consistent with our previous work, the key is to adopt a
new form of negation centered around a reinterpretation of the constant ⊥. However adopting this negation
to affine connectives is not straightforward, and will require new proof theoretic techniques and semantic
interpretation.

Linear logic has offered much insight in the way that it decomposes proofs in classical and intuitionistic
logics. The reader may be tempted to try to understand ACL in the same way. It is not possible, however,
to directly translate ACL into linear logic (affine or proper). Already in [LM13b] we showed that proofs
using the new form of negation cannot be embedded in linear logic without formulas such as ?!A. Such
formulas hopelessly destroy focus and cannot be used to define synthetic connectives. ACL further requires
a structural rule that would appear delusional in terms of linear logic (imagine the dereliction rule inverted).
Thus, much of this paper is devoted to showing that ACL can stand on its own as a new logic, with its own
notion of model, sequent calculus, cut elimination, and soundness and completeness results. In particular,
for a more than casual understanding of this logic, the main components of the cut elimination proof should

3

be read.
This paper is an extended version of [Lia16].

2 Syntax and “Colors”

We focus on propositional logic in this presentation. The addition of first order quantifiers would be a
rather standard exercise. Much more interesting is the addition of second order quantifiers, which will be
discussed in Section 9. Formulas of propositional ACL are freely composed from connectives &, ⊕, →, _,
⊗ and ∨, constants >, 0 and ⊥, and atomic formulas. The symbol _ represents affine implication while →
represents intuitionistic implication. Although we use the symbols & and ⊕ from linear logic, here they can
be classical or non-classical. Intuitionistic disjunction requires a separate connective: ∨. The linear constant
1 is equivalent to > in affine logic. The exponentials ? and ! will be replaced by the ability to mix ⊗ and _
with intuitionistic and classical formulas: this will result in stronger invariants than the unrestricted use of
! and ?. Despite using the same symbol, the constant ⊥ in ACL is entirely different from its counterpart in
linear logic. The new role of ⊥ is the most significant distinction between ACL and affine linear logic.

We use a device similar to ‘polarization, but to avoid confusion we use the term “colors.” Formulas are
colored red or green. 1 Atomic formulas are arbitrarily colored, while the coloring of other formulas is as
follows:

• ⊥ and > are green; 0 is red.

• A&B is green if both A and B are green, otherwise, it is red.

• A⊕B is green if A is green or B is green, otherwise, it is red.

• A→ B is green if B is green, otherwise, it is red.

• A _ B is green if B is green, otherwise, it is red.

• A⊗B and A ∨B are always red.

Since there are two implications and two constants for false, a green ⊥ and a red 0, there are four forms
of negation in ACL. We define abbreviations for them as follows:

−A = A _ ⊥ ¬A = A→ ⊥ ∼A = A→ 0 aA = A _ 0

¬A and −A are logically equivalent but give different proof structure. This paper is primarily concerned
with −A.

We use the letter E for an arbitrary green formula and e for either a green atom or ⊥. Unlike the
positive/negative polarization, red and green are not “duals” of each other. For example, if E is green then
−E is still green: “−” is not an involutive negation. It is possible for red and green formulas to be logically
equivalent. In contrast, ?X−◦!Y is not provable for any X,Y in linear logic. ACL is not just a repackaging
of linear logic. Conceptually, green means classical and red means arbitrary: classical or non-classical. The
coloring of & and ⊕ is similar to the positive/negative polarization of LC [Gir91], but these are the only
cases that intersect. The polarities of LC are consistent with those of focused proofs, which are also the
subjects of some of our own work. Although the proof systems of ACL use a small element of focusing, that
is not the purpose of the red/green colors. It is possible to explain positive/negative polarization purely
syntactically, in terms of the invertibility of inference rules and the role that they play in controlling cut
elimination. In contrast, the red and green colors represent two levels of soundness. The role they play in
unifying logics can only be explained semantically.

1In our previous work these colors were also called polarities. However, these “polarities,” although related, are also not the
same as polarities of the same names in [LM13a]. The original semantic motivation for the meaning of ⊥ in PCL was described
in [LM13a] as the second largest element of a Heyting algebra. The models of PCL are a subclass of the models of PIL as
formulated in [LM13a]. However, neither logic is a fragment of the other.

4

3 Semantics

The semantic tradition of linear logic emphasize the understanding of proofs, not formulas. Traditional
model theory is sometimes disparaged because it is concerned primarily with truth and consistency, but not
with proofs. This type of semantics, however, is exactly what we need in order to explain the difference
between the red and green colors, for they define two levels of provability. The green ⊥ defines a stronger
level of consistency compared to the red 0. The syntactic properties that green formulas induce will appear
fanciful without a proper explanation from this perspective.

Define a Phased Frame to be a structure 〈W,�, r, ·〉 where � is a partial ordering relation on the set of
possible worlds (or phases) W . This structure also forms a commutative monoid with operation · and unit
r ∈W . We write ab for a · b. Given two sets of worlds A and B, AB = {xy : x ∈ A, y ∈ B}. It always holds
that ab = ba and (ab)c = a(bc). We further require the following property:

• a � b if and only if ac = b for some c.

It is important that � is a proper partial order and not just a preorder. Thus not every commutative
monoid gives rise to such a structure: inverses are not allowed. The models that we shall build for the
completeness proof will have monoids formed by multisets of formulas, with multiset union being the monoid
operation. This is also the typical way to prove completeness for phase semantics, but this extra structure
was never important until now.

By inference, it always holds that a � ab. Crucially, the anti-symmetry of � means that the unit r is
unique and is the least element of W since r � ru = u for all u ∈W . We refer to r as the root. The following
properties are also easily inferred:

• if a � b then ac � bc.

• if a � b and bb = b, then ab = b.

It is also worth noting that finite phased structures must contain a top world t with the property that tt = t.
Our phased models are closer to those of Okada [Oka02] than to Girard’s original. The principal difference

between our models and those of linear logic is twofold. First, the facts of the space (subsets of W that can
interpret formulas) are upwardly closed sets. A set S is upwardly closed if x ∈ S and x � y implies y ∈ S.
This corresponds to the monotonicity property of intuitionistic Kripke models. However, unlike intuitionistic
logic, not all upwardly closed sets are necessarily facts. The second, and most important difference is that, in
phase semantics for linear logic ⊥ is represented by any arbitrary set, whereas here it is fixed to be W\{r},
the upwardly closed set that consists of all worlds above the root. The two sets W (>) and W\{r} (⊥) form
an embedded, two-element boolean algebra with nothing in between them.

Formally, let an Ordered Phase Space be a structure of the form (W, ·, r,�, D), where W , �, r and ·
satisfy the requirements of a phased frame. D is a set of upwardly closed subsets of W called facts that is
furthermore required to satisfy the following properties:

1. D contains W\{r}, which are upwardly closed (� is a partial order, not just a preorder).

2. For any subsets A and B of W such that B ∈ D, the set {x ∈W : for all y ∈ A, xy ∈ B} is also in D.
This set is upwardly closed because if x � x′ then x′ = xz and xzy ∈ B since B is upwardly closed.
We can call this set the pseudo-pseudocomplement of A relative to B.

3. D must be closed under the following closure operator on subsets of W : cl(S) =
⋂
{V ∈ D : S ⊆ V }.

Upward closure is preserved by arbitrary intersections.

Note that by the first two requirements, D must also contain all of W , which is equal to {x ∈W : for all y ∈
W\{r}, xy ∈W\{r}}. Clearly r is in this set.

It holds that S ⊆ cl(S) and if S is already a fact in D then S = cl(S). It also holds that cl(cl(S)) = cl(S),
cl(S)V ⊆ cl(SV) and if S ⊆ V then cl(S) ⊆ cl(V). We will not distinguish between formulas A and their
interpretation in phase space Ap except when there is possibility for confusion.

5

Given S ⊆W , let I(S) = {u ∈ S : uu = u}. These are the worlds that admit contraction. I(W) is never
empty since rr = r. A phase model on an ordered phase space is defined by a mapping from atomic formulas
to facts, with the following conditions:

• Red atoms are mapped to arbitrary facts (elements of D).

• Green atoms are mapped to either W\{r} or to W , i.e., to either ⊥p or >p.

The interpretation (valuation) of all formulas is then defined as follows:

• > (>p) is represented by W = cl({r}). There is no need for both > and 1 in affine logic.

• ⊥ is represented by W\{r}

• 0 is cl(∅) =
⋂
D, the smallest possible fact (∅ is the empty set).

• A⊗B is cl(AB) = cl({xy : x ∈ A, y ∈ B})

• A _ B is {x ∈W : for all y ∈ A, xy ∈ B}

• A→ B is {x ∈W : for all y ∈ I(A), xy ∈ B}

• A⊕B is cl(A ∪B)

• A ∨B is cl(I(A) ∪ I(B))

• A&B is A ∩B

A formula A is valid in a model if r ∈ Ap, i.e., Ap = W . A formula is valid if it is valid in all models.
It is easily shown by induction on formulas that all green formulas valuate to ⊥ or >.

Lemma 1 For every green formula E, Ep 6= >p if and only if Ep = ⊥p.

It should now be clear why A⊗B (and A∨B) is always red: we cannot guarantee that it will always valuate
to > or ⊥ even if A “and” B are green. In the syntactic proof theory of ACL, this property of ⊗ is reflected
by the impermutability of its introduction rule with respect to certain structural rules. The constant > can
be designated red or green: it makes little difference in this case.

An important consequence of interpreting ⊥ as W\{r} is that A⊕−A is valid. Note that showing
r ∈ A _ B is equivalent to showing that A ⊆ B. Thus if r 6∈ Ap then Ap ⊆ ⊥p and therefore r ∈ −Ap.
Thus r ∈ Ap ∪ −Ap ⊆ cl(Ap ∪ −Ap).

An even more important consequence is that Peirce’s formula in the form ((P _ E)→ P) _ P is valid
as long as E is green. P can be arbitrary (the occurrence of→ is stronger than _ in that position). If r ∈ P
(r ∈ P p) the result is obvious since then (P _ E) → P ⊆ P = W because P is upwardly closed. If r 6∈ P ,
then r ∈ (P _ E) since ⊥ ⊆ E (all green formulas valuate to ⊥ or >). Then, since rr = r, we also have
(P _ E)→ P ⊆ P .

The syntactic consequences of the validity of this version of Peirce’s formula are profound. It means that,
upon encountering a green formula as the current or stoup formula in a proof, contraction is enabled, not
just on the green formula itself but on all formulas at that point in the proof.

The closure operator is not needed in all the cases of Ap. In the cases of ⊗, ⊕ and 0, the sets defined
are already upwardly closed even without applying the closure operator cl. For example, AB is upwardly
closed if either A or B is a fact: if xy ∈ AB with x ∈ A and y ∈ B, and xy � z, then xyc = z for some c
with x ∈ A and yc ∈ B because y � yc and B is upwardly closed; thus z = xyc ∈ AB. Similarly, the union
of two upwardly closed sets remains upwardly closed. It would be simpler to allow all upwardly closed sets
to be facts, but completeness would be lost. The cases that require the cl operator above correspond to the
connectives with non-invertible right introduction rules in our sequent calculus. If all upwardly closed sets

6

are facts, or if ACL is restricted to those connectives that do not require the closure operator cl, then these
phase models are perhaps better seen as Kripke models: u ∈ Ap can be read as “u |= A.”2.

The constant 0 is not necessarily interpreted by the empty set, which is to be expected in phase semantics.
The completeness proofs of such semantics typically define a set of multisets of formulas and multiset union
as the monoid operation. This means that we cannot guarantee that these multisets will be consistent (does
not derive 0), because the union of two consistent multisets may become inconsistent. In the phase semantics
of linear logic, 0 is interpreted by W⊥. However, our “⊥” has an entirely different meaning than ⊥ in linear
logic. Consistency can only be guaranteed at the root, which has the property rr = r, (i.e., it can be a set
as opposed to a multiset). In models with a non-empty 0p, the empty set, which is upwardly closed, is not
a fact.

It easily holds that 0p ⊆ Ap for all formulas A. The largest possible 0p is ⊥p and the smallest possible ⊥p

is the empty set, but these cases only occur if D is just a two-element boolean algebra. In terms of Kripke
style semantics, the fact that 0p may not be empty means that there will be possible worlds that “force” 0.
Such kinds of Kripke models are not unknown [Vel76, ILH10]. Furthermore, because the root world cannot
be in 0p, there is still no model for 0 (or for ⊥).

For another example of reasoning with this semantics, one can check that (A⊗B) _ A is valid, confirming
the admissibility of weakening as follows. We need to show that r ∈ (A⊗B) _ A. This means showing that
(A⊗B)p ⊆ Ap. By Ap is upwardly closed and x � xy, so ApBp ⊆ Ap. Thus (A⊗B)p = cl(ApBp) ⊆ cl(Ap).
But cl(Ap) = Ap since Ap is a fact.

The validity of Peirce’s formula forms the core of ACL. In the form ((P _ E) → P) _ P , or (−P →
P) _ P , it implies the admissibility of contraction on the right-hand side of sequents. In syntactic proof
theory it is possible to embed this principle as an inference rule:

−P ` P
` P

Peirce’s formula also implies the admissibility of a counterpart to itself: (P _ P _ E) _ P _ E. This
formula implies the admissibility of left-side contractions

P, P ` E
P ` E

This counterpart of Peirce’s formula (disregarding colors) is provable in intuitionistic logic (if _ is replaced
by →, by λxλy.xyy), while Pierce’s formula is not. What is important to note however, is that this formula
can also be proved with contraction on the right. Using standard sequent calculus rules:

P ` P P → Q ` P → Q,Q

P,P → (P → Q) ` P → Q,Q

P → (P → Q) ` P → Q,P → Q

P → (P → Q) ` P → Q

` (P → (P → Q))→ P → Q

The proof uses weakening (on Q) and contraction on the right, but not on the left. The admissibility of
Peirce formula is stronger, and implies the admissibility of contraction on both the left and right-hand sides
of sequents. One might call it a self dual principle. It replaces the duality of ? and !, where one is used for
contractions on the right while the other one is used on the left.

The semantics also determine the validity of the following examples

• A _ (A⊗ A) is not valid, but A → (A⊗ A) is valid (because of the vv = v assumption). This shows
that linearity is present and distinguishable.

2Under this interpretation, u |= A→ B holds iff for all v, vv = v and v |= A implies uv |= B. Under the global assumption
that vv = v, i.e, I(W) = W , we can show that this condition is equivalent to the traditional Kripke model definition of
intuitionistic implication: for all v � u, if v |= A then v |= B. The argument uses the properties noted above: if u |= A→ B,
and if v |= A for v � u, then with the assumption that vv = v it follows that uv � vv = v � uv, and so v |= B.

7

• (A _ B) _ (A → B) is valid. This is dereliction. The converse is not valid unless B is green.
A⊗B _ A&B is also valid (because of weakening).

• [A ⊗ (A → B)] _ B is not valid, but [A ⊗ (A → B)] → B is valid. This is consistent with the linear
logic translation that A→ B is !A−◦B. However, !(A⊗B)−◦!A holds if weakening is always available.

• (A&B) _ (A⊗B) is not valid but (A&B)→ (A⊗B) is valid.

• (A _ B) _ (−A ⊕ B) is valid, but the converse (−A ⊕ B) _ (A _ B) is only valid if B is green.
A _ E and A→ E are equivalent when E is green.

• Several other important properties, mostly inherited from PCL [LM13b], should also be noted. These
include the fact that none of the negations ¬, ∼, −, and a are involutive. In particular, −−A _ A is
not valid: our ⊥ is not the same as the ⊥ of linear logic. We do have that ¬¬E → E and −−E _ E are
valid if E is green. It also holds as an admissible rule that if −−A is valid, then A is valid. Additionally,
the De Morgan law −(A&B) _ −A⊕−B is valid: the others cases are already intuitionistically valid:
i.e., they do not require ⊥ to be green.

The following model, with three distinct worlds r, q and qq, verifies several of the examples above:

r

q ∈ a, c

qq ∈ a, b, c

Here it is assumed that qq = qqq = qqqq. All upwardly closed sets in this model are facts. This means that
cl(S) = S for all upwardly closed S: this is an intuitionistic Kripke frame, but with q 6= qq. If u ∈ Qp we
will say that “u forces Q.” The interpretation of the atoms a, b, c are that ap = cp = {q, qq} and bp = {qq}.
In other words q forces a, c, and qq forces a, b, c. For example, r forces a→ b since the only world above r
that has the property uu = u is qq. But r 6∈ a _ b because q ∈ a but rq = q 6∈ b. Another example: q ∈ a& c
but q 6∈ a⊗ c because qq 6= q. The same model also shows that ¬ and − are not involutive negations in ACL:
let d be a red atom that is not forced at any of the worlds. Then all worlds above r forces ¬¬d and −−d
because they force ⊥ (⊥p = {q, qq}), but they do not force d, and thus r 6∈ −−d _ d and r 6∈ ¬¬d → d.
The same model also plays the part of an intuitionistic Kripke model and shows that b⊕ ∼b is not valid, and
that ∼∼b→ b is not valid (regardless of the color of b), since r ∈∼∼b but r 6∈ b.

Our semantics preserve the advantage of Kripke semantics in the existence of small but effective counter-
models. However, it should be noted that the monoid’s closure property also diverges from what is typically
expected in Kripke semantics. The countermodel for ∼a⊕ ∼∼a requires a top world that “forces” 0:

r

u v ∈ a

uv ∈ 0, a

In this model 0p = {uv} and ap = {v, uv}. It can be assumed that I(W) = W . The empty set is not a fact
since 0p must be the smallest fact. In the intuitionistic Kripke countermodel the top world is not needed,
but it is rather unavoidable if the frame is a monoid.

It is important to recognize that the meaning of affine and intuitionistic (red) formulas do not necessarily
collapse when mixed with classical (green) formulas. As an example of this property, the green formula
E⊕ ∼E is still not valid because the subformula ∼E = E → 0 is an intuitionistic implication. The root
world is the only classically consistent world (i.e., consistent with respect to ⊥) The validity of red formulas
and subformulas are thus determined by more than just the root. Another example is that E _ E ⊗ E is
not valid even with the green E.

8

[Θ : A],Γ; ∆Θ ` A
Γ; ∆Θ ` A Lock

Γ; ∆Θ ` A
[Θ : A],Γ; ∆ ` e Unlock

Γ; ∆, A ` B
A,Γ; ∆ ` B Dr

A,Γ; ∆ ` e
Γ; ∆, A ` e Pr

Γ; ∆, A ` B
Γ; ∆ ` A _ B

_ R
Γ; ∆1 ` A Γ; ∆2, B ` C

Γ; ∆1∆2, A _ B ` C _L
A,Γ; ∆ ` B

Γ; ∆ ` A→ B
→ R

Γ;` A Γ; ∆, B ` C
Γ; ∆, A→ B ` C →L

Γ; ∆1 ` A Γ; ∆2 ` B
Γ; ∆1∆2 ` A⊗B

⊗R
Γ; ∆, A,B ` C

Γ; ∆, A⊗B ` C ⊗L
Γ; ∆ ` Ai

Γ; ∆ ` A1 ⊕A2
⊕R

Γ; ∆, A ` C Γ; ∆, B ` C
Γ; ∆, A⊕B ` C ⊕L

Γ; ∆ ` A Γ; ∆ ` B
Γ; ∆ ` A&B

&R
Γ; ∆, Ai ` C

Γ; ∆, A1 &A2 ` C
&L

Γ;` Ai

Γ; ∆ ` A1 ∨A2
∨R

A,Γ; ∆ ` C B,Γ; ∆ ` C
Γ; ∆, A ∨B ` C ∨L

Γ; ∆, a ` a Id
Γ; ∆ ` > >R Γ; ∆, 0 ` A 0L

Γ; ∆,⊥ ` e ⊥L

Figure 1: The Unified Sequent Calculus LAC. e must be a green atom or the constant ⊥

4 A Single Conclusion Sequent Calculus

Various choices can be made in designing a proof system for ACL. The Kripke-like semantics suggests
a system similar to the Beth-Fitting intuitionistic tableaux [Fit69], which is often written as a multiple-
conclusion version of intuitionistic sequent calculus. This is the approach we used in PCL because, when
converted to a natural deduction form, it offered more opportunities to assign computational meaning to
proofs. We in fact showed how the proof system of PCL naturally suggested a form of dynamic scoping for
continuation variables, and devised an abstract machine to realize this interpretation. While these options
are also available for ACL, for purely proof-theoretical study we first choose a simpler, single-conclusion
sequent calculus. While multiple conclusions offer more flexibility, a single conclusion version offers a few
more invariants that will be useful in proving cut elimination.

The sequent calculus LAC is found in Figure 1. Here, ∆ is a multiset but Γ is a set and A,Γ does
not preclude the possibility that A ∈ Γ. Weakening and contraction in Γ, and weakening in ∆, hold as
admissible rules. The semantic interpretation of a sequent Γ; ∆ ` A is as for the formula Γ& → (∆⊗ _ A),
where Γ& is the &-conjunction over formulas in Γ and ∆⊗ is the ⊗-conjunction over formulas in ∆. An
empty Γ or ∆ means >. Elements [Θ : A] are treated as any other formula in Γ, and has the same meaning
as −(Θ⊗ _ A). The special notation is used so that this formula can only be principal as part of Unlock.
Unlock is a focused version of the→ L rule combined with the ⊥L and ⊗L rules. (see Corollary 5 of Section
6 for further explanation). Intuitively, from a computational perspective, one can regard [Θ : A] as a form of
closure: Lock saves not only a copy of the current continuation but also a part of its operating environment.
The continuation is no longer stateless.

Although Lock can be applied at any point in a proof, the effect of contraction is only available when
Unlock can be applied. Thus if a formula has no green subformulas, it can only have a non-classical proof.
We informally refer to the singleton formula on the right-hand side as the stoup. The stoup is never empty.
A formula A is provable if ;` A is provable.

Many linear logic proof systems use dual contexts on the left (and sometimes right) hand side in sequents.
If one examined the part of LAC that only unifies intuitionistic logic with affine-linear logic, then this sequent
calculus is similar to that of Lolli [HM94], Forum [Mil96], as well as several other systems including LU
[Gir93], DILL [Bar96], and Andreoli’s focusing sequent calculus [And92], where the practice likely originated.

The following are sample proofs. The first is a proof of a version of the excluded middle, A⊕−A (A⊕A _

9

⊥), and the second is that of a version of the double-negation axiom, ∼−A _ A (((A _ ⊥)→ 0) _ A).

;A ` A Id

;A ` A⊕−A ⊕R

[: A⊕−A];A ` ⊥ Unlock

[: A⊕−A];` −A _ R

[: A⊕−A];` A⊕−A ⊕R

;` A⊕−A Lock

;A ` A Id

[: A];A ` ⊥ Unlock

[: A];` −A _ R
[: A]; 0 ` A 0L

[: A];∼−A ` A → L

;∼−A ` A Lock

;` ∼−A _ A
_ R

The proofs will fail if ⊥ was replaced with a red formula, such as 0 (A⊕ ∼A remains unprovable). On the
other hand, if 0 was replaced with ⊥ in the proof of ∼−A _ A, then that proof will also fail, unless A is
green (⊥_ A holds only for green A). None of the negations of ACL are involutive without conditions, but
the negations can be mixed to give the desired computational effect (i.e., the C control operator). A slight
adjustment to the proof of ∼−A _ A also proves a version of Peirce’s formula, (−A→ A) _ A: replace 0L
with an Id rule.

Given the semantic validity of the Peirce-like formula (−A → A) _ A, it would be valid to design
structural rules of the following forms:

−A,Γ; ∆ ` A
Γ; ∆ ` A Lock

Γ; ∆ ` A
−A,Γ; ∆ ` e Unlock

Here, the Unlock rule can be seen as just a special case of → L, since ⊥ → e is valid for any green e. Indeed
these simplified rules are enough for the examples above. However, they are not enough for cut-elimination.
The most crucial case of cut-reduction is permutation of cut above a contraction. In particular, consider:

Γ1; ∆1 ` A
−A,Γ1; ∆1 ` e

Unlock

...
−A,Γ; ∆ ` A

Γ; ∆ ` A Lock
Γ; ∆′, A ` B

Γ; ∆∆′ ` B cut

Multiple, structural cuts are needed to cut the extra copies of A that appear as −A on the left-hand side,
which may be unlocked multiple times when green formulas are encountered on the right-hand side. These
multiple cuts will entail not only the need to contract copies of B at the end, but also copies of the multiset
∆′, which is not normally subject to contraction. For example, the proof of −A,Γ; ∆ ` A may require a
⊗R rule that splits the context ∆, but which copies −A to each premise: these copies will spawn multiple
copies of ∆′ in the resulting proof after cuts are applied to the subproofs. Thus Lock must be generalized to
contract more than just the right-hand side (stoup) formula. The given rules for Lock and Unlock in Figure
1 subsume the simpler cases since we can choose Θ to be empty (thus representing the formula >). Clearly
the generalized Lock still represents instances of (−P → P) _ P , with P replaced by Θ⊗ _ A: the rule is
semantically sound. The Unlock rule optionally retains [Θ : A] inside Γ in the premise.

10

An example of a formula that requires not just the stoup formula to be copied by Lock is the following:

; b ` b
b;` b Dr

; a ` a
b; b _ a : a

_ L

[b _ a : a], b;` e Unlock

[b _ a : a];` b→ e
→ R

; e ` e
[b _ a : a]; (b→ e) _ e ` e _ L

[b _ a : a], (b→ e) _ e;` e Dr ; b _ a, a ` a
[b _ a : a], (b→ e) _ e; b _ a, e→ a ` a → L

(b→ e) _ e; b _ a, e→ a ` a Lock

;` (b _ a) _ ((b→ e) _ e)→ (e→ a) _ a
→/_ R∗

Here, e is a green atom and a is a red one (b is arbitrary). This mixture of intuitionistic and affine implication
requires that the premise b _ a be copied because of the requirements of → L.

The Pr rule corresponds to the counterpart to the Peirce-like formula: (A → −A) _ −A. It is in fact
possible to derive a rule similar to Pr using the generalized Lock and Unlock rules:

Γ; ∆, A,A ` e
[A : e],Γ; ∆, A ` e Unlock

Γ; ∆, A ` e Lock

That is, contraction inside the multiset context also becomes valid when a green e is found in the stoup. The
generalized Lock rule captures not only the Peirce-like formula for right-side contraction, but also for left-side
contraction. This property is crucial for cut elimination to succeed. The Pr rule is not technically equivalent
to this derived rule because of our dyadic representation of sequents (using both sets and multisets). Thus
Pr is kept as a separate inference rule. It is needed to prove formulas such as (A→ −A) _ −A.

The key contrast between the role of green formulas and that of the ? operator in linear logic can be
described as dynamic versus static approaches to allowing contraction. Once we place a ? before a formula,
it can be contracted anywhere. However, ?A only enables contraction on itself. In contrast, the presence
of a green formula in the stoup effectively switches the proof into a “classical mode:” contractions become
unlocked on all formulas, left and right. Conceptually, this means that we do not have to keep ? on all
the formulas that may at some point require contraction. Subformula occurrences of green formulas mean
that it is possible but not necessary for a proof to include classical fragments. They determine where in the
proof , as opposed to on which formulas, are contractions allowed. Classical reasoning is thus localized inside
segments of proofs. Compared to the example of Section 1, although (A→ B)⊕E is green (if E is green), A
cannot escape its scope unless B is also green: intuitionistic implication survives the mixture with classical
logic. In proving a formula such as Peirce’s: ((P _ E) → P) _ P , only E needs to be green whereas in
linear logic, clearly more than one ? would be needed. In ACL, there is no restriction on the formula P : no
? is required for it to be contracted. Only the inner P _ E becomes a classical implication: the others keep
their strengths in the sense that the proof segment below Unlock stays non-classical, and must stay as such.

It should also not be assumed that the presence of a green e in the stoup cancels the meaning of all
non-classical connectives and constants. For example, while ¬¬E → E is provable, ∼∼E → E ((E → 0)→
0)→ E is still not provable. The constant 0, being red, cannot enable a contraction on E. Also, it does not
hold that (E1 & E2) _ (E1 ⊗ E2) even when E1 and E2 are both green (A⊗B is always red). It would be
entirely incorrect to suppose that the entire subproof above a sequent with e in the stoup becomes classical.
Once the green e vacates the stoup, by an Unlock for example, the classical mode is canceled. The contracted
formulas do not lose their non-classical strength. Only in the “purely classical” fragment, where all atoms
are green and 0 and ⊗ are not used, does LAC become classical logic.

11

4.1 Fragments of ACL

Coloring information is used in LAC to enforce soundness: classical versus non-classical soundness. Without
the common restriction on Unlock, Pr and ⊥L, it is easy to see that LAC degenerates into another proof
system for classical logic, with some redundant symbols and rules.

We enumerate some important fragments of ACL, all determined by the subformula property. However,
ACL is more than the sum of these fragments because connectives can mix without restriction.

• Purely Negative ACL. Restrict to &, →, _, ⊥ and >. The semantic interpretations of these
connectives do not require the closure operator cl. This fragment is the core of ACL. It can be given
a simpler, Kripke style semantics. It is already possible to have control operators in this fragment,
without becoming entirely classical.

• Affine-Linear and Classical Logic. Do not use →.

• Classical Logic. Color all atoms green and restrict to &, ⊕,→, ⊥ and >. In this fragment, ¬ becomes
an involutive negation. The color restriction in the Unlock, Pr and ⊥L rules becomes meaningless.

• Intuitionistic Logic. Color all atoms red and restrict to &, ∨, →, 0. All formulas are red. > can be
replaced by 0 _ 0, or simply be considered red. All proofs, even partial proofs, are intuitionistic once
useless Locks are discarded.

4.2 Note on Intuitionistic Disjunction

The connective ∨ is included in ACL for the sake of intuitionistic completeness without a classical collapse.
With ⊕, all the propositional intuitionistic axioms are provable except (A→ C)→ (B → C)→ (A⊕B)→ C
where C is red. Using a green C will mean a collapse of → into classical implication. However, including
∨ as a connective also has consequences. Note that the ∨R rule folds in a weakening: elsewhere weakening
can be pushed to the initial rules. A ∨B is similar to !A⊕!B in linear logic, which requires an empty linear
context. In the affine case, the context must be weakened away. It is also possible to simulate !A as A∨0, and
consequently, intuitionistic implication becomes equivalent to (A∨0) _ B. It holds that (A∨B) _ (A⊕B).
A ∨ ¬A is also provable. Other fragments of ACL become possible with this new connective, including our
previous effort, polarized control logic (PCL), which does contain ∨ but not ⊕, _ and ⊗. However, PCL
models are equivalent to purely intuitionistic models where I(W) = W , thus the difference between ⊕ and
∨ disappears.

Our framework allows other connectives to be considered as well. In particular, we can define a “purely
intuitionistic conjunction” with semantic interpretation (A ∧ B)p = cl(I(Ap)I(Bp)), and the following
introduction rules

Γ;` A Γ;` B
Γ; ∆ ` A ∧B ∧R

A,B,Γ; ∆ ` C
Γ; ∆, A ∧B ` C ∧L

Like ∨ and ⊗, the color of ∧ is always red. In the purely non-linear fragment without ⊗ and _, ∧ has the
same provability properties as & (and is therefore not required for intuitionistic completeness). In that case,
the affine-linear context can be required to contain at most one formula, and therefore serves the purpose
of a left-side stoup in proofs. The inclusion of both & and ∧ may also be appropriate in a focused sequent
calculus, since & is negative (synchronous on the left) and ∧ is positive (see Section A).

5 Cut Elimination

The proof-theoretic novelty of a logical system depends on the details of its cut-elimination proof. A system
that only repackages old ideas is likely to have a cut-elimination proof that surprises no one: there will
be nothing not found in other such proofs. For example, the polarities of a focused proof system are
significant in this respect because of their meaningful effect on cut-elimination: the subproof that contains
the synchronous cut formula is “attractive.” Thus the importance of our cut-elimination proof is far more

12

than that cuts are admissible, for it establishes that ACL is truly a new logical system that requires its
own, unique proof theory. We should also mention at this point, that our coloring scheme does not cause
cut-elimination to become confluent as in a focused system, for in the worst case (with all green formulas),
the system degenerates into classical LK. ACL is designed with properties other than focusing in mind. The
problem of confluent cut reduction is orthogonal: it can still be achieved by adding focusing (i.e., positive
versus negative polarization) and we describe this process in depth in Section A.

In order to consider cut-elimination carefully, let us regard modus ponens in the following forms.

. . . ` A⊗ (A _ B)

. . . ` B
. . . ` A& (A→ B)

. . . ` B

Other forms, that use other combinations of _, →, & and ⊗ are not generally valid, at least not without
restrictions. This analysis implies that the cut rules relative to LAC should be in two forms:

Γ; ∆1 ` A Γ; ∆2, A ` B
Γ; ∆1∆2 ` B

cut1
Γ;` A A,Γ; ∆ ` B

Γ; ∆ ` B cut2

Lessons from linear logic may suggest that cut1 (and cut2) cannot be admissible, for a contraction in the
form of Lock is possible on the cut formula A in the left subproof. We do not have the ! operator and the Pr
rule is not an exact analogue. This suggests that the non-contractable context ∆2 in cut1 (and ∆ in cut2)
should be empty, lest we run into the following kind of scenario:

` A,A
` A A,∆ `

∆ ` cut −→

` A,A A,∆ `
∆ ` A cut

A,∆ `
∆∆ ` cut

In linear logic the situation is avoided because A must be ?A, and (left-side) promotion of ?A necessitates a
contractable context (!∆): thus the cut is permuted to the point of promotion in the right subproof. Here,
however, we must permute the cut up to the points where the contractions are unlocked, in the left subproof.
This is a type of what Parigot calls structural reduction as found in λµ-calculus: it enables the capture of
continuations in a computational interpretation. The cut-elimination procedure for ACL is more delicate
than that of linear logic because its structural rules are more delicate. The semantics clearly show that
the cuts are sound as written. Although this is no guarantee that cut elimination will work, it gives us
considerable confidence to proceed.

By the admissibility of both weakening and contraction in the Γ context, we could have written the rules
multiplicatively with respect to Γ as well, but that would only confuse the issue here. However, we will not
hesitate to split Γ into Γ1Γ2 whenever we find it to be more convenient.

Formulas [Θ : A] cannot be cut formulas because they cannot appear on the right-hand side. Formulas
inside the [] are not subject to cut rules. See Corollary 5 for further clarification.

With a minor exception in the case of the ⊥L rule, the reduction of cut with respect to the introduction
rules is standard: our introduction rules are no different from those found elsewhere, such as in the logic
programming language Lolli [HM94]. The structural rules dominate the cut-elimination proof. The proof
is by simultaneous induction on both cut1 and cut2. The inductive measure is the lexicographical ordering
consisting of the size of the cut formula, followed by the number of Lock rules on the cut formula above the
cut, followed by the number of Pr rules on the cut formula above the cut, followed by the number of Dr
rules on the cut formula above the cut, followed by the heights of subproofs.

We detail the permutation of cut above Lock, Unlock, Pr and Dr below.

The case of Lock

13

This case of the cut-elimination procedure demonstrates the presence of structural as opposed to logical
cuts. The scenario for permuting cut2 above Lock is the following

Γ1; ∆1 ` A
[: A],Γ1; ∆1 ` e1

Unlock

...
[: A],Γ;` A

Γ;` A Lock
A,Γ′; ∆′ ` B

ΓΓ′; ∆′ ` B
cut2

The figure means to convey that there could be multiple Unlocks above the left subproof, possibly stacked.
Note that although the affine-linear context is initially empty in the left subproof (regarding the proof from
the bottom), it may become non-empty when Unlock is applied. This cut is reduced as follows:

Γ1; ∆1 ` A
Γ1∆1;` A Dr∗

A,Γ′; ∆′ ` B
Γ′Γ1∆1; ∆′ ` B

cut2

[∆′ : B],Γ′Γ1∆1;` e1
Unlock

[∆′ : B],Γ′Γ1; ∆1 ` e1
Pr∗

...
[∆′ : B],ΓΓ′;` A A,Γ′; ∆′ ` B

[∆′ : B],ΓΓ′; ∆′ ` B
cut2

ΓΓ′; ∆′ ` B Lock

The illustration generalizes to cuts on multiple branches and to stacked cuts, in which case [∆′ : B] is
not removed from Γ until the topmost occurrence of Unlock. Naturally we need not be concerned with
duplication inside the intuitionistic (Γ) context: we chose a multiplicative presentation of these contexts
here for clarity.

The key observation here is that the contractability of ∆1 is not determined statically by the formulas,
not by ! or ?, but dynamically, by the color of the right-side formulas. When Unlock is available, so is Pr,
which allows ∆1 to be contracted.

The case for cut1 is a simpler version of the cut2 case because it does not require the Pr rule. Compu-
tationally, Lock reflects the capturing of a continuation ((A→ B) or (A _ B)) and applying it to multiple
places in a term: this type of control operation is known to be able to lead to non-termination. The correct
strategy is needed to guarantee termination.

For both cut1 and cut2, there is another case where the cut formula is inside the affine-linear multiset
being locked. For example:

Γ; ∆ ` A

Γ′1; ∆′1Θ, A ` B
[Θ, A : B],Γ′1; ∆′1 ` e1

Unlock

...
[Θ, A : B],Γ′; ∆′Θ, A ` B

Γ′; ∆′Θ, A ` B Lock

ΓΓ′; ∆∆′Θ ` B
cut1

14

Such a case reduces to

Γ; ∆ ` A

Γ; ∆ ` A Γ′1; ∆′1Θ, A ` B
ΓΓ′1; ∆∆′1Θ ` B

cut1

[∆Θ : B],ΓΓ′1; ∆′1 ` e1
Unlock

...
[∆Θ : B],ΓΓ′; ∆′Θ, A ` B

[∆Θ : B],ΓΓ′; ∆∆′Θ ` B
cut1

ΓΓ′; ∆∆′Θ ` B Lock

So we have merely replaced locking A with locking ∆.

The case of Dr
The potential problem here is the effect of Dr on the applicability of cut2, which requires an empty

affine-linear context:

Γ;B ` A
B,Γ;` A Dr

Γ1; ∆1, A ` C1

A,Γ1; ∆1 ` C1
Dr

...
A,Γ′; ∆ ` C

B,ΓΓ′; ∆ ` C
cut2

The notation
... represents multiple instances of Dr on the cut formula A in the right subproof. A can be

ignored above the topmost Dr (weakened). This cut is reduced as follows:

Γ;B ` A Γ1; ∆1, A ` C1

ΓΓ1; ∆1, B ` C1
cut1

B,ΓΓ1; ∆1 ` C1
Dr

...
B,ΓΓ′; ∆ ` C

The permutation of Dr above cut1 is relatively trivial. Since Dr corresponds to dereliction in linear logic,
this cut-permutation technique is also found in several other cut-elimination proofs. But the cases of Lock,
Pr and Unlock are unique to ACL.

The case of Unlock
This case also appears in PCL, but was argued for a multiple-conclusion proof system. It concerns

permuting cut above Unlock (and to a lesser extent ⊥E). We have restricted e in Unlock and ⊥E to be
a green atom or ⊥. In fact this restriction can be relaxed to allow any formula E: one can check that this
relaxation preserves semantic soundness since green formulas are characterized by exactly the same semantic
properties as green atoms. The restriction was used for two reasons. First, technically speaking, “sequent
calculus” should not look beyond the top-level form of a formula to determine which inference rule applies.
The second reason is that it allows us to write a simpler cut elimination proof.

Let us temporarily refer to the relaxed version of Unlock as Unlock′. A crucial case of cut-elimination
for LAC is the following:

Γ; ∆1Θ ` A
[Θ : A],Γ; ∆1 ` E

Unlock′
Γ; ∆2, E ` B

[Θ : A],Γ; ∆1∆2 ` B
cut1

A similar case occurs with the ⊥L rule and with cut2.
Cut-elimination in sequent calculus usually calls for the cut to be permuted parametrically above each

inference rule to reach a “key case” where the cut formula in both sequents are the principal formulas of

15

introduction rules. That strategy clearly would not work here. However, if E was a green atom, then the
cut can only be permuted parametrically above the right-side subproof (the “attractive” subproof) until an
Id rule is reached, at which point the cut is eliminated by substitution as in natural deduction. If the cut
formula e is ⊥, then we similarly permute the cut upwards until the right-proof branch reaches ⊥L, at which
point the right-side formula in the conclusion of ⊥L must be green (some Γ; ∆′2,⊥ ` e′), which means the
cut can then be replaced by:

Γ; ∆1Θ ` A
Γ; ∆1∆′2Θ ` A

(weakening)

[Θ : A],Γ; ∆1∆′2 ` e′
Unlock

We can also generalize cut-elimination to allow the unrestricted versions of Unlock (and ⊥E and Pr) by
showing that their uses can be permuted to atomic cases:

• In a cut-free proof, Unlock′ can be replaced by Unlock.

This is proved by showing that an Unlock′ rule on a green formula E can always be permuted to Unlock′

on its subformulas. We show the most interest case of the transformation

Γ; ∆Θ ` A
[Θ : A],Γ; ∆ ` B _ E

Unlock′ −→

Γ; ∆Θ ` A
Γ; ∆Θ, B ` A (weakening)

[Θ : A],Γ; ∆, B ` E Unlock′

[Θ : A],Γ; ∆ ` B _ E
_ r

The admissibility of weakening in ∆ is thus crucial for the cut-elimination argument.
Results analogous to the equivalence between Unlock and Unlock′ also hold for ⊥L and for the Pr rule

(Lemma 2 below).

The case of Pr
The methods used in the previous cases are combined in the case of permuting cut above the Pr rule.

There are two principal scenarios to consider:

A,Γ; ∆ ` e
Γ; ∆, A ` e Pr Γ; ∆′, e ` R

Γ; ∆∆′ ` R
cut1

and

Γ; ∆′ ` A

Γ1; ∆1, A ` D
A,Γ1; ∆1 ` D

Dr

...
A,Γ; ∆ ` e
Γ; ∆, A ` e Pr

Γ; ∆∆′ ` e
cut1

The first (left) case is solved by restricting e to be a green atom or ⊥, just as in the case for Unlock, then
showing that the restriction can be relaxed to any green formula using a separate set of permutations. One
example should suffice to convince:

A,Γ; ∆ ` B ⊕ E
Γ; ∆, A ` B ⊕ E Pr −→

A,Γ; ∆ ` B ⊕ E
[: B ⊕ E], A,Γ; ∆ ` E Unlock

[: B ⊕ E],Γ; ∆, A ` E Pr

[: B ⊕ E],Γ; ∆, A ` B ⊕ E ⊕R

Γ; ∆, A ` B ⊕ E Lock

A green (classical) disjunction is only “additive” in a superficial sense. This treatment of B ⊕ E in fact
suggests the following, alternative introduction rule for green disjunctions:

[: B],Γ; ∆ ` E
Γ; ∆ ` B ⊕ E ⊕ER

16

The rule combines a Lock with a ⊕-introduction that selects E. It also anticipates another ⊕-introduction
after Unlock, this time selecting B. The rule is sound and complete as it can emulate the original introduction
(with weakening). However, this rule is evidently multiplicative. Since all other green formulas (safe for
atoms) are already asynchronous, this rule suggests a simple normal form for LAC proofs: all green formulas
on the right can be decomposed immediately down to atoms, or to ⊥.

The argument is similar in the cases of &, → and _ (weakening is required in the cases of → and _).
However, had we naively designated B ⊗ C to be green if B “and” C are green, then such a permutation
cannot be made (the context is split below Pr). Semantically, B ⊗ C is always red because we cannot
guarantee that it will be valid above the root even when B and C are both green. This rather abstract
semantic explanation is represented syntactically in the non-permutability of ⊗ above Pr (and Unlock).

The fact that the restriction on Unlock, Pr and ⊥L can be all be relaxed is an important property of
ACL, since the relaxed forms will be used in the completeness proof and in the natural deduction system.

Lemma 2 The restriction to e being a green atom or ⊥ in the Unlock, Pr and ⊥L rules can be relaxed to
allow any green formula E.

The other case of permuting cut with respect to Pr is relatively simple since the Pr rule can be duplicated
beneath to remove the additional copies of ∆′. That is, we permute the cut above instances of Dr on A: if
there are no such instances then the result follows from weakening. Otherwise we have:

Γ; ∆′ ` A Γ1; ∆1, A ` D
ΓΓ1; ∆1∆′ ` D

cut1

∆′ΓΓ1; ∆1 ` D
Dr∗

...
∆′Γ; ∆ ` e
Γ; ∆∆′ ` e Pr

∗

The arguments for cut2 are the same as for cut1.

Theorem 3 cut1 and cut2 are admissible in LAC.

5.1 Results Related to Cut Elimination

Another result, relatively easy to prove but which is crucial for completeness, is initial elimination.

Theorem 4 ;A ` A is provable for any formula A

The Unlock rule is a special case of _ L, but we wish to keep the effect integral (a focused effect):

Corollary 5 [Θ : A],Γ; ∆ ` B is provable if and only if −(Θ⊗ _ A),Γ; ∆ ` B is provable

The forward direction (soundness of focusing) follows because Unlock can be emulated with → L, ⊥L, _ R
and ⊗L. The reverse direction (completeness of focusing) follows from cut elimination and initial elimination
because we can show that

[Θ : A];` −(Θ⊗ _ A)

is provable. This corollary is also critical for completeness.
The most important use of focusing in the Unlock rule is that the right premise of the implicit→ L must

be the conclusion of an initial rule (⊥L). This represents a non-trivial use of focusing.
Another relatively obvious but important result is the following:

Proposition 6 If a formula is provable with an atom b colored red, then the same formula is provable with
b colored green.

17

This holds because a green atom can only lead to more proofs. The consequences of this lemma are significant.
Combined with cut elimination and initial elimination, it allows us to show that LAC has the substitution
property.

Theorem 7 The substitution property for LAC holds as follows:

1. If a formula A is provable with an atom b colored red, then A[C/b] is also provable for any formula C.

2. If a formula A is provable with an atom e colored green, then A[E/e] is also provable for any green
formula E.

Part 2 of this theorem follows from Lemma 2.
The other important consequence of Theorem 7 is that, were we to extend ACL to include second order

propositional quantifiers, then the colors of bound variables are not in question: universally quantified propo-
sitional variables are red, while existentially quantified ones are green. See Section 9 for further discussion.

We observe that, since ACL is intended as a unified logic, in the worst case, cut-elimination could
become as uncontrolled as in classical LK: in particular when all atoms are green. However, such uncontrolled
segments are localized in proofs. Cut elimination involving the Unlock and the Pr rules are all by substitution
as in natural deduction, without duplicating structure in the subproofs that end in these rules.

6 Soundness and Completeness

The soundness of LAC inference rules is argued by induction on the structure of proofs. In particular, Lock
is sound by the validity of the version of Peirce’s formula (−P → P) _ P , and Pr is sound because of its
counterpart (P → −P) _ −P . The Unlock rule is just a synchronized instance of → L. The other rules
can be checked to be sound case by case. For example, the soundness of the ⊕L rule holds since if Ap ⊆ Cp

and Bp ⊆ Cp then Ap ∪Bp ⊆ Cp and thus cl(Ap ∪Bp) ⊆ cl(Cp) = Cp.

The completeness proof of ACL differs from other phase semantic completeness proofs principally in the
following ways. Because of the meaning and central role of ⊥, the unit/root of the monoid that we build is
not the empty set or multiset. Instead, it is a maximally consistent set with the characteristics of Hintikka
sets. Also, instead of constructing a canonical model of all proofs, we build a countermodel for a formula
that’s assumed to be unprovable. In addition, our completeness proof differs from others in that it requires
cut-elimination, for otherwise there is no mention of the Lock rule in the proof.

Assuming that a formula A is not provable, we show the existence of a countermodel as follows. A set or
multiset Θ is said to be consistent with respect to a formula P if P is not derivable from it. The root world
of the model will be a set that’s maximally consistent with respect to A and to ⊥. In the following we write
Γ; ∆ 6` A to mean Γ; ∆ ` A is not provable.

Lemma 8 If ; 6` A then ; 6` A⊕⊥.

This is a non-trivial lemma since A may be red. First, it is clear that ⊥ has no cut-free proof. Then we show
the contrapositive of the lemma. The essential argument is that, first, we show if A⊕⊥ is provable then it
should follow from ;` A or from [: A ⊕ ⊥];` A. In the second case, we show that a proof of [: A];` A can
also be constructed: when A ⊕ ⊥ is unlocked there must be a green subformula e of A in the stoup, which
means that if ⊥ becomes derivable from the left-hand side at this point, then so is e (by cut with ;⊥ ` e).
We can therefore continue to emulate the proof of A⊕⊥ to construct a proof of A. Since A⊕⊥ is provably
equivalent to −−A, this lemma shows that if −−A is provable then A is also provable. This admissibility
result is also easily verified semantically.

Lemma 9 If B ⊕ C,Γ; 6` A⊕⊥ then either B,Γ; 6` A⊕⊥ or C,Γ; 6` A⊕⊥

18

This lemma holds because A⊕⊥ is green. By Lemma 2 we can assume that the relaxed form of PR can be
used in proofs. If B⊕C,Γ; 6` A⊕⊥ then Γ;B⊕C 6` A⊕⊥ by the DR rule (arguing the contrapositive). But
then by the ⊕L rule either Γ;B 6` A⊕⊥ or Γ;C 6` A⊕⊥. Thus by the (relaxed) PR rule either B,Γ; 6` A⊕⊥
or C,Γ; 6` A⊕⊥. This is the only place where the Pr rule is needed in the completeness proof.

Define a proxy subformula B of a formula P to be either a subformula of P or a formula ∆⊗ _ B where
B and every D ∈ ∆ are subformulas of P . The Lock rule is implicitly applied to proxy subformulas.

For the purpose of the completeness proof, we extend the notion of the provability of Γ; ∆ ` B to allow
Γ to be an infinite set. Such a sequent is provable if Γ′; ∆ ` B is provable for some finite subset Γ′ of Γ.

Now we construct a countermodel CA as follows:

1. A possible world in W consists of a set Γ and a multiset ∆ of formulas that we simply write as Γ∆.
Let Γ∞ represent a multiset such that, for each distinct formula A in Γ, there are countably infinite
many occurrences of A in Γ∞ (and nothing else). This device type casts a set into a multiset and
simplifies some arguments. ∆ will always be a finite multiset so if A occurs in both ∆ and Γ, then it
is absorbed in Γ∞∆. The partial ordering is defined as Γ∆ � Γ′∆′ iff Γ∞∆ ⊆ Γ′∞∆′ where ⊆ here is
the multi-subset relation. The monoid operation is defined to be Γ∆ · Γ′∆′ = ΓΓ′∆∆′;

2. Construct the root world r = Γr as follows. Enumerate all proxy subformulas B of A and their
negations −B. Then construct Γr to be a maximally consistent set with respect to A⊕⊥ by inserting
each B or −B into Γr as long as Γr remains A ⊕ ⊥-consistent (by “inserting” we of course mean a
hypothetical construction to show that such a saturation exists). By Corollary 5, inserting −(∆⊗ _ C)
is equivalent to inserting [∆ : C]. Two other properties are assured:

(a) It cannot be the case that B and −B are both in Γr as that would mean that ⊥ and thus A⊕⊥
are derivable from Γr. Since Γr is ⊥-consistent, it must also be 0-consistent.

(b) If Γ; 6` A⊕⊥, then B⊕−B,Γ; 6` A⊕⊥ because ;` B⊕−B is provable and cut is admissible. By
Lemma 9, this means that in a maximally consistent saturation exactly one of either B or −B
will be inserted into Γr. With Γr thus saturated, it follows that any proper addition to Γr (limited
to the proxy subformulas of A and their negations) will render it ⊥-inconsistent. In other words,
either ΓrC = Γr or Γr;C ` ⊥ becomes provable. This is the most critical use of cut elimination
in the completeness proof. It confirms that the Lock rule, which is required to prove B⊕−B but
is otherwise not directly referred to in this proof, is required for completeness.

3. The worlds W consist of all pairs Γ∆ of proxy subformulas and their negations such that Γr ⊆
Γ. Furthermore, we can assume that the number of formulas in Γ\Γr is finite. This assumption
is important.

It is easily verified that Γr satisfy the requirements of being the root. I(W) corresponds to those worlds
where the proper multiset ∆ is empty.

The rest of the proof mostly emulates Okada.

4. For any formula A, let Pr(A) = {Γ∆ : Γ; ∆ ` A is provable}. By the admissibility of weakening,
Pr(A) is upwardly closed. The set of facts D of the model are restricted to be those subsets of W
that are equivalent to

⋂
Pr(Ai) where Ai ranges over an arbitrary collection of formulas A0, . . . Ai,

Clearly we have >p ∈ D since Pr(>) = W and ⊥p ∈ D since Pr(⊥) = W\{r}. D is certainly closed
under the cl operator as defined. Furthermore, if B ∈ D then {x : for all y ∈ A, xy ∈ B} ∈ D. Assume
that B =

⋂
Pr(Ci) and Γ∆ is in this set. Then for any ΓrΓ′∆′ ∈ A, we have that ΓΓ′; ∆∆′ ` Ci

is provable for all Ci. Since we can assume that Γ′ and ∆′ are finite sets and multisets, this means
that Γ; ∆ ` Γ′& → ∆′⊗ _ Ci is provable. Thus Γ∆ ∈

⋂
Pr(Γ′& → ∆′⊗ _ Ci) for all Ci, therefore

qualifying as a fact. Thus all the conditions required of facts are satisfied.

5. The valuation of atomic formulas is defined to be

ap = Pr(a) = {Γ∆ : Γ; ∆ ` a is provable}

19

Naturally, green atoms are mapped to ⊥p or >p since all Γ∆ above Γr derives ⊥ and therefore all
green formulas (by cut). The fact 0p =

⋂
D is Pr(0) = {Γ∆ : Γ; ∆ ` 0 is provable}. Clearly this is

the smallest fact since (by cut) Pr(0) ⊆ Pr(B) for all formulas B. 0p is not empty if 0 is a subformula
of the formula that’s assumed to be unprovable.

6. We can show that Bp = Pr(B) for all formulas B. However, for completeness it is only necessary
to show that ΓrB ∈ Bp and Bp ⊆ Pr(B). This is proved by mutual induction on the structure of
B. The cases for atoms and constants are trivial. We show a selection of representative cases for the
connectives.

For ΓrA ⊗ B ∈ (A ⊗ B)p = cl(ApBp): by inductive hypothesis ΓrA ∈ Ap, ΓrB ∈ Bp thus ΓrAB ∈
ApBp ⊆ cl(ApBp) =

⋂
{F ∈ D : ApBp ⊆ F}. But each F in cl(ApBp) is of the form

⋂
Pr(Ci) for

some collection of formulas Ci. If ΓrAB ∈
⋂
Pr(Ci) then Γr;A,B ` Ci is provable and by ⊗L so is

Γr;A⊗B ` Ci. Thus ΓrA⊗B is in each such Pr(Ci) and therefore in cl(ApBp).

Notice here we can apply cut elimination to show that in fact Pr(A⊗B) ⊆ (A⊗B)p, but this is not
necessary.

For (A ⊗ B)p = cl(ApBp) ⊆ Pr(A ⊗ B): by inductive hypothesis Ap ⊆ Pr(A), Bp ⊆ Pr(B) so
ApBp ⊆ Pr(A)Pr(B). By the ⊗R rule, Pr(A)Pr(B) ⊆ Pr(A⊗B). Since (A⊗B)p is the intersection
of all facts that contain ApBp and Pr(A⊗B) is a fact, it holds that (A⊗B)p ⊆ Pr(A⊗B).

For ΓrA ∨ B ∈ (A ∨ B)P = cl(I(Ap) ∪ I(Bp): by inductive hypothesis Γr, A ∈ Ap, Γr, B ∈ Bp but
since Ap, Bp are facts of the form PR(Ci), ΓrA

∞ ∈ I(Ap) and ΓrB
∞ ∈ I(Bp) (by the DR rule). So

ΓrA
∞ ∈ cl(I(Ap) ∪ I(Bp)) and likewise for ΓrB

∞. But cl(I(Ap) ∪ I(Bp)) is a fact, which is some
PR(Di). Thus by the ∨L rule, Γr, A ∨B;` Di also holds, so ΓrA ∨B ∈ cl(I(Ap) ∪ I(Bp).

For (A ∨ B)p = cl(I(Ap) ∪ I(Bp)) ⊂ PR(A ∨ B): inductive hypotheses give that Ap ⊂ PR(A) and
Bp ⊂ PR(B). Thus I(Ap) ⊂ PR(A) and I(Bp) ⊂ PR(B). This means that if Γ ∈ I(Ap) then Γ;` A
is provable and likewise if Γ ∈ I(Bp). By the ∨R rule, PR(A ∨ B) contains I(Ap) ∪ I(Bp). Now
cl(I(Ap) ∪ I(Bp)) is the intersection of all facts that contains I(Ap) ∪ I(Bp) and PR(A ∨B) is a fact,
thus if Γ∆ ∈ cl(I(Ap) ∪ I(Bp)) then Γ∆ ∈ PR(A ∨B). A subtlety here is that nothing is assumed for
∆: it does not have to be empty in the closure. The argument will fail if weakening is not embedded
into the ∨R rule.

Mutual induction is required in the case of implication. For ΓrA _ B ∈ (A _ B)p we need to show that
if Γ∆ ∈ Ap then Γ∆, A _ B ∈ Bp. By inductive hypothesis Ap ⊆ Pr(A) and ΓrB ∈ Bp =

⋂
Pr(Ci)

where Ci ranges over a collection of formulas. Thus if Γ∆ ∈ Ap then Γ; ∆ ` A is provable and Γr;B ` Ci

is provable. By the _ L rule this means that Γ; ∆, A _ B ` Ci is provable and so Γ∆, A _ B ∈ Bp

as well.

For (A _ B)p ⊆ Pr(A _ B), by inductive hypothesis ΓrA ∈ Ap and Bp ⊆ Pr(B). Thus if Γ∆ ∈
(A _ B)p then Γ∆, A ∈ Bp ⊆ Pr(B). So by the _ R rule we have that Γ∆ ∈ Pr(A _ B).

For the implication →, if A ∈ Ap then A∞ ∈ Ap ∩ I(W) (by the DR rule), and if Γ∆ ∈ Ap ∩ I(W)
then ∆ must be empty. With these observations similar arguments as for _ can then be applied.

7. Completeness then follows since Γr; 6` A and thus Γr 6∈ Pr(A), so Γr 6∈ Ap. That is, the unit/root of
the monoid is not found inside Ap (in terms of Kripke models, Γr 6|= A).

Theorem 10 A formula is provable in LAC if and only if it is valid in ACL.

One might expect the completeness proof to shed light on the question of decidability for ACL. Propo-
sitional affine linear logic is decidable [Kop95], and in [Laf97] Lafont gave a phase model proof. The models
of ACL are consistent with those of affine linear logic (facts are ideals). Although the model CA of the
completeness proof is infinite, it is possible to construct a quotient model by defining a congruence relation.
However, we are not able to duplicate Lafont’s arguments further because the quotient model is not finitely

20

s : [By1

1 . . . Byn
n : A]de ,Γ;Bx1

1 . . . Bxn
n ,∆ ` A

γd.s{x1/y1 . . . xn/yn} : Γ;Bx1
1 . . . Bxn

n ,∆ ` A Locke
t : Γ; ∆Θ ` A

[d]t : [Θ : A]de ,Γ; ∆ ` e
Unlocke

t : Γ; ∆, Ay ` B
t{x/y} : Ax,Γ; ∆;` B Dr

t : Γ∆;` e
!t : Γ; ∆ ` e Pr

s : Γ; ∆, Ax ` B
λx.s : Γ; ∆ ` A _ B

_ I
s : Γ; ∆1 ` A _ B t : Γ; ∆2 ` A

(s t) : Γ; ∆1∆2 ` B
_ E

s : Ax,Γ; ∆ ` B
λ!x.s : Γ; ∆ ` A→ B

→ I
s : Γ; ∆ ` A→ B t : Γ;` A

(s t) : Γ; ∆ ` B → E

s : Γ; ∆1 ` A t : Γ; ∆2 ` B
(s; t) : Γ; ∆1∆2 ` A⊗B

⊗I
s : Γ; ∆1 ` A⊗B t : Γ; ∆2, A

x, By ` C
let (x; y)=s in t : Γ; ∆1∆2 ` C

⊗E

t : Γ; ∆ ` ⊥
B(t) : Γ; ∆ ` e

⊥E (break)
t : Γ; ∆ ` 0

A(t) : Γ; ∆ ` A
0E (abort)

. : Γ; ∆ ` > >I x : Γ; ∆, Ax ` A Id

Figure 2: The Natural Deduction System NAC. e must be a green atom or ⊥ in Locke, Unlocke, Pr and
⊥E

generated. This is because there can be infinitely many proxy subformulas of a formula. To prove decidabil-
ity along these lines we would need to show that the number of possible formulas subject to Lock in a proof
is finite. It would be somewhat of a surprise, however, if ACL is not decidable since every model of ACL is
also a model of affine linear logic. For the time being, we leave the question of propositional decidability to
future work.

7 Natural Deduction and Computation

This section demonstrates the computational significance of ACL by defining a natural deduction system
NAC (Figure 2) with proof terms. Although terms can also be associated with sequent calculus, we choose
natural deduction for its simpler syntax, without the need for explicit substitutions. We restrict to the
connectives →, _, ⊗ and the two forms of false. We prefer to associate a proof term with an entire
subproof, as in [Par92], and not just the stoup formula.

We have modified the Lock rule based on the more general Peirce’s formula

((P _ e)→ P) _ P

so e is not necessarily ⊥. However, we still require that it’s atomic. Although it would be valid to allow any
green formula (by Lemma 2), retaining this normal form significantly simplifies term structure and reduction
rules. Here, [Θ :A]e has the meaning of the formula (Θ⊗ _ A) _ e. The new Locke rule only superficially
violates the subformula property. It is useless without Unlocke, which can only be applied if e is a subformula
of the end sequent. Instances of Locke where e is not such a subformula can be discarded. A formula locked
using Lock⊥ can be unlocked by any green e by the validity of ⊥_ e. The original, un-subscripted versions
of Lock/Unlock are still valid and are equivalent to Lock⊥/Unlock⊥. The generalized rules are not required
for completeness but are more useful in that they allow us to use the green formulas more meaningfully as
types.

All formulas except the stoup are indexed. The notation [Θ : A]de indicates that the index variable d
is associated with the entire intended formula (Θ⊗ _ A) _ e. Such boxed formulas are indexed by γ-

21

x : [:P]de ; ((P _ e)→ P)x ` (P _ e)→ P

y : ;P y ` P Id

[d]y : [:P]de ;P y ` e
Unlocke

λy.[d]y : [:P]de ;` P _ e
_ I

(x λy.[d]y) : [:P]de ; ((P _ e)→ P)x ` P
→ E

γd.(x λy.[d]y) : ; ((P _ e)→ P)x ` P Locke

K = λx.γd.(x λy.[d]y) : ;` ((P _ e)→ P) _ P
_ I

x : ;aaAx `aaA

z : ;aez `ae
y : Ay ` A

[d]y : [:A]de ;Ay ` e
Unlocke

z [d]y : [:A]de ;aez, Ay ` 0
_ E

λy.(z [d]y) : [:A]de ;aez `aA
_ I

(x λy.(z [d]y)) : [:A]de ;aez,aaAx ` 0
_ E

A(x λy.(z [d]y)) : [:A]de ;aez,aaAx ` A
0E

γd.A(x λy.(z [d]y)) : aez,aaAx ` A Locke

C1 = λzλx.γd.A(x λy.(z [d]y)) : ;`ae _ (aaA _ A)
_ I∗

Figure 3: Sample proofs: Peirce’s Formula and Use-Once Control Operator

variables while others are indexed by λ-variables. We assume that variables are always distinguishable and
are renamed to avoid clash when necessary. In particular, renamings are used in the Locke and Unlocke rules
(notation {x/y} represents substitution). In practice, we can also consider a version of Lock that always
copies the entire affine context, which would remain complete by the admissibility of weakening. However,
adopting such a rule would make some of the subsequent examples syntactically clumsy, and thus we allow
Lock to be more selective.

There are two types of lambda abstraction: λ and λ!, that correspond to _ and→ respectively. There are
also two types of application: (s t) and (s t): these correspond, respectively, to A⊗ (A _ B) _ B and A→
(A→ B) _ B, the two forms of Modus Ponens that are possible. It is not valid to mix ⊗ with → and still
deduce B without severe restrictions. One potential problem with linear lambda terms is how to type terms
such as λx.((λf.λy.f (f y)) x): here, x appears once before reduction but twice afterwards. In (intuitionistic)
linear logic there is only one −◦ and a ! operator that can be placed anywhere, offering few invariants. The
solution to this problem in our unified logic is rather obvious: the term λx.((λ!f.λy.f (f y)) x) cannot be
assigned a red type, because of the context restriction on → elimination. The term λx.((λ!f.λy.f (f y)) x)
is not typable at all.

The rule Dr carry no meaning except for variable renaming: this is the only computational content of
left-side contraction. The rule Pr, however, is more significant as it can affect the permutation of cuts (see
next section). We have modified the Pr rule so that it affects all formulas in the affine linear context. All
free variables inside the scope of ! may appear more than once. However, this does not mean a complete
classical collapse, for red subformulas of green formulas will retain their non-classical strength: in !λx.t, x
can still appear only once in t unless it is inside the scope of another ! in t. The proof of (P _ −P) _ −P ,
for example, is λxλy.!xyy. We can preserve the original version of Pr using terms such as !x.t, to indicate
the singleton formula that Pr affects. However, x must still be considered free in !x.t, which will have an
effect on substitutions (beta-reduction) that’s disproportionate to its usefulness. Thus we chose the simpler
representation. ! is not affected by substitution. Note that terms such as !x.λy.s are not possible because of
the continued restriction on e being atomic in the Pr rule. This normal form allows us to avoid having to
modify the definition of β-reduction.

Terms γd.s represent contraction and are equivalent to µd.[d]s in classical λµ calculus. The fact that
γ locks in the sequence µd.[d] . . . doesn’t mean that we cannot derive the more general C control operator

22

[FFKD87] (compared to call/cc). We can prove the purely classical ¬¬E → E, or the hybrid ((A _ ⊥) →
0) _ A. Given that there are two implications, two constants for false, and two colors, there are 64 versions
of the double negation axiom that can be considered in the unified logic.

Since we use a single-conclusion system, weakening on the right can only take the form of 0E (abort),
⊥E (break) and Unlock⊥. The λµ notation [d]t is equivalent to (dt), or to B(dt) in the case of Unlock⊥

3.
It is also possible to design a multiple-conclusion proof system, based on the multiple-conclusion version of
intuitionistic sequent calculus (i.e., the Beth-Fitting intuitionistic tableau). In such a context an additional,
intuitionistic version of µ would be needed, and γ can then lock a formula on the right that’s not in the
stoup, which means that γ can be seen as a non-binding operator. We showed in [LM13b] how such an
interpretation, along with an appropriate abstract machine, can formulate dynamically scoped continuation
jumps. However, that subject is orthogonal to the main aims of the present paper.

Figure 3 displays two sample proofs. The first is for our version of Peirce’s formula. The second is new:
ae _ (aaA _ A). Here, A is any formula, red or green. The assumption ae = e _ 0 causes a collapse into
classical logic since it implies that 0, and therefore all formulas, have the characteristics of green formulas.
However it is a one-time only assumption: the collapse is momentary. In order for this use-once control
operator to have its usual effect, a permission “token” in the form ae (or ∼e) needs to be consumed. A
similar proof derives a call-once/cc operator, this time with no restriction on Q:

λxλz.γd.x(λy.A(z [d]y)) : ((P _ Q) _ P) _ae _ P

Term Reduction Rules

We list below a relatively conservative set of reduction rules for our proof terms.

• (λx.s) t −→ s[t/x], (λx.s) · t −→ s[t/x]

• (γd.s) t −→ γd.s{[d](w t)/d[w]} t, (γd.s) · t −→ γd.s{[d](w · t)/d[w]} · t

• A(s) t/A(s) · t −→ A(s), B(s) t/B(s) · t −→ B(s)

• let (x; y) = (u; v) in t −→ t[u/x, v/y]

• γaγb.s −→ γa.s[a/b]

• [d]γa.s −→ [d]s[d/a]

• γd.s −→ s when d is not free in s

The first four sets of rules are reduction rules while the last three are renaming rules, which eliminate
redundant Locks (redundant contractions).

Theorem 11 The term reduction rules satisfy subject reduction and are strongly normalizing.

Subject reduction is shown by checking case by case that the rules represent valid proof transformations.
All of these rules have equivalents in classical λµ calculus. All typable ACL terms are typable in classical
logic: there are just fewer valid reductions because of the stronger type system. For example, the case for
let (x; y) = (u; v) in t is just a special case of (λxλy.t) u v. Every reduction path here corresponds to a
reduction path in λµ calculus. The presence of Dr and the treatment of indices in the Lock and Unlock rules
represent nothing more than α-conversion, which does not affect normalization. The ! operators representing
Pr likewise do not affect normalization. Thus there is no question that this system is strongly normalizing
given that the result is known for classically typed λµ terms.

3See [dG94] for a clear explanation of λµ-calculus and control operators

23

8 Structural Rules and Delimited Control

The transitions between different modes of proof, in the form of the structural rules of LAC and NAC, have
the effect on cut-elimination that of delimited control operators. This correspondence is consistent with the
recent work of Ilik [Ili12], which shows that delimited control behavior can be seen as resulting from the
transition between non-classical and classical modes of proof. In this section we explore two extensions of
the proof representation presented above that captures forms of delimited control.

8.1 Delimited Abort

The manner in which coloring information determines how cut is reduced with respect to the Unlock
(Unlock⊥) and ⊥E rules leads to an interesting computational effect. Consider

s : Γ; ∆ ` e1 → e2

t : Γ; ∆′ ` A
[d]t : [∆′ :A]d,Γ;` e1

Unlock

(s [d]t) : [∆′ :A]d,Γ; ∆ ` e2
→ E

With e1 and e2 both green, there are two ways to reduce this cut. The first is by usual β-reduction, once s
has been reduced to a lambda-term. A second possibility is to reduce to the following:

t : Γ; ∆∆′ ` A
[d]t : [∆′ :A]d,Γ; ∆ ` e2

Unlock

With weakening, the same t still proves the premise. The same choice exists for _. The context formed by
s is discarded. However, if e2 was not green, then the only choice is β-reduction. A similar situation exists if
the last rule of s is also Unlock (assuming the relaxed version of Unlock). A term ([d]s [d]t) can be reduced
to either [d]s or [d]t and determinism would require a specific evaluation strategy.

In contrast to a term A(t), which uses 0-elimination, the “break” generated by a [d]t or B(t) cannot escape
the entire program context but is thrown upwards towards the nearest red context, i.e., the red continuation
skips to where the break occurs. We can write a special case of _ elimination (similarly for →-elimination)
marking a switch between green and red contexts (R is red):

u : Γ; ∆ ` e _ R v : Γ; ∆′ ` e
(u]v) : Γ; ∆∆′ ` R

_]E

This rule should be applied in place of the usual _ E in all such cases. Reduction, restricted to simple λ
terms plus B(t) (which subsumes Unlock where [d]s ≡ B(d s)), can be redefined by the following rules, in
order of precedence:

s B(t) = B(t);
(λx.s) t = match t with
|]u⇒ s[u/x]
| v ⇒ s[v/x]

The “delimiter”] is a type annotation that indicates a transition from green to red; it has no meaning
independently of such a context. The delimiter is dropped after substitution, which gives this reset/prompt
marker a dynamic behavior. We can prove that the usual congruent closure of this reduction relation
preserves types (subject reduction) regardless of evaluation order. Instances of subterms (s t) where s is of
type E _ R are not well-typed: they must be in the form (s]t). For example, (λx.g](f2 x))](f1 B(u))
reduces to (g]B(u)). Both f1 and f2 are aborted. Here, f2 must be of some type E _ E′ and g of type
E′ _ R. Reducing to a term that contains (f2]B(u)) is not type-sound. This behavior is dynamic because
one cannot determine which] will stop the abort without reducing the term. In practice, finer control can
be gained by casting a green type E into a red equivalent such as E ⊗ > (use a “dummy” term of type
E _ E ⊗>), which would then allow] to appear.

The delimited abort operation can be used to model exception handling, with] representing the catching
of an exception, which is likewise dynamically scoped in languages such as ML or Java.

24

8.2 Capturing Delimited Continuations

Besides Unlock and ⊥E, the other rule that is sensitive to coloring information is Pr, which cancels the
non-contractable affine context when the stoup is green. Consider the following sample scenario:

λx.u : Γ;` e _ R

λy.f : Γ;` e′_ e

t : Γ1; ∆1 ` e′

[:e′]ke ,Γ1; ∆1 ` e
Unlocke

...

[:e′]ke ,Γ∆;` e′

s : Γ∆;` e′ Locke

!s : Γ; ∆ ` e′ Pr

(λy.f) !s : Γ; ∆ ` e _ E

λx.u]((λy.f) !s) : Γ; ∆ ` R
_]E

With R red but e, e′ green, it is possible to permute the cut with proof λy.f above the Pr, and then above
the Unlock (unlike the generic cut elimination procedure of Section 5). However, the only way to cut with
λx.u is to substitute the right subproof into u (β-reduction), as R will not be able to duplicate Pr:

λx.u : Γ;` e _ R

λy.f : Γ;` e′_ e t : Γ1; ∆1 ` e′

(λy.f)t : Γ1Γ; ∆1 ` e
_ E

...
Γ1Γ∆;` e

!s{(λy.f)w/[d]w}Γ1Γ; ∆ ` e Pr

Γ; ∆ ` R _]E

The transitional type e _ R again signals delimited control.
To construct a system that allows the direct-style capture of delimited continuation, we need to first

fix a call-by-value like reduction strategy (as in [OS97]). Terms γd.t are not considered values and thus
terms of the form (λx.s) γd.t are not reduced by β: rather the cut is permuted to instances of [d]w inside
t. Our scheme differs from the usual definition of call-by-value in that whether terms !t are considered
values depend on the presence of], which is itself not a term constructor. To be more precise, we define the
following categories of terms and evaluation contexts:

Values : V ::= x | λx.T

Pre-values : P ::= V | γd.T | !P

Terms: T ::= V | γd.t | !T | [d]T | (T T) | (T]T)

The same _]E rule is used. Both the] and ! symbols are needed, since if u is not of type e _ R, then no
delimitation is required despite the !. It is only when] and ! appears together that evaluation will be affected.
It is not possible to combine the introduction of] and ! into a single rule as it would not be preserved under
substitution.

The definition of evaluation context E must distinguish between redexes of the form (λx.s) !t, which
should move the Pr rule beneath the cut (to !(λx.s)t), and situations such as (λx.s)]!T , in which case T
may require further evaluation.

• E ::= [] | E T | P E | E]T | P]E | !E

P]!z̄E. Evaluation is defined by the following rules, in which (]) represents the possible (but consistent)
presence of the] symbol.

• E[P1 !P2] −→ E[!(P1 P2)] (permutation of cut above Pr)

25

• E[P (])γd.t] −→ E[γd.P (])t{[d]P (])w/[d]w}] (capture of evaluation context)

• E[(γd.t) (])V] −→ E[γd.t{[d]w (])V/[d]w} V] (permutation of cut above Lock)

• E[(γd.t)]!P] −→ E[γd.t{[d](w]!P)/[d]w} V] (λµ-style structural reduction)

• E[(λx.T)]!P] −→ E[s{!P/x}] (beta-reduction)

• E[(λx.T) (])V] −→ E[s{V/x}] (beta-reduction)

Define a redex to be any term of one of the forms r found in an evaluation rule E[r] −→ s. We have the
following:

Lemma 12 Every closed term T is either a pre-value P or of the form E[r] where r is a redex. Furthermore,
E and r are unique.

This lemma is proved by induction on the structure of closed terms. We detail the most important (and
representative) cases:

Assume that T is of the form (T1 T2). We have the following mutually exclusive cases:

1. T1 is not of the form P . Then by inductive hypothesis, T1 = E′[r]. So let E = E′ T2 and so T = E[r].
E is uniquely determined if E′ is.

2. T is of the form (P T2) but T2 is not a pre-value. Again by inductive hypothesis T2 = E′[r] so let
E = P E′.

3. Assume T is of the form (P1 P2). Let E = []. We know that P1 cannot be of the form !z.P
′ since the

Pr rule cannot be applied to an arrow type. We therefore have the following possibilities:

(a) P1 = λx.T . Then the redex r is either (λx.T) V , (λx.T) γd.t, or (λx.T) !P .

(b) P1 = γd.T . The redex is either (γd.T) !P , (γd.T) (γf.S) or (γd.T) V .

This lemma shows both the progress of evaluation and that evaluation is deterministic. Of course we can
also show that evaluation is type sound (subject reduction).

The type of delimited control operator that γ implements is dynamic, since in the captured term [d]Pw,
which can be generalized into a continuation context, is not itself delimited. We shall not attempt any
termination results as it is known that the dynamic control/prompt operations can lead to non-terminating
behavior under call-by-value (see [KY08]), even in typed settings. That does not contradict cut-elimination,
since β-reduction is still possible. However, the full power of delimited control operators are only revealed
in a direct style, call-by-value setting where terms such as λy.f are captured as part of the continuation
(as opposed to applied immediately as in call-by-name). Under such a setting, delimitation is logically
necessitated by the green/red distinction of ACL.

9 The Colors of Second Order Bound Variables

The addition of first-order quantifiers to ACL would be a rather standard exercise. More significant would
be addition of second-order quantifiers. One problem that has faced polarized systems, including LC and
focusing systems, has been how to assign polarities to second order formulas, specifically to propositional
variables that are bound by ∀ and ∃. One might consider two versions of each quantifier, which restricts
also the polarity of formulas that can instantiate them. Another approach might be to keep bound variables
unpolarized. None of these approaches is satisfactory.

In contrast, the red and green colors of ACL do not represent a “duality” but rather two levels of
provability. Proposition 6 states that provability is always preserved by replacing red atoms with green ones
and substitution property of ACL (Theorem 7) clearly indicate that red atoms have the characteristics of
universally quantified propositional variables: one proves ∀A.A → A. On the other hand, one can only

26

prove ∃A.¬¬A → A. It is therefore tempting to regard existentially quantified variables as green atoms.
This uniform scheme of assigning colors was first proposed in [LM13b] but not carefully verified. The
interpretation of ∃ is the closure over a possibly infinite union of facts: it can hardly be anything else.
Its introduction rules are also those that are expected. In particular, the right introduction rule can still
instantiate the bound variable with any term while the left introduction rule must replace the bound variable
with an arbitrary variable, which must be red. Such rules are required for soundness. However, regarding
existentially quantified variables as green is consistent with the properties that we expect of green formulas,
including the properties established by Lemma 1 and Lemma 2. Formally, we specify that:

• In ∀X.P , the free occurrences of X in P are red;

• In ∃X.P , the free occurrences of X in P are green.

• ∀X.P is green if P is green, otherwise it is red.

• ∃X.P is green if P is green, otherwise, it is red.

The inference rules for ∀ and ∃, in the context of LAC, are as follows

Γ; ∆ ` A[B/X]

Γ; ∆ ` ∃X.A ∃R
Γ; ∆, A ` P

Γ; ∆,∃Y.A ` P ∃L, Y red
Γ; ∆ ` A

Γ; ∆ ` ∀Y.A ∀R, Y red
Γ; ∆, A[B/X] ` P
Γ; ∆,∀X.A ` P ∀L

The usual restrictions on free occurrences of Y apply. We can still universally quantify over green formulas
using ∀X.(⊥ → X) → P : although ⊥ → X is not technically green, it implies equivalence with green
formulas. No complementary form exists, however, to restrict ∃ to quantify over only red formulas. That
would mean requiring something to be anything: a self-contradiction.

Semantically, (again following [Oka02]) we consider non-standard second order phase models where facts
D is a proper subset of the facts of a standard model that remains closed over the interpretation of all
connectives and constants, including:

• (∀X.A)p =
⋂

d∈D A[Xp = d]p

• (∃X.A)p = cl(
⋃

d∈D A[Xp = d]p)

Here, by A[Xp = d]p we mean the interpretation of A under the assumption that propositional variable
(atom) X valuates to fact d. We can extend the property established by Lemma 1 to green instances of
these formulas. In particular, we note that

• if ∀X.A is green then A[C/X] is also green for any formula C.

• if ∃X.A is green and B is green, then A[B/X] is also green.

This property is easily established by induction on A. Clearly all green ∃X.A valuates to > or ⊥ since
A[⊥/X] does. The permutation property of Lemma 2 also holds under this extended coloring scheme. For
example, ∃X.(X ⊕B) is green, and can activate the generalized PR rule by the following permutation:

Γ, A; ∆ ` ∃X.X ⊕B
[: ∃X.X ⊕B],Γ, A; ∆ ` ⊥ Unlock

[: ∃X.X ⊕B],Γ; ∆, A ` ⊥ Pr

[: ∃X.X ⊕B],Γ; ∆, A ` ⊥ ⊕B ⊕R

[: ∃X.X ⊕B],Γ; ∆, A ` ∃X.X ⊕B ∃R

Γ; ∆, A ` ∃X.X ⊕B Lock

For these reasons the green coloring of existentially quantified propositional variables is valid, despite some
awkwardness regarding the ∃L rule. The point being that if X is not considered green then we would not
be able to recognize that formulas such as ∃X.X ⊕B have the properties of green formulas.

27

10 Conclusion

Let us summarize the important components of ACL as follows.

1. A phase semantics that approximate the Kripke semantics of intuitionistic logic. Facts are upwardly
closed sets. The constant ⊥ is the second-largest fact, with more attributes than its counterpart in
linear logic.

2. The coloring of formulas into green (classical) and red (possibly non-classical). The colors of arbitrary
formulas reduce to the colors of atoms and constants, in particular to the green ⊥.

3. The validity of the Peirce-like formula (−P → P) _ P , which implies its “weaker” half, (P → −P) _
−P . They enable contractions on arbitrary formulas when ⊥, or any green formula, is encountered
as the current, or stoup formula in a proof. This “self-dual” principle replaces ? and ! in allowing
restrictions on contraction to coexist with cut elimination.

4. A sound and complete sequent calculus that enables contractions dynamically. The classical effect of
green formulas is localized in proof segments.

5. The cut-elimination procedure for this proof reveals the importance of new structural rules such as
Unlock and Pr, and how red/green coloring impacts cut-elimination. It also includes λµ-style structural
reductions.

6. From these elements we derive a computational interpretation of natural deduction proofs that allows
intuitionistic and affine-linear lambda terms to coexist with control operators such as call/cc.

The logical interpretation of the computational content of proofs that use contractions on the right-hand
side thus does not require a collapse into classical logic.

References

[And92] Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. J. of Logic and
Computation, 2(3):297–347, 1992.

[Bar96] A. Barber. Dual intuitionistic linear logic. Technical Report ECS-LFCS-96-347, 1996.

[dG94] Philippe de Groote. On the relation between lambda-mu calculus and the syntactic theory of
sequential control. In Logic Programming and Automated Reasoning, 5th international conference
LPAR’94, pages 31–43, 1994.

[FFKD87] M. Felleisen, D. Friedman, E. Kohlbecker, and B. Duba. A syntactic theory of sequential control.
Theoretical Computer Science, 52(3):205–237, 1987.

[Fit69] Melvin C. Fitting. Intuitionistic Logic Model Theory and Forcing. North-Holland, 1969.

[Gen35] Gerhard Gentzen. Investigations into logical deduction. In M. E. Szabo, editor, The Collected
Papers of Gerhard Gentzen, pages 68–131. North-Holland, Amsterdam, 1935.

[Gir91] Jean-Yves Girard. A new constructive logic: classical logic. Math. Structures in Comp. Science,
1:255–296, 1991.

[Gir93] Jean-Yves Girard. On the unity of logic. Annals of Pure and Applied Logic, 59:201–217, 1993.

[Gir11] Jean-Yves Girard. The Blind Spot. European Mathematical Society Publishing House, 2011.

[HM94] Joshua Hodas and Dale Miller. Logic programming in a fragment of intuitionistic linear logic.
Information and Computation, 110(2):327–365, 1994.

28

[ILH10] Danko Ilik, Gyesik Lee, and Hugo Herbelin. Kripke models for classical logic. Annals of Pure
and Applied Logic, 161(11):1367–1378, 2010.

[Ili12] Danko Ilik. Delimited control operators prove double-negation shift. Annals of Pure and Applied
Logic, 163(11):1549–1559, 2012.

[Kop95] A. P. Kopylov. Propositional linear logic with weakening is decidable. In Symposium on Logic in
Computer Science, pages 496–504. IEEE, 1995.

[KY08] Yukiyoshi Kameyama and Takuo Yonezawa. Typed dynamic control operators for delimited
continuations. In Symposium on Functional and Logic Programming, pages 239–254, 2008.

[Laf97] Y. Lafont. The finite model property for various fragments of linear logic. Journal of Symbolic
Logic, 62:1202–1208, 1997.

[Lia16] Chuck Liang. Unified semantics and proof system for classical, intuitionistic and affine logics. In
Symposium on Logic in Computer Science (LICS), July 2016.

[LM11] Chuck Liang and Dale Miller. A focused approach to combining logics. Annals of Pure and
Applied Logic, 162(9):679–697, 2011.

[LM13a] Chuck Liang and Dale Miller. Kripke semantics and proof systems for combining intuitionistic
logic and classical logic. Annals of Pure and Applied Logic, 164(2):86–111, February 2013.

[LM13b] Chuck Liang and Dale Miller. Unifying classical and intuitionistic logics for computational control.
In Orna Kupferman, editor, 28th Symp. on Logic in Computer Science, pages 283–292, 2013.

[Mil96] Dale Miller. Forum: A multiple-conclusion specification logic. Theoretical Computer Science,
165(1):201–232, September 1996.

[Oka02] Mitsuhiro Okada. A uniform semantic proof for cut elimination and completeness of various first
and higher order logics. Theoretical Computer Science, 281(1-2):471–498, 2002.

[OS97] C.H. Luke Ong and Charles Stewart. A Curry-Howard foundation for functional computation
with control. In Symposium on Principles of Programming Languages, pages 215–227, 1997.

[Par92] Michel Parigot. λµ-calculus: An algorithmic interpretation of classical natural deduction. In
LPAR: Logic Programming and Automated Reasoning, International Conference, volume 624 of
LNCS, pages 190–201. Springer, 1992.

[Vel76] Wim Veldman. An intuitionistic completeness theorem for intuitionistic predicate logic. Journal
of Symbolic Logic, 41(1):159–166, 1976.

29

A Focused Sequent Calculus

Similarities do exist between the positive/negative polarization of LC and focused proof systems and the
red/green coloring of ACL. The semantics of ACL clearly show how green means classical and red means non-
classical (in terms of restrictions to structural rules). Positive formulas also exhibit some of the characteristics
of red formulas, especially in that proofs cannot use classical structural rules when positive formulas occupy
the stoup. The stoup is already an important part of ACL proof theory that relies on the “polarization”
of green atoms and ⊥ as negatives, which allows us to use an important element of focusing in the Unlock
rule. However, not all red formulas are positive and not all negative formulas are green. This analysis
indicates that positive/negative polarization is not enough to distinguish between classical and non-classical
proofs, and that the red/green colors offer a more refined classification. However, focusing has proven to be a
useful normal form in other ways, such as in deterministic proof search and in defining evaluation strategies
(call-by-value versus call-by-name). In this section we propose a focused sequent calculus for ACL. By doing
so, we will also be explicating the precise relationship between the red/green colors and positive/negative
polarities.

Polarization

1. ⊥ is negative, > is negative, 0 is positive (but doesn’t matter).

2. Green atoms are negative. The reason is that green atoms a are in fact embeddable as a → ⊥ where
a is not green.

⊥ and green atoms must be negative also because of the Unlock rule, which is already focused.

3. Red atoms can be negative or positive.

4. All Green formulas are considered asynchronous on the right, this includes formulas B ⊕E, by virtual
of the multiplicative connective that incorporates Lock. B ⊕ E is considered to be negative when
appearing on the right-hand side of sequents. Left-side occurrences are regarded as positive.

5. Both → and _ are negative: asynchronous on the right and synchronous on the left.

6. ⊗ is always positive and synchronous on the right, asynchronous on the left.

7. Red & is asynchronous on the right, but synchronous on the left, while red ⊕ is synch on the right and
asynch on the left.

A negative literal is a negatively polarized atom or constant. These include green atoms and ⊥.
Focusing in linear, intuitionistic and classical logics permute the application of of structural rules to

take place in between the different positive phases. In ACL contractions can take place anywhere in the
form of Lock. It may appear, therefore that ACL requires contraction on subformulas inside a synchronous
phase. Fortunately, this complication is avoided due to two factors. First, the affine-linear context can be
saved by Lock, and secondly, unused assumptions can always be weakened. It is therefore possible to see
that contraction on subformulas of a positive formula can always be replaced by contraction on the overall
formula, although the resulting proof may become larger (a smart theorem prover will apply appropriate
sharing). For example,

Γ′; ∆Θ1 ` A
[Θ1 : A],Γ′; ∆ ` e Unlock

...
[Θ1 : A],Γ; Θ1 ` A

Γ; Θ1 ` A
Lock

Γ; Θ2 ` B
Γ; Θ1Θ2 ` A⊗B

⊗R

30

Structural Rules

[Ω : Q],Γ; Ω ` Q
Γ; Ω ` Q Lock

Γ; ΩΩ′∆ ` Q
[Ω : Q],Γ; Ω′ ` e Unlock

M,Γ; Ω ` e
Γ; Ω,M ` e Pr

Decision Rules
Γ; Ω, ⇓N ` Q
Γ; Ω, N ` Q D1

Γ; Ω, ⇓A ` Q
A,Γ; Ω ` Q D2

Γ; Ω ` ⇓P
Γ; Ω ` P D3

Reaction Rules

Γ; Ω, P ` B
Γ; Ω, ⇓P ` B

R`
Γ; Ω ` N
Γ; Ω ` ⇓N

Rr
Γ;` ⇓•P2

Γ; Ω ` ⇓P2
Lat

Γ;` P̄2

Γ;` ⇓•P̄2

R2

Asynchronous Phase

Γ; ∆, A ` B
Γ; ∆ ` A _ B

_ R
A,Γ; ∆ ` B

Γ; ∆ ` A→ B
→ R

A,Γ; ∆ ` C B,Γ; ∆ ` C
Γ; ∆, A ∨B ` C ∨L

A,B,Γ; ∆ ` C
Γ; ∆, A ∧B ` C ∧L

Γ; ∆ ` A Γ; ∆ ` B
Γ; ∆ ` A&B

&R
Γ; ∆, A ` C Γ; ∆, B ` C

Γ; ∆, A⊕B ` C ⊕L
Γ; ∆, A,B ` C

Γ; ∆, A⊗B ` C ⊗L

[∆ : B],Γ; ∆ ` E
Γ; ∆ ` E ⊕B ⊕ER1

[∆ : B],Γ; ∆ ` E
Γ; ∆ ` B ⊕ E ⊕ER2 Γ; ∆ ` > >R Γ; ∆, 0 ` A 0L

Synchronous Phase One and Phase Two

Γ; Ω1 ` ⇓A Γ; Ω2 ` ⇓B
Γ; Ω1Ω2 ` ⇓A⊗B

⊗R
Γ; Ω1 ` ⇓A Γ; Ω2,

⇓B ` C
Γ; Ω1Ω2,

⇓A _ B ` C
_ L

Γ;` ⇓•A Γ; Ω, ⇓B ` C
Γ; Ω, ⇓A→ B ` C

→ L

Γ; Ω, ⇓Ai ` C
Γ; Ω, ⇓A1 &A2 ` C

&L
Γ; Ω ` ⇓Ri

Γ; Ω ` ⇓R1 ⊕R2

⊕R
Γ; Ω, ⇓n ` n

Id1
Γ; Ω, p ` ⇓p

Id3
Γ; Ω, ⇓⊥ ` e

⊥L

Γ;` ⇓•Ai

Γ;` ⇓•A1 ∨A2

∨R
Γ;` ⇓•A Γ;` ⇓•B

Γ;` ⇓•A ∧B
∧R

p,Γ;` ⇓•p
Id2

Syntactic Categories:
P : positive formula (level 1 or 2); Q : positive formula or negative literal
N : negative formula; M : negative formula or positive literal
R : red formula; E : green formula
e : green atom or ⊥
p : positive atom; n : negative atom
P2: positive-2 formula (∨, ∧) or positive atom; P̄2: non-positive-2 formula
Ω, Ω′ : all negative formulas and positive literals
Γ, ∆, A, B, C : arbitrary formulas

Figure 4: Focused Sequent Calculus FAC.

31

can be replaced by

Γ′; ∆Θ1 ` A Γ′; ∆Θ2 ` B
Γ′; ∆Θ1Θ2 ` A⊗B

⊗R

[Θ1Θ2 : A⊗B],Γ′; ∆ ` e Unlock

...
[Θ1Θ2 : A⊗B],Γ; Θ1 ` A [Θ1Θ2 : A⊗B],Γ; Θ2 ` B

[Θ1Θ2 : A⊗B],Γ; Θ1Θ2 ` A⊗B
⊗R

Γ; Θ1Θ2 ` A⊗B
Lock

It can always be assumed that Γ ⊆ Γ′. The ability to save the affine context therefore grant to these
assumptions a similar property, bounded by the appearance of green literals.

Extending focus to the intuitionistic disjunction ∨ presents further challenges. Here, some intuition from
linear logic will help us understand what is needed. If we see A ∨ B as !A⊕!B, then it is clear that focus
need not stop with (!A⊕!B)⊕C by the associativity of ⊕. But !A⊕!(B ⊕C) clearly means that focus must
stop because of the !. However, focus on A ∨ B ∨ C should clearly be possible. What this suggests is that
the positive polarity should be divided into two levels, with ∨ called a “positive-2” formula. There are thus
two focusing arrows for the two levels of positive formulas. It is also possible to understand this principle
independently of linear logic by considering A ∨ (B ⊕C) as a possible synthetic connective. It is easy to see
what the (unfocused) introduction rules of such a connective must be:

Γ;` Ai

Γ;` A1 ∨ (A2 ⊕A3)
∨ ⊕R

A,Γ; ∆ ` D Γ; ∆, B ` D Γ; ∆, C ` D
Γ; ∆, A ∨ (B ⊕ C) ` D ∨ ⊕ L

But one would not be able to prove initial elimination using these introduction rules:

;A ∨ (B ⊕ C) ` A ∨ (B ⊕ C)

However, the same exercise will show that A ⊕ (B ∨ C) can be considered a synthetic connective. This
preservation of focus is enabled by the lateral reaction rule Lat. The new Id2 rule allows a level-2 focus
phase to finish without a meaningless DR.

We have extended the positive-2 connectives to include the positive intuitionistic conjunction ∧, as found
in the focused sequent calculus LJF.

A sequent of the form Γ; Ω ` Q is “neutral” in that the only asynchronous (positive on left), non-literal
formulas in the sequent are in Γ. Such a formula can be selected by D2 (which replaces Dr, and immediately
cause a reaction that terminates the ⇓ stage and decompose the asynchronous formula. Such a scenario is
also found in the focused sequent calculus of full linear logic [And92], with formula such as ?(A&B).

A “phase” of a focused proof in FAC runs as follows:

1. All asynchronous connectives are decomposed eagerly. These include all green formulas on the right,
so at the end of this phase if the right-hand side is green it must be a green atom or ⊥.

2. The structural rules Pr and Unlock are applied, Pr first. The formulas unlocked may trigger more
asynchronous decompositions.

3. When no asynchronous formulas are left in the affine-linear context (Ω) or on the right-hand side, a
formula is selected for focus by one of the decide rules. Since D2 may select an asynchronous formula,
it may cause an immediate release by Rl, which will trigger more asynchronous decompositions. The
selection of a synchronous formula will begin a focus phase indicted by ⇓.

4. Focus may laterally transition to positive-2 formulas, but may not transition back.

5. The focusing phase stops when an asynchronous subformula is encountered, via the reaction rules.

32

As in Andreoli-inspired focused systems, focusing on atoms necessitates an initial rule. This aspect of
focusing is already incorporated in the Unlock rule. The Unlock rule is in fact no longer needed: it can
be replaced by a regular combination of D` and ⊗L, followed by asynchronous decompositions of _ R and
⊗L. However, we have kept Unlock as a separate rule as a convenience. It makes proofs slightly more
deterministic since the affine context is split in the appropriate way.

The correctness of the focused sequent calculus can be proved directly by verifying the permutablity of
synchronous introductions rules with respect to each other, and the invertibility of asynchronous introduction
rules.

Theorem 13 ;` A is provable in FAC if and only if it is provable in LAC.

Cut Elimination in FAC directly is possible. In fact, the proof is the essentially the same as for the
unfocused calculus, since all the interesting cases concern the structural rules.

33

